Техпроцесс — понятие в изготовлении процессоров. Техпроцесс в центральных и графических процессорах

Технологический процесс (электронная литографическая промышленность, техпроцесс ,мкм, nm /нм; tecnology node, process tecnology eng . ) – свод норм для изготовления полупроводниковых (п /п ) микросхем. В частности, самой важной характеристикой является размер полупроводниковых элементов, которые состоят из , ключей, и других элементов.

Измеряются эти элементы в микронах (мкм , микрометр) и нанометрах (нм , nm ). Чем меньше базовые элементы, тем лучше их характеристики.

Преимущества более «тонкого» техпроцесса:

· Меньшее тепловыделение . Получается это за счёт уменьшения размеров дорожек, разводки, затворов и требуемых токов для нормального функционирования. Также из-за меньших токов утечки.

· Большее количество транзисторов , которые можно «упаковать» в одном и том же пространстве более компактно, и создавать чипы меньше. При этом более технологичные, с большим количеством элементов.

· Меньшее потребление энергии. Чем меньше элементы, тем меньшие токи нужны для управления ими.

· Меньшая стоимость производства. Чем меньше чипы по размеру, тем больше чипов можно разместить на полупроводниковых пластинах. Это увеличивает количество готовых продуктов при тех же затратах.

Этапы производства микрочипов:



1. Сначала выращивают кристаллический кремний и формируют его форму для распиливания на круглые пластины.

3. Далее следует эпитаксиальное нанесение равномерного слоя подобного подложке вещества на атомном уровне, которое служит как фундамент и выравнивающий, общий уровень . Так же применяется маскирующий слой , который защищает нанесённый слой атомов кремния от воздействий на следующих этапах.

4. Следующий шаг – фотолитография . Под действием специального излучения с разной длинной волн , на поверхности пластины, появляются химические маркеры, которые войдут в реакцию с последующими активными веществами.

5. Химическим методом и методом диффузии , под действием активных веществ (фосфор , бор ), образуются p — и n — области, микро-переходы и желобки , которые станут будущими элементами.

6. Следует фотолитографическая обработка в слое оксида определённых участков, которая даст маркеры (легированные участки) для нанесения металлических элементов (разводка, контакты), методом вакуумного металлизирования. Излишки металла удаляются, а тот который нанесён правильно, термически закрепляют (впаивают). Таким образом, образуются готовые элементы микрочипа.

7. Нанесение, нужного количества уровней диэлектрика и металла с последующей фотолитографией и обработкой (слоёв может быть сколько угодно, всё зависит от допустимой высоты). Над самым верхним слоем, наносятся несколько слоёв металла и диэлектрика для защиты и правильного рассеивания тепла.

8. Пассивация пластины, тесты, нарезка на микрочипы, монтаж на корпус процессора и соединение выводов, отбраковка.

Место производства, чистые комнаты.

Для производства микросхем, применяются специальные «чистые комнаты » с фильтрами и статическими механизмами для удержания мелких частиц пыли, волос, пуха & etc . Так как даже пылинка, попавшая на микрочип в процессе производства, может нарушить его работу , не говоря уже о волосах и пухе.

Перед входом, рабочие надевают специальные костюмы , очки и шапки, а также проходят специальные процедуры очистки .


К тому же все сотрудники дышат через специальные фильтры, чтобы полностью исключить источники инородных объектов.

Самые крупные мощности литографических производств имеются у крупнейших компаний подрядчиков: и . Крупную долю на мировом рынке производства микрочипов имеет Intel , но компания занимается производством чипов только для своих нужд. Возможно в будущем данный подход изменится. Дружественным компаниям, Intel всё же оказывает контрактные услуги, но в основном только акционерам.

Компания Intel , первой планирует запустить производство микрочипов с применением трёхмерных транзисторов (3G, FinFET ).


С переходом на всё более тонкий техпроцесс, производителям приходится вкладывать всё больше средств на разработку методов реализации нового техпроцесса. Также уходит больше времени на строительство новых фабрик для производства.

Поэтому, многие производители объединяются в группы и совместно вкладывают средства в разработку техпроцессов и строительство новых фабрик.

В сокращении издержек, также помог бы переход на более крупные пластины 450 мм , но это потребует строительства большинства фабрик с нуля и производства совершенно нового оборудования, что затратно. Переход планируется в 2012-13 году.

Бывает довольно сложно объяснить старшему поколению, почему современные смартфоны стоят очень дорого. Наши гаджеты настолько эволюционировали, что функционал телефона в современных устройствах стал придаточным. По сути, мы пользуемся маленьким компьютером, который, как и раньше может осуществлять звонки.

Наши стационарные компьютеры, мобильные компьютеры, ноутбуки выполняют огромное количество задач, но разве вы не задумывались, что происходит внутри этих устройств? Что выполняет роль «мозга» системы? Конечно процессор.

Давайте разберёмся в основных понятиях и терминах современных процессоров.

Архитектура

Существуют разные архитектуры процессоров. Более того, большинство программ заточено под определённую архитектуру – 64Bit или 32Bit. Такие программы поддерживают определённую архитектуру процессора.

Процессор, имеющий 32-битную архитектуру, может обрабатывать 32 бита информации за один цикл. Аналогично и с 64-битными процессорами.

Кроме того, количество поддерживаемой оперативной памяти (RAM) так же зависит от архитектуры процессора.

Процессорам с 16-разрядной архитектурой доступны смехотворные по современным меркам 64 КБ оперативной памяти. 32-битному процессору доступны 4 ГБ памяти (существуют серверные версии Windows с возможностью использования большего количества памяти). А для 64-битного процессора это 16 эксабайт.

Ядра

Ядра это обрабатывающие ячейки процессора. Они получают инструкции и действуют на их основе. В упрощённом понимании, чем больше у вас ядер, тем лучше скорость обработки. Представьте рабочих фабрики. Чем больше рабочих, тем быстрее обрабатываются материалы.

Но большое количество рабочих потребует больших средств на зарплату. Большое количество ядер, однозначно, увеличит скорость обработки, но одновременно потребуется больше энергии, а также процессор будет существенно сильнее нагреваться.

Тактовая частота

Часто мы слышим, что процессор имеет 3,2 ГГц или 3,6 ГГц или 4,0 ГГц. Что вообще такое ГГЦ?

ГГц это аббревиатура от слова Гигагерц. Приставка «гига» означает «миллиард», а герцы – это стандартная единица измерения частоты в микроэлектронике, в аббревиатуре ГГЦ обозначающая «цикл в секунду». Таким образом, процессор с частотой 2 ГГц может выполнять 2 миллиарда циклов за одну секунду.

Этот термин иногда заменяют аналогичным «частота» или «тактовая частота» вашего процессора. Чем выше число, тем лучше выбранный процессор.

Кэш процессора

Кэш микропроцессора – это маленький блок внутри процессора, который хранит немного памяти. Каждый раз, когда нам нужно выполнить какую-то задачу поток данных должен перейти из ОЗУ в процессор. Процессор работает гораздо быстрее, чем оперативная память, поэтому большую часть времени процессор находится в режиме ожидания и ждёт данные из ОЗУ. Чтобы этот процесс выполнялся эффективно, ОЗУ постоянно пересылает данные в кэш процессора.

В обыкновенных десктопных процессорах среднего класса в вашем распоряжении порядка 2-3 Мб кэша. В процессорах high-end уровня и специализированных решениях для «тяжёлых» задач – от 6 Мб и выше. Чем больше кэш вашего процессора, тем лучше.

Литография (техпроцесс)

Литография процессора или техпроцесс, по которому изготовлен кристалл, связаны с размерами используемых транзисторов. Обычно техпроцесс измеряется в нанометрах, и чем меньше число, тем компактнее и энергоэффективнее ваш процессор. Современная высокотехнологичная литография позволяет увеличить количество ядер в одном слоте и снизить потребление энергии.

Средний показатель литографии актуальных процессоров колеблется в пределах 14-32 нм.

Thermal Design Power (TDP) или требования по теплоотводу

Этот показатель представляет собой мощность в ваттах, которую рассеивает процессор во время загрузки всех ядер и базовой частоте. Чем ниже этот показатель, тем лучше для процессора. Более низкий TDP позволяет разгонять процессор до более высоких частот, и означает, что выделяется меньше тепла для рассеивания.

Стандартные десктопные процессоры обычно потребляют больше энергии и имеют TDP в районе 40 Вт и выше, в то время как их мобильные аналоги в 3 раза меньше энергии и почти на столько же холоднее.

Поддержка оперативной памяти

В рамках разбора термина архитектура мы уже упоминали поддержку оперативной памяти. Но это справедливо только для теории. Максимальное количество поддерживаемой памяти как правило оговорено производителем в характеристиках процессора. В них так же содержится информация о поддерживаемой версии DDR.

Разгон (оверклокинг)

Мы уже говорили о тактовой частоте, так вот, разгон, это увеличение тактовой частоты процессора для более высокой производительности. Как правило, разгоном занимаются геймеры, пользователи, использующие тяжёлые программы для обработки видео или фотографий, и просто энтузиасты компьютерного железа в виде своего рода развлечения/соревнования.

Разгон доступен большинству высокопроизводительных процессоров, нужен лишь разблокированный множитель (коэффициент умножения). Опытные оверклокеры знают, что даже если множитель заблокирован, то разгон (повышение частоты) возможен по шине, за счёт увеличения её частоты. Но! Если вы плохо знакомы с точной настройкой показателей процессора и не разбираетесь в настройках BIOS своей материнской платы, делать разгон процессора вам не стоит. Это не безопасно и может привести к поломке.

Hyper-Threading (Гиперпоточность или мультипоточность)

Когда стало очевидно, что добавление ядер не может оставаться лучшим решением для удовлетворения потребности в ускоренной обработке, был изобретена технология Hyper-Threading – виртуальные ядра процессора, позволяющие воплотить идею мультипоточности.

В итоге, когда мы говорим о двухъядерном процессоре с технологией Hyper-Threading это значит, что он имеет 2 физических ядра и 2 виртуальных ядра. Таким образом, технически вы получаете четырехъядерный процессор в корпусе двухъядерного процессора.

Выводы

Процессоры имею множество характеристик и переменных, связанных с ними. Мы знаем, что процессор это ключевая часть любого современного цифрового устройства. Поэтому перед выбором устройства очень важно изучить характеристики его процессора и учесть все вышеперечисленные свойства.

Для лучшей производительности такие вещи как частота, количество ядер, кэш процессора должны быть выше, в то время как техпроцесс, TDP должны быть, чем ниже, тем лучше.

Выставляйте правильные характеристики в системе фильтров buyon.ru и выбирайте лучший процессор для своей системы.

Всё ещё есть вопросы? Напишите в комментариях!

Доброго времени суток.

Давайте вместе приоткроем завесу такого сложного дела как производство для компьютеров. В частности, из этой статьи вы узнаете, что такое техпроцесс в процессоре и почему с каждым годом разработчики стараются его уменьшить.


Как изготавливаются процессоры?

Для начала вам стоит знать ответ на данный вопрос, чтобы дальнейшие разъяснения были понятны. Любая электронная техника, в том числе и CPU, создается на основе одного из наиболее часто используемых минералов - кристаллов кремния. Причем применяется он в данных целях уже более 50 лет.

Кристаллы обрабатываются посредством литографии для возможности создания отдельных транзисторов. Последние являются основополагающими элементами чипа, так как он полностью состоит из них.

Функция транзисторов заключается в блокировке или пропуске тока, в зависимости от актуального состояния электрического поля. Таким образом, логические схемы работают по двоичной системе, то есть в двух положениях - включения и выключения. Это значит, что они либо пропускают энергию (логическая единица), либо выступают в роли изоляторов (ноль). При переключении транзисторов в CPU производятся вычисления.

Теперь о главном

Если говорить обобщенно, то под технологическим процессом понимается размер транзисторов.

Что это значит? Снова вернемся к производству процессоров.

Чаще всего применяется метод фотолитографии: кристалл покрыт диэлектрической пленкой, и из него вытравливаются транзисторы с помощью света. Для этого используется оптическое оборудование, разрешающая способность которого, по сути, и является техническим процессом. От ее значения - от точности и чувствительности аппарата - зависит тонкость транзисторов на кристалле.

Что это дает?

Как вы понимаете, чем они будут меньше, тем больше их можно расположить на чипе. Это влияет на:

  • Тепловыделение и энергопотребление. Из-за уменьшения размера элемента он нуждается в меньшем количестве энергии, следовательно, и меньше выделяет тепла.
    Данное преимущество позволяет устанавливать мощные CPU в небольшие мобильные устройства. Кстати, благодаря низкому энергопотреблению современных чипов, планшеты и смартфоны дольше держат заряд. Что касается ПК, пониженное тепловыделение дает возможность упростить систему охлаждения.
  • Численность заготовок. С одной стороны, производителям выгодно уменьшать техпроцесс, потому что из одной заготовки получается большее количество продукции. Правда, это лишь следствие утончения техпроцесса, а не преследование выгоды, потому что с другой стороны, чтобы снизить размер транзисторов, необходимо более дорогое оборудование.

  • Производительность чипа. Чем больше он будет иметь элементов, тем быстрее будет работать, при том, что его физический размер останется прежним.

Техпроцесс в числах и примерах

Измеряется технологический процесс в нанометрах (нм). Это 10 в -9 степени метра, то есть один нанометр является миллиардной его частью. В среднем, современные процессоры производятся по техпроцессу 22 нм.

Можете себе представить, сколько транзисторов умещается на . Чтобы вам было понятнее, на площади среза человеческого волоса могут разместиться 2000 элементов. Хоть чип и миниатюрный, но явно больше волоска, поэтому может включать в себя миллиарды транзисторных затворов.

Хотите знать точнее? Приведу несколько примеров:

  • В процессорах фирмы AMD, а именно Trinity, Llano, Bulldozer, техпроцесс составляет 32 нм. В частности, площадь кристалла последнего - 315 мм2, где располагаются 1,2 млрд. транзисторов.
    Phenom и Athlon того же производителя выполнены по техпроцессу 45 нм, то есть имеют 904 млн. при площади основания 346 мм2.

  • У компании Intel есть чипы по стандарту 22 нм - это семейство Ivy Bridge (Intel Core ix — 3xxx). Для наглядности: Core i7 – 3770K обладает 1,4 млрд. элементов, при том, что размер его кристалла всего 160 мм.
    У этого же бренда есть и 32-нанометровая продукция. Речь идет об Intel Sandy Bridge (2xxx). На площади 216 мм2 она умещает 1,16 млрд. транзисторов.

К слову, все, что вы узнали о техпроцессах для центральных компьютерных аппаратов, применимо и к графическим устройствам. Например, данное значение в видеокартах AMD (ATI) и Nvidia составляет 28 нм.

Теперь вы знаете больше о таком важном компоненте вашего компьютера как процессор. Возвращайтесь за новой информацией.

Как и обещал – подробный рассказ о том, как делают процессоры… начиная с песка. Все, что вы хотели знать, но боялись спросить)


Я уже рассказывал о том, «Где производят процессоры » и о том, какие «Трудности производства » на этом пути стоят. Сегодня речь пойдет непосредственно про само производство – «от и до».

Производство процессоров

Когда фабрика для производства процессоров по новой технологии построена, у нее есть 4 года на то, чтобы окупить вложенные средства (более $5млрд) и принести прибыль. Из несложных секретных расчетов получается, что фабрика должна производить не менее 100 работающих пластин в час.

Вкратце процесс изготовления процессора выглядит так: из расплавленного кремния на специальном оборудовании выращивают монокристалл цилиндрической формы. Получившийся слиток охлаждают и режут на «блины», поверхность которых тщательно выравнивают и полируют до зеркального блеска. Затем в «чистых комнатах» полупроводниковых заводов на кремниевых пластинах методами фотолитографии и травления создаются интегральные схемы. После повторной очистки пластин, специалисты лаборатории под микроскопом производят выборочное тестирование процессоров – если все «ОК», то готовые пластины разрезают на отдельные процессоры, которые позже заключают в корпуса.

Уроки химии

Давайте рассмотрим весь процесс более подробно. Содержание кремния в земной коре составляет порядка 25-30% по массе, благодаря чему по распространённости этот элемент занимает второе место после кислорода. Песок, особенно кварцевый, имеет высокий процент содержания кремния в виде диоксида кремния (SiO 2) и в начале производственного процесса является базовым компонентом для создания полупроводников.

Первоначально берется SiO 2 в виде песка, который в дуговых печах (при температуре около 1800°C) восстанавливают коксом:

Такой кремний носит название «технический » и имеет чистоту 98-99.9%. Для производства процессоров требуется гораздо более чистое сырье, называемое «электронным кремнием » - в таком должно быть не более одного чужеродного атома на миллиард атомов кремния. Для очистки до такого уровня, кремний буквально «рождается заново». Путем хлорирования технического кремния получают тетрахлорид кремния (SiCl 4), который в дальнейшем преобразуется в трихлорсилан (SiHCl 3):
Данные реакции с использованием рецикла образующихся побочных кремнийсодержащих веществ снижают себестоимость и устраняют экологические проблемы:
2SiHCl 3 SiH 2 Cl 2 + SiCl 4
2SiH 2 Cl 2 SiH 3 Cl + SiHCl 3
2SiH 3 Cl SiH 4 + SiH 2 Cl 2
SiH 4 Si + 2H 2
Получившийся в результате водород можно много где использовать, но самое главное то, что был получен «электронный» кремний, чистый-пречистый (99,9999999%). Чуть позже в расплав такого кремния опускается затравка («точка роста»), которая постепенно вытягивается из тигля. В результате образуется так называемая «буля» - монокристалл высотой со взрослого человека. Вес соответствующий - на производстве такая дуля весит порядка 100 кг.

Слиток шкурят «нулёвкой»:) и режут алмазной пилой. На выходе – пластины (кодовое название «вафля») толщиной около 1 мм и диаметром 300 мм (~12 дюймов; именно такие используются для техпроцесса в 32нм с технологией HKMG, High-K/Metal Gate). Когда-то давно Intel использовала диски диаметром 50мм (2"), а в ближайшем будущем уже планируется переход на пластины с диаметром в 450мм – это оправдано как минимум с точки зрения снижения затрат на производство чипов. К слову об экономии - все эти кристаллы выращиваются вне Intel; для процессорного производства они закупаются в другом месте.

Каждую пластину полируют, делают идеально ровной, доводя ее поверхность до зеркального блеска.

Производство чипов состоит более чем из трёх сотен операций, в результате которых более 20 слоёв образуют сложную трёхмерную структуру – доступный на Хабре объем статьи не позволит рассказать вкратце даже о половине из этого списка:) Поэтому совсем коротко и лишь о самых важных этапах.

Итак. В отшлифованные кремниевые пластины необходимо перенести структуру будущего процессора, то есть внедрить в определенные участки кремниевой пластины примеси, которые в итоге и образуют транзисторы. Как это сделать? Вообще, нанесение различных слоев на процессорную подложу это целая наука, ведь даже в теории такой процесс непрост (не говоря уже о практике, с учетом масштабов)… но ведь так приятно разобраться в сложном;) Ну или хотя бы попытаться разобраться.

Фотолитография

Проблема решается с помощью технологии фотолитографии - процесса избирательного травления поверхностного слоя с использованием защитного фотошаблона. Технология построена по принципу «свет-шаблон-фоторезист» и проходит следующим образом:
- На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист - слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом.
- Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон
- Удаление отработанного фоторезиста.
Нужная структура рисуется на фотошаблоне - как правило, это пластинка из оптического стекла, на которую фотографическим способом нанесены непрозрачные области. Каждый такой шаблон содержит один из слоев будущего процессора, поэтому он должен быть очень точным и практичным.

Иной раз осаждать те или иные материалы в нужных местах пластины просто невозможно, поэтому гораздо проще нанести материал сразу на всю поверхность, убрав лишнее из тех мест, где он не нужен - на изображении выше синим цветом показано нанесение фоторезиста.

Пластина облучается потоком ионов (положительно или отрицательно заряженных атомов), которые в заданных местах проникают под поверхность пластины и изменяют проводящие свойства кремния (зеленые участки - это внедренные чужеродные атомы).

Как изолировать области, не требующие последующей обработки? Перед литографией на поверхность кремниевой пластины (при высокой температуре в специальной камере) наносится защитная пленка диэлектрика – как я уже рассказывал, вместо традиционного диоксида кремния компания Intel стала использовать High-K-диэлектрик. Он толще диоксида кремния, но в то же время у него те же емкостные свойства. Более того, в связи с увеличением толщины уменьшен ток утечки через диэлектрик, а как следствие – стало возможным получать более энергоэффективные процессоры. В общем, тут гораздо сложнее обеспечить равномерность этой пленки по всей поверхности пластины - в связи с этим на производстве применяется высокоточный температурный контроль.

Так вот. В тех местах, которые будут обрабатываться примесями, защитная пленка не нужна – её аккуратно снимают при помощи травления (удаления областей слоя для формирования многослойной структуры с определенными свойствами). А как снять ее не везде, а только в нужных областях? Для этого поверх пленки необходимо нанести еще один слой фоторезиста – за счет центробежной силы вращающейся пластины, он наносится очень тонким слоем.

В фотографии свет проходил через негативную пленку, падал на поверхность фотобумаги и менял ее химические свойства. В фотолитографии принцип схожий: свет пропускается через фотошаблон на фоторезист, и в тех местах, где он прошел через маску, отдельные участки фоторезиста меняют свойства. Через маски пропускается световое излучение, которое фокусируется на подложке. Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски.

Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором – вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится. Она образует проводник или будущий активный элемент – результатом такого подхода становятся различные картины замыканий на каждом слое микропроцессора.

Собственно говоря, все предыдущие шаги были нужны для того, чтобы создать в необходимых местах полупроводниковые структуры путем внедрения донорной (n-типа) или акцепторной (p-типа) примеси. Допустим, нам нужно сделать в кремнии область концентрации носителей p-типа, то есть зону дырочной проводимости. Для этого пластину обрабатывают с помощью устройства, которое называется имплантер - ионы бора с огромной энергией выстреливаются из высоковольтного ускорителя и равномерно распределяются в незащищенных зонах, образованных при фотолитографии.

Там, где диэлектрик был убран, ионы проникают в слой незащищенного кремния – в противном случае они «застревают» в диэлектрике. После очередного процесса травления убираются остатки диэлектрика, а на пластине остаются зоны, в которых локально есть бор. Понятно, что у современных процессоров может быть несколько таких слоев - в таком случае на получившемся рисунке снова выращивается слой диэлектрика и далее все идет по протоптанной дорожке - еще один слой фоторезиста, процесс фотолитографии (уже по новой маске), травление, имплантация… ну вы поняли.

Характерный размер транзистора сейчас - 32 нм, а длина волны, которой обрабатывается кремний - это даже не обычный свет, а специальный ультрафиолетовый эксимерный лазер - 193 нм. Однако законы оптики не позволяют разрешить два объекта, находящиеся на расстоянии меньше, чем половина длины волны. Происходит это из-за дифракции света. Как быть? Применять различные ухищрения - например, кроме упомянутых эксимерных лазеров, светящих далеко в ультрафиолетовом спектре, в современной фотолитографии используется многослойная отражающая оптика с использованием специальных масок и специальный процесс иммерсионной (погружной) фотолитографии.

Логические элементы, которые образовались в процессе фотолитографии, должны быть соединены друг с другом. Для этого пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» - в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики». Излишки проводящего покрытия убираются полировкой.

Финишная прямая

Ура – самое сложное позади. Осталось хитрым способом соединить «остатки» транзисторов - принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой. Для каждого процессора эти соединения различны – хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов». Отдаленно (при очень большом увеличении) все это похоже на футуристическую дорожную развязку – и ведь кто-то же эти клубки проектирует!

Когда обработка пластин завершена, пластины передаются из производства в монтажно-испытательный цех. Там кристаллы проходят первые испытания, и те, которые проходят тест (а это подавляющее большинство), вырезаются из подложки специальным устройством.

На следующем этапе процессор упаковывается в подложку (на рисунке – процессор Intel Core i5, состоящий из CPU и чипа HD-графики).

Привет, сокет!

Подложка, кристалл и теплораспределительная крышка соединяются вместе – именно этот продукт мы будем иметь ввиду, говоря слово «процессор». Зеленая подложка создает электрический и механический интерфейс (для электрического соединения кремниевой микросхемы с корпусом используется золото), благодаря которому станет возможным установка процессора в сокет материнской платы – по сути, это просто площадка, на которой разведены контакты от маленького чипа. Теплораспределительная крышка является термоинтерфейсом, охлаждающим процессор во время работы – именно к этой крышке будут примыкать система охлаждения, будь то радиатор кулера или здоровый водоблок.

Сокет (разъём центрального процессора) - гнездовой или щелевой разъём, предназначенный для установки центрального процессора. Использование разъёма вместо прямого распаивания процессора на материнской плате упрощает замену процессора для модернизации или ремонта компьютера. Разъём может быть предназначен для установки собственно процессора или CPU-карты (например, в Pegasos). Каждый разъём допускает установку только определённого типа процессора или CPU-карты.

На завершающем этапе производства готовые процессоры проходят финальные испытания на предмет соответствия основным характеристикам – если все в порядке, то процессоры сортируются в нужном порядке в специальные лотки – в таком виде процессоры уйдут производителям или поступят в OEM-продажу. Еще какая-то партия пойдет на продажу в виде BOX-версий – в красивой коробке вместе со стоковой системой охлаждения.

The end

Теперь представьте себе, что компания анонсирует, например, 20 новых процессоров. Все они различны между собой – количество ядер, объемы кэша, поддерживаемые технологии… В каждой модели процессора используется определенное количество транзисторов (исчисляемое миллионами и даже миллиардами), свой принцип соединения элементов… И все это надо спроектировать и создать/автоматизировать – шаблоны, линзы, литографии, сотни параметров для каждого процесса, тестирование… И все это должно работать круглосуточно, сразу на нескольких фабриках… В результате чего должны появляться устройства, не имеющие права на ошибку в работе… А стоимость этих технологических шедевров должна быть в рамках приличия… Почти уверен в том, что вы, как и я, тоже не можете представить себе всего объема проделываемой работы, о которой я и постарался сегодня рассказать.

Ну и еще кое-что более удивительное. Представьте, что вы без пяти минут великий ученый - аккуратно сняли теплораспределительную крышку процессора и в огромный микроскоп смогли увидеть структуру процессора – все эти соединения, транзисторы… даже что-то на бумажке зарисовали, чтобы не забыть. Как думаете, легко ли изучить принципы работы процессора, располагая только этими данными и данными о том, какие задачи с помощью этого процессора можно решать? Мне кажется, примерно такая картина сейчас видна ученым, которые пытаются на подобном уровне изучить работу человеческого мозга. Только если верить стэнфордским микробиологам, в одном человеческом мозге

Как и обещал – подробный рассказ о том, как делают процессоры… начиная с песка. Все, что вы хотели знать, но боялись спросить)


Я уже рассказывал о том, «Где производят процессоры » и о том, какие «Трудности производства » на этом пути стоят. Сегодня речь пойдет непосредственно про само производство – «от и до».

Производство процессоров

Когда фабрика для производства процессоров по новой технологии построена, у нее есть 4 года на то, чтобы окупить вложенные средства (более $5млрд) и принести прибыль. Из несложных секретных расчетов получается, что фабрика должна производить не менее 100 работающих пластин в час.

Вкратце процесс изготовления процессора выглядит так: из расплавленного кремния на специальном оборудовании выращивают монокристалл цилиндрической формы. Получившийся слиток охлаждают и режут на «блины», поверхность которых тщательно выравнивают и полируют до зеркального блеска. Затем в «чистых комнатах» полупроводниковых заводов на кремниевых пластинах методами фотолитографии и травления создаются интегральные схемы. После повторной очистки пластин, специалисты лаборатории под микроскопом производят выборочное тестирование процессоров – если все «ОК», то готовые пластины разрезают на отдельные процессоры, которые позже заключают в корпуса.

Уроки химии

Давайте рассмотрим весь процесс более подробно. Содержание кремния в земной коре составляет порядка 25-30% по массе, благодаря чему по распространённости этот элемент занимает второе место после кислорода. Песок, особенно кварцевый, имеет высокий процент содержания кремния в виде диоксида кремния (SiO 2) и в начале производственного процесса является базовым компонентом для создания полупроводников.

Первоначально берется SiO 2 в виде песка, который в дуговых печах (при температуре около 1800°C) восстанавливают коксом:

Такой кремний носит название «технический » и имеет чистоту 98-99.9%. Для производства процессоров требуется гораздо более чистое сырье, называемое «электронным кремнием » - в таком должно быть не более одного чужеродного атома на миллиард атомов кремния. Для очистки до такого уровня, кремний буквально «рождается заново». Путем хлорирования технического кремния получают тетрахлорид кремния (SiCl 4), который в дальнейшем преобразуется в трихлорсилан (SiHCl 3):
Данные реакции с использованием рецикла образующихся побочных кремнийсодержащих веществ снижают себестоимость и устраняют экологические проблемы:
2SiHCl 3 SiH 2 Cl 2 + SiCl 4
2SiH 2 Cl 2 SiH 3 Cl + SiHCl 3
2SiH 3 Cl SiH 4 + SiH 2 Cl 2
SiH 4 Si + 2H 2
Получившийся в результате водород можно много где использовать, но самое главное то, что был получен «электронный» кремний, чистый-пречистый (99,9999999%). Чуть позже в расплав такого кремния опускается затравка («точка роста»), которая постепенно вытягивается из тигля. В результате образуется так называемая «буля» - монокристалл высотой со взрослого человека. Вес соответствующий - на производстве такая дуля весит порядка 100 кг.

Слиток шкурят «нулёвкой»:) и режут алмазной пилой. На выходе – пластины (кодовое название «вафля») толщиной около 1 мм и диаметром 300 мм (~12 дюймов; именно такие используются для техпроцесса в 32нм с технологией HKMG, High-K/Metal Gate). Когда-то давно Intel использовала диски диаметром 50мм (2"), а в ближайшем будущем уже планируется переход на пластины с диаметром в 450мм – это оправдано как минимум с точки зрения снижения затрат на производство чипов. К слову об экономии - все эти кристаллы выращиваются вне Intel; для процессорного производства они закупаются в другом месте.

Каждую пластину полируют, делают идеально ровной, доводя ее поверхность до зеркального блеска.

Производство чипов состоит более чем из трёх сотен операций, в результате которых более 20 слоёв образуют сложную трёхмерную структуру – доступный на Хабре объем статьи не позволит рассказать вкратце даже о половине из этого списка:) Поэтому совсем коротко и лишь о самых важных этапах.

Итак. В отшлифованные кремниевые пластины необходимо перенести структуру будущего процессора, то есть внедрить в определенные участки кремниевой пластины примеси, которые в итоге и образуют транзисторы. Как это сделать? Вообще, нанесение различных слоев на процессорную подложу это целая наука, ведь даже в теории такой процесс непрост (не говоря уже о практике, с учетом масштабов)… но ведь так приятно разобраться в сложном;) Ну или хотя бы попытаться разобраться.

Фотолитография

Проблема решается с помощью технологии фотолитографии - процесса избирательного травления поверхностного слоя с использованием защитного фотошаблона. Технология построена по принципу «свет-шаблон-фоторезист» и проходит следующим образом:
- На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист - слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом.
- Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон
- Удаление отработанного фоторезиста.
Нужная структура рисуется на фотошаблоне - как правило, это пластинка из оптического стекла, на которую фотографическим способом нанесены непрозрачные области. Каждый такой шаблон содержит один из слоев будущего процессора, поэтому он должен быть очень точным и практичным.

Иной раз осаждать те или иные материалы в нужных местах пластины просто невозможно, поэтому гораздо проще нанести материал сразу на всю поверхность, убрав лишнее из тех мест, где он не нужен - на изображении выше синим цветом показано нанесение фоторезиста.

Пластина облучается потоком ионов (положительно или отрицательно заряженных атомов), которые в заданных местах проникают под поверхность пластины и изменяют проводящие свойства кремния (зеленые участки - это внедренные чужеродные атомы).

Как изолировать области, не требующие последующей обработки? Перед литографией на поверхность кремниевой пластины (при высокой температуре в специальной камере) наносится защитная пленка диэлектрика – как я уже рассказывал, вместо традиционного диоксида кремния компания Intel стала использовать High-K-диэлектрик. Он толще диоксида кремния, но в то же время у него те же емкостные свойства. Более того, в связи с увеличением толщины уменьшен ток утечки через диэлектрик, а как следствие – стало возможным получать более энергоэффективные процессоры. В общем, тут гораздо сложнее обеспечить равномерность этой пленки по всей поверхности пластины - в связи с этим на производстве применяется высокоточный температурный контроль.

Так вот. В тех местах, которые будут обрабатываться примесями, защитная пленка не нужна – её аккуратно снимают при помощи травления (удаления областей слоя для формирования многослойной структуры с определенными свойствами). А как снять ее не везде, а только в нужных областях? Для этого поверх пленки необходимо нанести еще один слой фоторезиста – за счет центробежной силы вращающейся пластины, он наносится очень тонким слоем.

В фотографии свет проходил через негативную пленку, падал на поверхность фотобумаги и менял ее химические свойства. В фотолитографии принцип схожий: свет пропускается через фотошаблон на фоторезист, и в тех местах, где он прошел через маску, отдельные участки фоторезиста меняют свойства. Через маски пропускается световое излучение, которое фокусируется на подложке. Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски.

Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором – вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится. Она образует проводник или будущий активный элемент – результатом такого подхода становятся различные картины замыканий на каждом слое микропроцессора.

Собственно говоря, все предыдущие шаги были нужны для того, чтобы создать в необходимых местах полупроводниковые структуры путем внедрения донорной (n-типа) или акцепторной (p-типа) примеси. Допустим, нам нужно сделать в кремнии область концентрации носителей p-типа, то есть зону дырочной проводимости. Для этого пластину обрабатывают с помощью устройства, которое называется имплантер - ионы бора с огромной энергией выстреливаются из высоковольтного ускорителя и равномерно распределяются в незащищенных зонах, образованных при фотолитографии.

Там, где диэлектрик был убран, ионы проникают в слой незащищенного кремния – в противном случае они «застревают» в диэлектрике. После очередного процесса травления убираются остатки диэлектрика, а на пластине остаются зоны, в которых локально есть бор. Понятно, что у современных процессоров может быть несколько таких слоев - в таком случае на получившемся рисунке снова выращивается слой диэлектрика и далее все идет по протоптанной дорожке - еще один слой фоторезиста, процесс фотолитографии (уже по новой маске), травление, имплантация… ну вы поняли.

Характерный размер транзистора сейчас - 32 нм, а длина волны, которой обрабатывается кремний - это даже не обычный свет, а специальный ультрафиолетовый эксимерный лазер - 193 нм. Однако законы оптики не позволяют разрешить два объекта, находящиеся на расстоянии меньше, чем половина длины волны. Происходит это из-за дифракции света. Как быть? Применять различные ухищрения - например, кроме упомянутых эксимерных лазеров, светящих далеко в ультрафиолетовом спектре, в современной фотолитографии используется многослойная отражающая оптика с использованием специальных масок и специальный процесс иммерсионной (погружной) фотолитографии.

Логические элементы, которые образовались в процессе фотолитографии, должны быть соединены друг с другом. Для этого пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» - в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики». Излишки проводящего покрытия убираются полировкой.

Финишная прямая

Ура – самое сложное позади. Осталось хитрым способом соединить «остатки» транзисторов - принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой. Для каждого процессора эти соединения различны – хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов». Отдаленно (при очень большом увеличении) все это похоже на футуристическую дорожную развязку – и ведь кто-то же эти клубки проектирует!

Когда обработка пластин завершена, пластины передаются из производства в монтажно-испытательный цех. Там кристаллы проходят первые испытания, и те, которые проходят тест (а это подавляющее большинство), вырезаются из подложки специальным устройством.

На следующем этапе процессор упаковывается в подложку (на рисунке – процессор Intel Core i5, состоящий из CPU и чипа HD-графики).

Привет, сокет!

Подложка, кристалл и теплораспределительная крышка соединяются вместе – именно этот продукт мы будем иметь ввиду, говоря слово «процессор». Зеленая подложка создает электрический и механический интерфейс (для электрического соединения кремниевой микросхемы с корпусом используется золото), благодаря которому станет возможным установка процессора в сокет материнской платы – по сути, это просто площадка, на которой разведены контакты от маленького чипа. Теплораспределительная крышка является термоинтерфейсом, охлаждающим процессор во время работы – именно к этой крышке будут примыкать система охлаждения, будь то радиатор кулера или здоровый водоблок.

Сокет (разъём центрального процессора) - гнездовой или щелевой разъём, предназначенный для установки центрального процессора. Использование разъёма вместо прямого распаивания процессора на материнской плате упрощает замену процессора для модернизации или ремонта компьютера. Разъём может быть предназначен для установки собственно процессора или CPU-карты (например, в Pegasos). Каждый разъём допускает установку только определённого типа процессора или CPU-карты.

На завершающем этапе производства готовые процессоры проходят финальные испытания на предмет соответствия основным характеристикам – если все в порядке, то процессоры сортируются в нужном порядке в специальные лотки – в таком виде процессоры уйдут производителям или поступят в OEM-продажу. Еще какая-то партия пойдет на продажу в виде BOX-версий – в красивой коробке вместе со стоковой системой охлаждения.

The end

Теперь представьте себе, что компания анонсирует, например, 20 новых процессоров. Все они различны между собой – количество ядер, объемы кэша, поддерживаемые технологии… В каждой модели процессора используется определенное количество транзисторов (исчисляемое миллионами и даже миллиардами), свой принцип соединения элементов… И все это надо спроектировать и создать/автоматизировать – шаблоны, линзы, литографии, сотни параметров для каждого процесса, тестирование… И все это должно работать круглосуточно, сразу на нескольких фабриках… В результате чего должны появляться устройства, не имеющие права на ошибку в работе… А стоимость этих технологических шедевров должна быть в рамках приличия… Почти уверен в том, что вы, как и я, тоже не можете представить себе всего объема проделываемой работы, о которой я и постарался сегодня рассказать.

Ну и еще кое-что более удивительное. Представьте, что вы без пяти минут великий ученый - аккуратно сняли теплораспределительную крышку процессора и в огромный микроскоп смогли увидеть структуру процессора – все эти соединения, транзисторы… даже что-то на бумажке зарисовали, чтобы не забыть. Как думаете, легко ли изучить принципы работы процессора, располагая только этими данными и данными о том, какие задачи с помощью этого процессора можно решать? Мне кажется, примерно такая картина сейчас видна ученым, которые пытаются на подобном уровне изучить работу человеческого мозга. Только если верить стэнфордским микробиологам, в одном человеческом мозге



Понравилась статья? Поделиться с друзьями: