Сетевой стек протокола и TCP хакинг. Выход из цикла по достижении ограничений. Необходимые структуры данных

Интернет – глобальная система взаимосвязанных компьютерных, локальных и других сетей, которые взаимодействуют друг с другом посредством стека протоколов TCP/IP (рис. 1.).

Рисунок 1 – Обобщенная схема сети Интернет

Интернет обеспечивает обмен информацией между всеми компьютерами, подключенными к нему. Тип компьютера и используемая им операционная система значения не имеют.

Основные ячейки Интернета – локальные вычислительные сети (LAN – Local Area network). Если некоторая локальная сеть непосредственно подключена к Интернету, то каждая рабочая станция этой сети также может подключаться к нему. Существуют также компьютеры, самостоятельно подключенные к Интернету. Они называются хост-компьютерами (host – хозяин).

Каждый подключенный к сети компьютер имеет свой адрес, по которому его может найти абонент из любой точки света.

Важной особенностью сети Интернет является то, что она, объединяя различные сети, не создает при этом никакой иерархии - все компьютеры, подключенные к сети, равноправны.

Еще одной отличительной особенностью Интернета является высокая надежность. При выходе из строя части компьютеров и линий связи сеть будет продолжать функционировать. Такая надежность обеспечивается тем, что в Интернете нет единого центра управления. Если выходят из строя некоторые линии связи или компьютеры, то сообщения могут быть переданы по другим линиям связи, так как всегда имеется несколько путей передачи информации.

Интернет не является коммерческой организацией и никому не принадлежит. Пользователи Интернета имеются практически во всех странах мира.

Пользователи подключаются к сети через компьютеры специальных организаций, которые называются поставщиками услуг Интернета. Соединение с Интернетом может быть постоянным или временным. Поставщики услуг Интернета имеют множество линий для подключения пользователей и высокоскоростные линии для связи с остальной частью Интернета. Часто мелкие поставщики подключены к более крупным, которые, в свою очередь, подключены к другим поставщикам.

Организации, соединенные друг с другом самыми скоростными линиями связи, образуют базовую часть сети, или хребет Интернета Backbon [Бэкбон]. Если поставщик подключен непосредственно к хребту, то скорость передачи информации будет максимальной.

В действительности разница между пользователями и поставщиками услуг Интернета достаточно условна. Любой человек, подключивший свой компьютер или свою локальную вычислительную сеть к Интернету и установивший необходимые программы, может предоставлять услуги подключения к сети другим пользователям. Одиночный пользователь, в принципе, может подключиться скоростной линией непосредственно к хребту Интернета.

В общем случае, Интернет осуществляет обмен информацией между любыми двумя компьютерами, подключенными к сети. Компьютеры, подключенные к Интернету, часто называютузлами Интернета, или сайтами, от английского слова site, которое переводится как место, местонахождение. Узлы, установленные у поставщиков услуг Интернета, обеспечивают доступ пользователей к Интернету. Существуют также узлы, специализирующиеся на предоставлении информации. Например, многие фирмы создают узлы в Интернете, с помощью которых они распространяют информацию о своих товарах и услугах.

Как же осуществляется передача информации? В Интернете используются два основных понятия: адрес и протокол . Свой уникальный адрес имеет любой компьютер, подключенный к Интернету. Так же, как почтовый адрес однозначно определяет местонахождение человека, адрес в Интернете однозначно определяет местонахождение компьютера в сети. Адреса в Интернете являются важнейшей его частью, и ниже о них будет подробно рассказано.

Данные, пересылаемые с одного компьютера на другой с использованием Интернета, разбивается на пакеты. Они перемещаются между компьютерами, составляющими узлы сети. Пакеты одного сообщения могут пройти разными маршрутами. Каждый пакет имеет свою маркировку, что обеспечивает правильную сборку документа на компьютере, которому адресовано сообщение.

Что такое протокол? Как ранее было сказано, протокол - это правила взаимодействия. Например, дипломатический протокол предписывает, как поступать при встрече зарубежных гостей или при проведении приема. Так же сетевой протокол предписывает правила работы компьютерам, которые подключены к сети. Стандартные протоколы заставляют разные компьютеры "говорить на одном языке". Таким образом осуществляется возможность подключения к Интернету разнотипных компьютеров, работающих под управлением различных операционных систем.

Базовыми протоколами Интернета является стек протоколов TCP/IP. Прежде всего требуется уточнить, что, в техническом понимании TCP/IP - это не один сетевой протокол, а два протокола, лежащих на разных уровнях сетевой модели (это так называемый стек протоколов). Протокол TCP - протокол транспортного уровня. Он управляет тем, как происходит передача данных. Протокол IP - адресный. Он принадлежит сетевому уровню и определяет, куда происходит передача.

Протокол TCP. Согласно Протоколу TCP, отправляемые данные «нарезаются» на небольшие пакеты, после чего каждый пакет маркируется таким образом, чтобы в нем были данные, необходимые для правильной сборки документа на компьютере получателя.

Для понимания сути протокола TCP можно представить игру в шахматы по переписке, когда двое участников разыгрывают одновременно десяток партий. Каждый ход записывается на отдельной открытке с указанием номера партии и номера хода. В этом случае между двумя партнерами через один и тот же почтовый канал работает как бы десяток соединений (по одному на партию). Два компьютера, связанные между собой одним физическим соединением, могут точно так же поддерживать одновременно несколько TCP-соединений. Так, например, два промежуточных сетевых сервера могут одновременно по одной линии связи передавать друг другу в обе стороны множество ТСР-пакетов от многочисленных клиентов.

Когда мы работаем в Интернете, то по одной единственной телефонной линии можем одновременно принимать документы из Америки, Австралии и Европы. Пакеты каждого из документов поступают порознь, с разделением во времени, и по мере поступления собираются в разные документы.

Протокол IP. Теперь рассмотрим адресный протокол - IP (Internet Protocol). Его суть состоит в том, что у каждого участника Всемирной сети должен быть свой уникальный адрес (IP-адрес). Без этого нельзя говорить о точной доставке ТСР-пакетов на нужное рабочее место. Этот адрес выражается очень просто - четырьмя числами, например: 195.38.46.11. Структуру IP-адреса мы подробнее рассмотрим позже. Она организована так, что каждый компьютер, через который проходит какой-либо TCP-пакет, может по этим четырем числам определить, кому из ближайших «соседей» надо переслать пакет, чтобы он оказался «ближе» к получателю. В результате конечного числа перебросок ТСР-пакет достигает адресата.

Слово «ближе» взято в кавычки не случайно. В данном случае оценивается не географическая «близость». В расчет принимаются условия связи и пропускная способность линии. Два компьютера, находящиеся на разных континентах, но связанные высокопроизводительной линией космической связи, считаются более «близкими» друг к другу, чем два компьютера из соседних поселков, связанные простым телефонным проводом. Решением вопросов, что считать «ближе», а что «дальше», занимаются специальные средства - маршрутизаторы. Роль маршрутизаторов в сети обычно выполняют специализированные компьютеры, но это могут быть и специальные программы, работающие на узловых серверах сети.

Стек протоколов TCP/IP

Стек протоколов TCP/IP - набор сетевых протоколов передачи данных, используемых в сетях, включая сеть Интернет. Название TCP/IP происходит из двух наиважнейших протоколов семейства - Transmission Control Protocol (TCP) и Internet Protocol (IP), которые были разработаны и описаны первыми в данном стандарте.

Протоколы работают друг с другом в стеке (англ. stack , стопка) - это означает, что протокол, располагающийся на уровне выше, работает «поверх» нижнего, используя механизмы инкапсуляции. Например, протокол TCP работает поверх протокола IP.

Стек протоколов TCP/IP включает в себя четыре уровня:

  • прикладной уровень (application layer),
  • транспортный уровень (transport layer),
  • сетевой уровень (internet layer),
  • канальный уровень (link layer).

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI (таблица 1). На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.

Таблица 1 – Сравнение стека протоколов TCP/IP и эталонной модели OSI

Прикладной уровень

На прикладном уровне (Application layer) работает большинство сетевых приложений.

Эти программы имеют свои собственные протоколы обмена информацией, например, HTTP для WWW, FTP (передача файлов), SMTP (электронная почта), SSH (безопасное соединение с удалённой машиной), DNS (преобразование символьных имён в IP-адреса) и многие другие.

В массе своей эти протоколы работают поверх TCP или UDP и привязаны к определённому порту, например:

  • HTTP на TCP-порт 80 или 8080,
  • FTP на TCP-порт 20 (для передачи данных) и 21 (для управляющих команд),
  • запросы DNS на порт UDP (реже TCP) 53,

Транспортный уровень

Протоколы транспортного уровня (Transport layer) могут решать проблему негарантированной доставки сообщений («дошло ли сообщение до адресата?»), а также гарантировать правильную последовательность прихода данных. В стеке TCP/IP транспортные протоколы определяют, для какого именно приложения предназначены эти данные.

Протоколы автоматической маршрутизации, логически представленные на этом уровне (поскольку работают поверх IP), на самом деле являются частью протоколов сетевого уровня; например OSPF (IP идентификатор 89).

TCP (IP идентификатор 6) - «гарантированный» транспортный механизм с предварительным установлением соединения, предоставляющий приложению надёжный поток данных, дающий уверенность в безошибочности получаемых данных, перезапрашивающий данные в случае потери и устраняющий дублирование данных. TCP позволяет регулировать нагрузку на сеть, а также уменьшать время ожидания данных при передаче на большие расстояния. Более того, TCP гарантирует, что полученные данные были отправлены точно в такой же последовательности. В этом его главное отличие от UDP.

UDP (IP идентификатор 17) протокол передачи датаграмм без установления соединения. Также его называют протоколом «ненадёжной» передачи, в смысле невозможности удостовериться в доставке сообщения адресату, а также возможного перемешивания пакетов. В приложениях, требующих гарантированной передачи данных, используется протокол TCP.

UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка.

И TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом.

Сетевой уровень

Сетевой уровень (Internet layer) изначально разработан для передачи данных из одной (под)сети в другую. С развитием концепции глобальной сети в уровень были внесены дополнительные возможности по передаче из любой сети в любую сеть, независимо от протоколов нижнего уровня, а также возможность запрашивать данные от удалённой стороны, например в протоколе ICMP (используется для передачи диагностической информации IP-соединения) и IGMP (используется для управления multicast-потоками).

ICMP и IGMP расположены над IP и должны попасть на следующий - транспортный - уровень, но функционально являются протоколами сетевого уровня, и поэтому их невозможно вписать в модель OSI.

Пакеты сетевого протокола IP могут содержать код, указывающий, какой именно протокол следующего уровня нужно использовать, чтобы извлечь данные из пакета. Это число - уникальный IP-номер протокола . ICMP и IGMP имеют номера, соответственно, 1 и 2.

Канальный уровень

Канальный уровень (Link layer) описывает, каким образом передаются пакеты данных через физический уровень, включая кодирование (то есть специальные последовательности бит, определяющих начало и конец пакета данных). Ethernet, например, в полях заголовка пакета содержит указание того, какой машине или машинам в сети предназначен этот пакет.

Примеры протоколов канального уровня - Ethernet, Wi-Fi, Frame Relay, Token Ring, ATM и др.

Канальный уровень иногда разделяют на 2 подуровня - LLC и MAC.

Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель, витая пара, оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов, модуляцию, амплитуду сигналов, частоту сигналов, способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

Инкапсуляция

Инкапсуляция – упаковка, или вложение, пакетов высокого уровня (возможно, разного протокола) в пакеты одного протокола (нижнего уровня), включая адрес.

Например, когда приложению требуется послать сообщение с помощью TCP, то производится следующая последовательность действий (рис. 2):

Рисунок 2 – Процесс инкапсуляции

  • в первую очередь, приложение заполняет специальную структуру данных, в которой указывает информацию о получателе (сетевой протокол, IP-адрес, порт TCP);
  • передаёт сообщение, его длину и структуру с информацией о получателе обработчику протокола TCP (транспортный уровень);
  • обработчик TCP формирует сегмент, в котором в качестве данных выступает сообщение, а в заголовках находится TCP-порт получателя (а также другие данные);
  • обработчик TCP передаёт сформированный сегмент обработчику IP (сетевой уровень);
  • обработчик IP рассматривает переданный TCP сегмент как данные и предваряет их своим заголовком (в котором, в частности, находится IP-адрес получателя, взятый из той же структуры данных приложения, и номер верхнего протокола;
  • полученный пакет обработчик IP передаёт на канальный уровень, который опять-таки рассматривает данный пакет как «сырые» данные;
  • обработчик канального уровня, аналогично предыдущим обработчикам, добавляет в начало свой заголовок (в котором так же указывается номер протокола верхнего уровня, в нашем случае это 0x0800(IP)) и, в большинстве случаев, добавляет конечную контрольную сумму, тем самым формируя кадр;
  • далее полученный кадр передаётся на физический уровень, который осуществляет преобразование битов в электрические или оптические сигналы и посылает их в среду передачи.

На стороне получателя для распаковки данных и предоставления их приложению производится обратный процесс (снизу вверх), называемый декапсуляцией.

Похожая информация.


Стек протоколов TCP/IP

Корпоративная сеть - это сложная система, состоящая из большого числа разнообразных устройств: компьютеров, концентраторов, маршрутизаторов , коммутаторов, системного прикладного программного обеспечения и т.д. Основная задача системных интеграторов и администраторов сетей состоит в том, чтобы эта система как можно лучше справлялась с обработкой потоков информации и позволяла получать правильные решения пользовательских задач в корпоративной сети. Прикладное программное обеспечение запрашивает сервис, обеспечивающий связь с другими прикладными программами. Этим сервисом является механизм межсетевого обмена.

Корпоративная информация, интенсивность ее потоков и способы ее обработки постоянно меняются. Примером резкого изменения технологии обработки корпоративной информации стал беспрецедентный рост популярности глобальной сети Internet за последние 2-3 года. Сеть Internet изменила способ представления информации, собрав на своих серверах все ее виды - текст, графику и звук. Транспортная система сети Internet существенно облегчила задачу построения распределенной корпоративной сети.

Соединение и взаимодействие в рамках одной мощной компьютерной сети явилось целью проектирования и создания семейства протоколов, названных в дальнейшем стеком протоколов TCP/IP (Transmission Control Protocol / Internet Protocol ) . Главной идеей стека является создание механизма межсетевого обмена.

Стек протоколов TCP/IP широко применяется во всем мире для объединения компьютеров в сети Internet . TCP / IP - это общее название, присвоенное семейству протоколов передачи данных, используемых для связи компьютеров и другого оборудования в корпоративной сети.

Основное достоинство стека протоколов TCP/IP в том, что он обеспечивает надежную связь между сетевым оборудованием от различных производителей. Это достоинство обеспечивается включением в состав TCP/IP отработанного в процессе эксплуатации набора коммуникационных протоколов с различными стандартизованными приложениями. Протоколы стека TCP/IP предоставляют механизм передачи сообщений, описывают детали форматов сообщений и указывают, как обрабатывать ошибки. Протоколы позволяют описать и понять процессы передачи данных, не учитывая тип оборудования, на котором эти процессы происходят.

История создания стека протоколов TCP/IP началась с момента, когда Министерство обороны США столкнулось с проблемой объединения большого числа компьютеров с различными операционными системами. Для этого в 1970 году был составлен набор стандартов. Протоколы, разработанные на базе этих стандартов, получили обобщенное название TCP/IP.

Стек протоколов TCP/IP был изначально предназначен для сети Advanced Research Project Agency Network (ARPANET ). ARPANET рассматривалась как экспериментальная распределенная сеть коммутации пакетов. Эксперимент по применению стека протоколов TCP/IP в этой сети закончился с положительными результатами. Поэтому стек протоколов был принят в промышленную эксплуатацию, а в дальнейшем был расширен и усовершенствовался в течение нескольких лет. Позже стек адаптировали для использования в локальных сетях. В начале 1980 года протокол стал использоваться как интегральная часть операционной системы Вег kley UNIX v 4.2. В этом же году появилась объединенная сеть Internet . Переход к технологии Internet был завершен в 1983 году, когда Министерство обороны США установило, что все компьютеры, присоединенные к глобальной сети, используют стек протоколов TCP/IP.

Стек протоколов TCP/IP предоставляет пользователям два основных сервиса , которые используют прикладные программы:

Дейтаграммное средство доставки пакетов . Это означает, что протоколы стека TCP/IP определяют маршрут передачи небольшого сообщения, основываясь только на адресной информации, находящейся в этом сообщении. Доставка осуществляется без установки логического соединения. Такой тип доставки делает протоколы TCP/IP адаптируемыми к широкому диапазону сетевого оборудования.

Надежное потоковое транспортное средство . Большинство приложений требует от коммуникационного программного обеспечения автоматического восстановления при ошибках передачи, потере пакетов или сбоях в промежуточных маршрутизаторах . Надежное транспортное средство позволяет устанавливать логическое соединение между приложениями, а затем посылать большие объемы данных по этому соединению.

Основными преимуществами стека протоколов TCP/IP являются:

Независимость от сетевой технологии. Стек протоколов TCP/IP не зависит от оборудования конечных пользователей, так как он только определяет элемент передачи - дейтаграмму - и описывает способ ее движения по сети.

Всеобщая связанность. Стек позволяет любой паре компьютеров, которые его поддерживают, взаимодействовать друг с другом. Каждому компьютеру назначается логический адрес, а каждая передаваемая дейтаграмма содержит логические адреса отправителя и получателя. Промежуточные маршрутизаторы используют адрес получателя для принятия решения о маршрутизации.

Межконцевые подтверждения. Протоколы стека TCP/IP обеспечивают подтверждение правильности прохождения информации при обмене между отправителем и получателем.

Стандартные прикладные протоколы. Протоколы TCP/IP включают в свой состав средства для поддержки наиболее часто встречающихся приложений, таких как электронная почта, передача файлов, удаленный доступ и т.д.

Резкий рост сети Internet и, естественно, ускоренное развитие стека протоколов TCP/IP потребовали от разработчиков создания серии документов, которые способствовали бы дальнейшему упорядоченному развитию протоколов. Организация Internet Activities Board (IAB ) разработала серию документов, называемых RFC (Request For Comments ). Некоторые RFC описывают сетевые сервисы или протоколы и их реализацию, другие документы описывают условия их применения. В том числе в RFC опубликованы стандарты стека протоколов TCP/IP. При этом следует иметь в виду, что стандарты TCP/IP всегда публикуются в виде документов RFC , но не все RFC определяют стандарты.

Документы RFC первоначально публиковались в электронном виде и могли комментироваться теми, кто принимал участие в их обсуждении. Документ мог претерпевать несколько изменений до тех пор, пока не будет достигнуто общее соглашение по его содержанию. Если документ при этом регламентировал новую идею, то ему присваивался номер, и он помещался к другим RFC . При этом каждому новому документу присваивается статус, регламентирующий необходимость его внедрения. Выход в свет нового документа RFC вовсе не означает, что все производители оборудования и программного обеспечения должны внедрять его в своей продукции. В приложении № 2 приведены описания некоторых документов RFC и их статусов.

1.Состояние стандартизации. Протокол может иметь несколько состояний:

стандарт на протокол утвержден;

стандарт на протокол предлагается к рассмотрению;

предлагается экспериментальный протокол;

протокол устарел и в настоящее время не используется.

2.Статус протокола. Протокол может иметь несколько статусов:

протокол требуется для внедрения;

протокол может внедряться производителем по выбору;

При эксплуатации сложной корпоративной сети возникает масса не связанных между собой проблем. Решить их функциональными возможностями одного протокола практически невозможно. Такой протокол должен был бы:

распознавать сбои в сети и восстанавливать ее работоспособность;

распределять пропускную способность сети и знать способы уменьшения потока данных при перегрузке;

распознавать задержки и потери пакетов, знать способ уменьшения ущерба от этого;

распознавать ошибки в данных и информировать о них прикладное программное обеспечение;

производить упорядоченное движение пакетов в сети.

Такое количество функциональных возможностей не под силу одному протоколу. Поэтому был создан набор взаимодействующих протоколов, названный стеком.

Так как стек протоколов TCP/IP был разработан до появления эталонной модели OSI , то соответствие его уровней уровням модели OSI достаточно условно. Структура стека протоколов TCP/IP приведена на рис. 1.1.

Рис. 1.1. Структура стека протоколов TCP/IP .

Рис. 1. 2. Путь передачи сообщений .

Теоретически посылка сообщения от одной прикладной программы к другой означает последовательную передачу сообщения вниз через соседние уровни стека у отправителя, передачу сообщений по уровню сетевого интерфейса (уровню IV ) или, в соответствии с эталонной моделью OSI , по физическому уровню, прием сообщения получателем и передачу его вверх через соседние уровни протокольного программного обеспечения. На практике взаимодействие уровней стека организовано гораздо сложнее. Каждый уровень принимает решение о корректности сообщения и производит определенное действие на основании типа сообщения или адреса назначения. В структуре стека протоколов TCP/IP имеется явный «центр тяжести» - это сетевой уровень и протокол IP в нем. Протокол IP может взаимодействовать с несколькими модулями протоколов более высокого уровня и несколькими сетевыми интерфейсами. То есть на практике процесс передачи сообщений от одной прикладной программы к другой будет выглядеть следующим образом: отправитель передает сообщение, которое на уровне III про токолом IP помещается в дейтаграмму и посылается в сеть (сеть 1). На промежуточных устройствах, например маршрутизаторах , дейтаграмма передается вверх до уровня протокола IP , который отправляет ее обратно вниз, в другую сеть (сеть 2). Когда дейтаграмма достигает получате ля, протокол IP выделяет сообщение и передает его на верхние уровни. Рис. 1.2 иллюстрирует данный процесс.

Структуру стека протоколов TCP/IP можно разделить на четыре уровня . Самый нижний - уровень сетевого интерфейса (уровень IV ) -соответствует физическому и канальному уровню модели OSI . В стеке протоколов TCP/IP этот уровень не регламентирован. Уровень сетево го интерфейса отвечает за прием дейтаграмм и передачу их по конкрет ной сети. Интерфейс с сетью может быть реализован драйвером уст ройства или сложной системой, которая использует свой протокол ка нального уровня (коммутатор, маршрутизатор ). Он поддерживает стан дарты физического и канального уровня популярных локальных сетей: Ethernet , Token Pang , FDDI и т.д. Для распределенных сетей поддержи ваются проколы соединений РРР и SLIP , а для глобальных сетей - протокол Х.25. Предусмотрена поддержка использования развивающейся технологии коммутации ячеек - ATM . Обычной практикой стало вклю чение в стек протоколов TCP/IP новых технологий локальных или рас пределенных сетей и регламентация их новыми документами RFC .

Сетевой уровень (уровень III ) - это уровень межсетевого взаимо действия. Уровень управляет взаимодействием между пользователями в сети. Он принимает от транспортного уровня запрос на посылку пакета от отправителя вместе с указанием адреса получателя. Уровень инкапсулирует пакет в дейтаграмму, заполняет ее заголовок и при необходи мости использует алгоритм маршрутизации. Уровень обрабатывает при ходящие дейтаграммы и проверяет правильность поступившей инфор мации. На стороне получателя программное обеспечение сетевого уровня удаляет заголовок и определяет, какой из транспортных протоколов будет обрабатывать пакет.

В качестве основного протокола сетевого уровня в стеке TCP/IP используется протокол IP , который и создавался с целью передачи ин формации в распределенных сетях. Достоинством протокола IP является возможность его эффективной работы в сетях со сложной топологи ей. При этом протокол рационально использует пропускную способ ность низкоскоростных линий связи. В основе протокола IP заложен дейтаграммный метод, который не гарантирует доставку пакета, но на правлен на ее осуществление.

К этому уровню относятся все протоколы, которые создают, под держивают и обновляют таблицы маршрутизации. Кроме того, на этом уровне функционирует протокол обмена информацией об ошибках меж ду маршрутизаторами в сети и отправителями.

Следующий уровень - транспортный (уровень II ) . Основной его задачей является обеспечение взаимодействия между прикладными про граммами. Транспортный уровень управляет потоком информации с обес печением надежной передачи. Для этого использован механизм подтвер ждения правильного приема с дублированием передачи утерянных или пришедших с ошибками пакетов. Транспортный уровень принимает дан ные от нескольких прикладных программ и посылает их более низкому уровню. При этом он добавляет дополнительную информацию к каждо му пакету, в том числе и значение вычисленной контрольной суммы.

На этом уровне функционирует протокол управления передачей данных TCP (Transmission Control Protocol ) и протокол передачи при кладных пакетов дейтаграммным методом UDP (User Datagram Protocol ). Протокол TCP обеспечивает гарантированную доставку данных за счет образования логических соединений между удаленными прикладными процессами. Работа протокола UDP аналогична работе протокола IP , но основной его задачей является выполнение функций связующего звена между сетевым протоколом и различными приложениями.

Самый верхний уровень (уровень I ) - прикладной . На нем реализованы широко используемые сервисы прикладного уровня. К ним от носятся: протокол передачи файлов между удаленными системами, про токол эмуляции удаленного терминала, почтовые протоколы и т.д. Каж дая прикладная программа выбирает тип транспортировки - либо не прерывный поток сообщений, либо последовательность отдельных со общений. Прикладная программа передает данные транспортному уров ню в требуемой форме.

Рассмотрение принципов функционирования стека протоколов TCP/IP целесообразно проводить, начиная с протоколов третьего уров ня. Это связано с тем, что протоколы более высоких уровней в своей работе опираются на функциональные возможности протоколов нижних уровней. Для понимания проблем маршрутизации в распределен ных сетях изучение протоколов рекомендуется проводить в следующей последовательности: IP , ARP , ICMP , UDP и TCP . Это связано с тем, что для доставки информации между удаленными системами в распределенной сети используется в той или иной степени все семейство сте ка протоколов TCP/IP.

Стек протоколов TCP/IP включает в свой состав большое число протоколов прикладного уровня. Эти протоколы выполняют различные функции, в том числе: управление сетью, передачу файлов, оказание распределенных услуг при использовании файлов, эмуляцию термина лов, доставку электронной почты и т.д. Протокол передачи файлов (File Transfer Protocol - FTP ) обеспечивает перемещение файлов между ком пьютерными системами. Протокол Telnet обеспечивает виртуальную тер минальную эмуляцию. Простой протокол управления сетью (Simple Network Management Protocol - SNMP ) является протоколом управле ния сетью, используемым для сообщений об аномальных условиях в сети и установления значений допустимых порогов в сети. Простой протокол передачи почты (Simple Mail Transfer Protocol - SMTP ) обеспечивает механизм передачи электронной почты. Эти протоколы и другие прило жения используют услуги стека TCP/IP для обеспечения пользователей базовыми сетевыми услугами.

Более подробно протоколы прикладного уровня стека протоколов TCP/IP в рамках данного материала не рассматриваются.

Перед рассмотрением протоколов стека TCP/IP введем базовые термины, определяющие названия фрагментов информации, передава емой между уровнями. Название блока данных, передаваемого по сети, зависит от того, на каком уровне стека протоколов он находится. Блок данных, с которым имеет дело сетевой интерфейс, называется кадром . Если блок данных находится между сетевым интерфейсом и сетевым уровнем, то он называется IP -дейтаграммой (или просто дейтаграм мой). Блок данных, циркулирующий между транспортным и сетевым уровнями и выше, называется IP -пакетом . На рис. 1.3 показано соот ветствие обозначений блоков данных уровням стека протоколов TCP/IP.


Рис. 1. 3. Обозначение фрагментов информации на уровнях стека TCP/IP.

Очень важно дополнить описание уровней стека протоколов TCP/IP описанием различия между передачей от отправителя непосредственно к получателю и передачей через несколько сетей. На рис. 4 показано различие между этими видами передач.


Рис. 1.4. Способы передачи информации.

При доставке сообщения через две сети с применением маршрутизатора оно использует два разных сетевых кадра (кадр 1 и кадр 2). Кадр 1 - для передачи от отправителя до маршрутизатора , кадр 2 - от маршрутизатора до получателя.

Прикладной и транспортный уровни могут устанавливать соединения, поэтому принцип разделения на уровни определяет, что пакет, принятый транспортным уровнем получателя, должен быть идентичен пакету, посланному транспортным уровнем отправителя.

От сокетов до драйверов устройств

Введение в протоколы

В то время как формальное введение в работу в сети отсылает нас к модели взаимодействия открытых систем (OSI — Open Systems Interconnection), это введение в основной сетевой стек в Linux использует четырехуровневую модель, известную как модель Интернет (Internet model) (смотрите рисунок 1).

Рисунок 1. Интернет-модель сетевого стека

Внизу стека располагается канальный уровень. Канальный уровень относится к драйверам устройств, обеспечивающим доступ к физическому уровню, который может состоять из многочисленных сред, таких как последовательные каналы или устройства Ethernet. Над канальным находится сетевой уровень , который отвечает за направление пакетов по назначению. Следующий уровень под названием транспортный отвечает за одноранговые (peer-to-peer) коммуникации (например, в пределах хоста). Сетевой уровень управляет связью между хостами, а транспортный — взаимодействием между конечными точками внутри этих хостов. Наконец, существует прикладной уровень , который обычно является семантическим и понимает перемещенные данные. К примеру, протокол передачи гипертекста (HTTP — Hypertext Transfer Protocol) перемещает запросы и ответы для содержимого Web между сервером и клиентом.

В сущности, уровни сетевого стека проходят под более узнаваемыми названиями. На канальном уровне вы найдете Ethernet, наиболее распространенную высокоскоростную среду. К более старым протоколам канального уровня относятся такие последовательные протоколы, как Internet-протокол для последовательной линии (SLIP — Serial Line Internet Protocol), Compressed SLIP (CSLIP) и Point-to-Point Protocol (PPP). Наиболее распространенным протоколом сетевого уровня является Internet Protocol (IP), но существуют и другие, которые удовлетворяют другим нуждам, такие как Протокол управляющих сообщений Internet (ICMP — Internet Control Message Protocol) и Протокол разрешения адресов (ARP — Address Resolution Protocol). На транспортном уровне это Протокол управления передачей (TCP — Transmission Control Protocol) и Протокол пользовательских датаграмм (UDP — User Datagram Protocol). Наконец, прикладной уровень включает в себя множество привычных нам протоколов, в том числе HTTP, стандартный Web-протокол, и SMTP (Simple Mail Transfer Protocol), протокол передачи электронной почты.

Архитектура базовой сети

Теперь перейдем к архитектуре сетевого стека Linux и посмотрим, как он реализует модель Internet. На рисунке 2 представлен высокоуровневый вид сетевого стека Linux. Наверху располагается уровень пользовательского пространства или прикладной уровень , который определяет пользователей сетевого стека. Внизу находятся физические устройства , которые обеспечивают возможность соединения с сетями (последовательные или высокоскоростные сети, как Ethernet). В центре, или в пространстве ядра , — сетевая подсистема, которая находится в центре внимания данной статьи. Через внутреннюю часть сетевого стека проходят буферы сокетов (sk_buffs), которые перемещают данные пакета между источниками и получателями. Кратко будет показана структура sk_buff .

Рисунок 2. Высокоуровневая архитектура сетевого стека Linux

Во-первых, вам предлагается краткий обзор основных элементов сетевой подсистемы Linux с подробностями в следующих разделах. Наверху (смотрите рисунок 2) находится система под названием интерфейс системного вызова. Она просто дает способ приложениям из пользовательского пространства получать доступ к сетевой подсистеме ядра. Следующим идет протоколо-независимый (protocol agnostic) уровень, который предоставляет общий способ работы с нижестоящими протоколами транспортного уровня. Дальше следуют фактические протоколы, к которым в системе Linux относятся встроенные протоколы TCP, UDP и, конечно же, IP. Следующий — еще один независимый уровень, который обеспечивает общий интерфейс к отдельным доступным драйверам устройств и от них, сопровождаемый в конце самими этими драйверами.

Интерфейс системного вызова

Интерфейс системного вызова может быть описан в двух ракурсах. Когда сетевой вызов производится пользователем, он мультиплексируется через системный вызов в ядро. Это заканчивается как вызов sys_socketcall в./net/socket.c, который потом демультиплексирует вызов намеченной цели. Другой ракурс интерфейса системного вызова — использование нормальных файловых операций для сетевого ввода/вывода (I/O). Например, обычные операции чтения и записи могут быть выполнены на сетевом сокете (который представляется файловым дескриптором как нормальный файл). Поэтому пока существуют операции, специфичные для работы в сети (создание сокета вызовом socket , связывание его с дескриптором вызовом connect и так далее), есть также и некоторое количество стандартных файловых операций, которые применяются к сетевым объектам, как к обычным файлам. Наконец, интерфейс системного вызова предоставляет средства для передачи управления между приложением в пользовательском пространстве и ядром.

Протоколо-независимый интерфейс (Protocol agnostic interface)

Уровень сокетов является протоколо-независимым (protocol agnostic) интерфейсом, который предоставляет набор стандартных функций для поддержки ряда различных протоколов. Этот уровень не только поддерживает обычные TCP- и UDP-протоколы, но также и IP, raw Ethernet и другие транспортные протоколы, такие как Протокол управления передачей потоков данных (SCTP — Stream Control Transmission Protocol).

Взаимодействие через сетевой стек происходит посредством сокета. Структура сокета в Linux — struct sock , определенная в linux/include/net/sock.h. Эта большая структура содержит все необходимые состояния отдельного сокета, включая определенный протокол, используемый сокетом, и операции, которые можно над ним совершать.

Сетевая подсистема знает о доступных протоколах из специальной структуры, которая определяет ее возможности. Каждый протокол содержит структуру под названием proto (она находится в linux/include/net/sock.h). Эта структура определяет отдельные операции сокета, которые могут выполняться из уровня сокетов на транспортный уровень (например, как создать сокет, как установить соединение с сокетом, как закрыть сокет и т.д.).

Сетевые протоколы

Раздел сетевых протоколов определяет отдельные доступные сетевые протоколы (такие как TCP, UDP и так далее). Они инициализируются в начале дня в функции inet_init в linux/net/ipv4/af_inet.c (так как TCP и UDP относятся к семейству протоколов inet). Функция inet_init регистрирует каждый из встроенных протоколов, использующих функцию proto_register . Эта функция определена в linux/net/core/sock.c, и кроме добавления протокола в список действующих, если требуется, может выделять один или более slab-кэшей.

Можно увидеть, как отдельные протоколы идентифицируют сами себя посредством структуры proto в файлах tcp_ipv4.c, udp.c и raw.c, в linux/net/ipv4/. Каждая из этих структур протоколов отображается в виде типа и протокола в inetsw_array , который приписывает встроенные протоколы их операциям. Структура inetsw_array и его связи показаны на рисунке 3. Каждый из протоколов в этом массиве инициализируется в начале дня в inetsw вызовом inet_register_protosw из inet_init . Функция inet_init также инициализирует различные модули inet , такие как ARP, ICMP, IP-модули и TCP и UDP-модули.

Рисунок 3. Структура массива Internet-протокола

Корреляция сокета и протокола

Вспомните, что когда сокет создается, он определяет тип и протокол, например, my_sock = socket(AF_INET, SOCK_STREAM, 0) . AF_INET указывает семейство Internet-адресов с потоковым сокетом, определенным как SOCK_STREAM (как показано здесь, в inetsw_array).

Перемещение данных для сокетов происходит при помощи основной структуры под названием буфер сокета (sk_buff). В sk_buff содержатся данные пакета и данные о состоянии, которые охватывают несколько уровней стека протокола. Каждый отправленный или полученный пакет представлен в sk_buff . Структура sk_buff определяется в linux/include/linux/skbuff.h и показана на рисунке 4.

Рисунок 4. Буфер сокета и его связи с другими структурами

Как можно заметить, несколько структур sk_buff для данного соединения могут быть связаны вместе. Каждая из них идентифицирует структуру устройства (net_device), которому пакет посылается или от которого получен. Так как каждый пакет представлен в sk_buff , заголовки пакетов удобно определены набором указателей (th , iph и mac для Управления доступом к среде (заголовок Media Access Control или MAC). Поскольку структуры sk_buff являются центральными в организации данных сокета, для управления ими был создан ряд функций поддержки. Существуют функции для создания, разрушения, клонирования и управления очередностью sk_buff .

Буферы сокетов разработаны таким образом, чтобы связываться друг с другом для данного сокета и включать большой объем информации, в том числе ссылки на заголовки протоколов, временные метки (когда пакет был отправлен или получен) и соответствующее устройство.

Устройство-независимый интерфейс (Device agnostic interface)

Под уровнем протоколов располагается другой независимый уровень интерфейса, который связывает протоколы с различными драйверами физических устройств с разными возможностями. Этот уровень предоставляет стандартный набор функций, которые используются низко-уровневыми сетевыми устройствами, чтобы иметь возможность взаимодействовать с высоко-уровневым стеком протокола.

Прежде всего, драйверы устройств могут регистрировать и разрегистрировать себя в ядре вызовом register_netdevice или unregister_netdevice . Вызывающая команда сначала заполняет структуру net_device , а затем передает ее для регистрации. Ядро вызывает свою функцию init (если она определена), выполняет несколько проверок исправности, создает запись sysfs и потом добавляет новое устройство в список устройств (связанный список устройств, активных в ядре). Структуру net_device можно найти в linux/include/linux/netdevice.h. Некоторые функции находятся в linux/net/core/dev.c.

Для отправления sk_buff из уровня протокола устройству используется функция dev_queue_xmit . Она ставит в очередь sk_buff для возможной пересылки соответствующим драйвером устройства (устройством, определенным при помощи net_device или указателя sk_buff->dev в sk_buff). Структура dev содержит метод под названием hard_start_xmit , который хранит функцию драйвера для инициализации передачи sk_buff .

Получение пакета выполняется традиционно при помощи netif_rx . Когда драйвер устройства более низкого уровня получает пакет (содержащийся внутри выделенного sk_buff), sk_buff идет выше, на сетевой уровень, с помощью вызова netif_rx . Эта функция затем ставит sk_buff в очередь на более высокий уровень протоколов для дальнейшей обработки при помощи netif_rx_schedule . Функции dev_queue_xmit и netif_rx находятся в linux/net/core/dev.c.

Наконец, для взаимодействия с устройство-независимым уровнем (dev) в ядро был введен новый интерфейс прикладных программ (NAPI). Его используют некоторые драйверы, но подавляющее большинство все еще пользуется более старым интерфейсом получения кадров (по грубой оценке шесть из семи). NAPI может давать лучшую производительность при больших нагрузках, избегая при этом прерываний при каждом входящем кадре.

Драйверы устройств

Внизу сетевого стека находятся драйверы устройств, которые управляют физическими сетевыми устройствами. Примерами устройств этого уровня могут служить драйвер SLIP над последовательным интерфейсом или драйвер Ethernet над устройством Ethernet.

Во время инициализации драйвер устройства выделяет место для структуры net_device , а затем инициализирует ее необходимыми подпрограммами. Одна из них, с названием dev->hard_start_xmit , определяет, как верхний уровень должен поставить в очередь sk_buff для передачи. Ей передается sk_buff . Работа этой функции зависит от оборудования, но обычно пакет, описываемый в sk_buff , перемещается в так называемое "аппаратное кольцо" (hardware ring) или "очередь" (queue). Поступление кадра, как описано на устройство-независимом уровне, использует интерфейс netif_rx или netif_receive_skb для NAPI-совместимого сетевого драйвера. Драйвер NAPI накладывает ограничения на возможности базового оборудования. Подробности смотрите в разделе .

После того как драйвер устройства настроил свои интерфейсы в структуре dev , вызов register_netdevice делает ее доступной для использования. В linux/drivers/net можно найти драйверы, характерные для сетевых устройств.

Идем дальше

Исходный код Linux — прекрасный способ узнать о конструкции драйверов для множества типов устройств, включая драйверы сетевых устройств. Вы обнаружите различия в конструкции и использовании доступных API ядра, но каждый будет полезен либо инструкциями, либо как отправная точка для нового драйвера. Остальной код в сетевом стеке стандартен и используется, пока не потребуется новый протокол. Но даже тогда реализации TCP (для потокового протокола) или UDP (для протокола на основе передачи сообщений) служат полезными моделями для начала новой разработки.

Набор интернет-протоколов обеспечивает сквозную передачу данных, определяющую, как данные должны пакетироваться, обрабатываться, передаваться, маршрутизироваться и приниматься. Эта функциональность организована в четыре слоя абстракции, которые классифицируют все связанные протоколы в соответствии с объемом задействованных сетей. От самого низкого до самого высокого уровня - это уровень связи, содержащий методы связи для данных, которые остаются в пределах одного сегмента сети (ссылка); интернет-уровень, обеспечивающий межсетевое взаимодействие между независимыми сетями; транспортный уровень, обрабатывающий связь между хостами; и прикладной уровень, который обеспечивает обмен данными между процессами для приложений.

Развитием архитектуры Интернета и протоколов в модели TCP/IP занимается открытое международное сообщество проектировщиков IETF .

История

Стек протоколов TCP/IP был создан на основе NCP (Network Control Protocol) группой разработчиков под руководством Винтона Серфа в 1972 году. В июле 1976 года Винт Серф и Боб Кан впервые продемонстрировали передачу данных с использованием TCP по трём различным сетям. Пакет прошел по следующему маршруту: Сан-Франциско - Лондон - Университет Южной Калифорнии. К концу своего путешествия пакет проделал 150 тысяч км, не потеряв ни одного бита. В 1978 году Серф, Джон Постел и Дэнни Кохэн решили выделить в TCP две отдельные функции: TCP и IP (англ. Internet Protocol , межсетевой протокол). TCP был ответственен за разбивку сообщения на датаграммы (англ. datagram ) и соединение их в конечном пункте отправки. IP отвечал за передачу (с контролем получения) отдельных датаграмм. Вот так родился современный протокол Интернета. А 1 января 1983 года ARPANET перешла на новый протокол. Этот день принято считать официальной датой рождения Интернета.

Уровни стека TCP/IP

Стек протоколов TCP/IP включает в себя четыре уровня :

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI . На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных, благодаря чему, в частности, обеспечивается полностью прозрачное взаимодействие между проводными и беспроводными сетями.

Распределение протоколов по уровням модели TCP/IP
Прикладной
(Application layer)
напр., HTTP , RTSP , FTP , DNS
Транспортный

Транспортный уровень

Сетевой (межсетевой) уровень

Канальный уровень

Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель , витая пара , оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов , модуляцию , амплитуду сигналов , частоту сигналов , способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

При проектировании стека протоколов на канальном уровне рассматривают помехоустойчивое кодирование - позволяющие обнаруживать и исправлять ошибки в данных вследствие воздействия шумов и помех на канал связи.

Сравнение с моделью OSI

Три верхних уровня в модели OSI, то есть уровень приложения, уровень представления и уровень сеанса, отдельно не различаются в модели TCP/IP , которая имеет только прикладной уровень над транспортным уровнем. Хотя некоторые чистые приложения протокола OSI, такие как X.400 , также объединяют их, нет требования, чтобы стек протокола TCP/IP должен накладывать монолитную архитектуру над транспортным уровнем. Например, протокол NFS-приложений работает через протокол представления данных External Data Representation (XDR), который, в свою очередь, работает по протоколу Remote Procedure Call (RPC). RPC обеспечивает надежную передачу данных, поэтому он может безопасно использовать транспорт UDP с максимальным усилием.

Различные авторы интерпретировали модель TCP/IP по-разному и не согласны с тем, что уровень связи или вся модель TCP/IP охватывает проблемы уровня OSI уровня 1 (физический уровень) или предполагается, что аппаратный уровень ниже уровня канала.

Несколько авторов попытались включить слои 1 и 2 модели OSI в модель TCP/IP, поскольку они обычно упоминаются в современных стандартах (например, IEEE и ITU). Это часто приводит к модели с пятью слоями, где уровень связи или уровень доступа к сети разделяются на слои 1 и 2 модели OSI.

Усилия по разработке протокола IETF не касаются строгого расслоения. Некоторые из его протоколов могут не соответствовать чисто модели OSI, хотя RFC иногда ссылаются на нее и часто используют старые номера уровня OSI. IETF неоднократно заявлял, что разработка интернет-протокола и архитектуры не должна соответствовать требованиям OSI. В RFC 3439 , адресованном интернет-архитектуре, содержится раздел, озаглавленный «Слой, считающийся вредным».

Например, считается, что уровни сеанса и представления пакета OSI включены в прикладной уровень пакета TCP/IP. Функциональность уровня сеанса можно найти в протоколах, таких как HTTP и SMTP , и более очевидна в таких протоколах, как Telnet и протокол инициации сеанса (SIP). Функциональность уровня сеанса также реализована с нумерацией портов протоколов TCP и UDP, которые охватывают транспортный уровень в наборе TCP/IP. Функции уровня представления реализуются в приложениях TCP/IP со стандартом MIME при обмене данными.

Конфликты очевидны также в оригинальной модели OSI, ISO 7498, когда не рассматриваются приложения к этой модели, например, ISO 7498/4 Management Framework или ISO 8648 Internal Organization of the Network layer (IONL). Когда рассматриваются документы IONL и Management Framework, ICMP и IGMP определяются как протоколы управления уровнем для сетевого уровня. Аналогичным образом IONL предоставляет структуру для «зависимых от подсетей объектов конвергенции», таких как ARP и RARP.

Протоколы IETF могут быть инкапсулированы рекурсивно, о чем свидетельствуют протоколы туннелирования, такие как Инкапсуляция общей маршрутизации (GRE). GRE использует тот же механизм, который OSI использует для туннелирования на сетевом уровне. Существуют разногласия в том, как вписать модель TCP/IP в модель OSI, поскольку уровни в этих моделях не совпадают.

К тому же, модель OSI не использует дополнительный уровень - «Internetworking» - между канальным и сетевым уровнями. Примером спорного протокола может быть ARP или STP .

Вот как традиционно протоколы TCP/IP вписываются в модель OSI:

Распределение протоколов по уровням модели OSI
TCP/IP OSI
7 Прикладной Прикладной напр., HTTP , SMTP , SNMP , FTP , Telnet , SSH , SCP , SMB , NFS , RTSP , BGP
6 Представления напр., XDR , AFP , TLS , SSL
5 Сеансовый напр., ISO 8327 / CCITT X.225, RPC , NetBIOS , PPTP , L2TP , ASP
4 Транспортный Транспортный напр., TCP , UDP , SCTP , SPX , ATP , DCCP , GRE
3 Сетевой Сетевой напр., , ICMP , IGMP , CLNP , OSPF , RIP , IPX , DDP , ARP
2 Канальный Канальный напр., Ethernet , Token ring , HDLC , PPP , X.25 , Frame relay , ISDN , ATM , SPB , MPLS
1 Физический напр., электрические провода , радиосвязь , волоконно-оптические провода , инфракрасное излучение

Обычно в стеке TCP/IP верхние 3 уровня модели OSI (прикладной , представления и сеансовый) объединяют в один - прикладной. Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению.

Описание модели TCP/IP в технической литературе

Примечания

  1. Модели OSI и TCP/IP . База знаний osLogic.ru
  2. Сетевые модели TCP/IP и OSI . Cisco Learning
  3. Васильев А. А. , Телина И. С. , Избачков Ю. С. , Петров В. Н. Информационные системы: Учебник для вузов. - СПб. : Питер, 2010. - 544 с. - ISBN 978-5-49807-158-9 .
  4. Эндрю Кровчик, Винод Кумар, Номан Лагари и др. .NET сетевое программирование для профессионалов / пер. с англ. В. Стрельцов. - М. : Лори, 2005. - 400 с. - ISBN 1-86100-735-3 . - ISBN 5-85582-170-2 .

Лекция №3

Стек протоколов TCP / IP

План лекции

Стек TCP/IP.

История создания стека TCP/IP.

Модель OSI.

Структура TCP/IP.

Документы RFC.

Обзор основных протоколов.

Утилиты диагностики TCP/IP.

Контрольные вопросы.

Стек TCP/IP

Стек TCP/IP – это набор иерархически упорядоченных сетевых протоколов. Название стек получил по двум важнейшим протоколам – TCP (Transmission Control Protocol) и IP (Internet Protocol). Помимо них в стек входят ещё несколько десятков различных протоколов. В настоящее время протоколы TCP/IP являются основными для Интернета, а также для большинства корпоративных и локальных сетей.

4. Транспортный уровень (transport layer) решает задачу надежной передачи сообщений в составной сети с помощью подтверждения доставки и повторной отправки пакетов. Этот уровень и все следующие реализуются программно.

5. Сеансовый уровень (session layer) позволяет запоминать информацию о текущем состоянии сеанса связи и в случае разрыва соединения возобновлять сеанс с этого состояния.

6. Уровень представления (presentation layer) обеспечивает преобразование передаваемой информации из одной кодировки в другую (например, из ASCII в EBCDIC).

7. Прикладной уровень (application layer) реализует интерфейс между остальными уровнями модели и пользовательскими приложениями.

Структура TCP / IP

В основе структуры TCP/IP лежит не модель OSI, а собственная модель, называемая DARPA (Defense ARPA – новое название Агентства по перспективным исследовательским проектам) или DoD (Department of Defense – Министерство обороны США). В этой модели всего четыре уровня. Соответствие модели OSI модели DARPA, а также основным протоколам стека TCP/IP показано на рис. 2.2.

DIV_ADBLOCK264">

3) черновой стандарт (Draft Standard) – документ становится черновым стандартом, если не менее двух независимых разработчиков реализовали и успешно применили предлагаемые спецификации. На этом этапе ещё допускаются незначительные исправления и усовершенствования;

4) стандарт Интернета (Internet Standard) – наивысший этап утверждения стандарта, спецификации документа получили широкое распространение и хорошо зарекомендовали себя на практике. Список стандартов Интернета приведен в RFC 3700. Из тысяч RFC только несколько десятков являются документами в статусе «стандарт Интернета».

Кроме стандартов документами RFC могут быть также описания новых сетевых концепций и идей, руководства, результаты экспериментальных исследований, представленных для информации и т. д. Таким документам RFC может быть присвоен один из следующих статусов:

экспериментальный (Experimental) – документ, содержащий сведения о научных исследованиях и разработках, которые могут заинтересовать членов ISOC;

информационный (Informational) – документ, опубликованный для предоставления информации и не требующий одобрения сообщества ISOC;

лучший современный опыт (Best Current Practice) – документ, предназначенный для передачи опыта конкретных разработок, например реализаций протоколов.

Статус указывается в заголовке документа RFC после слова Category (Категория). Для документов в статусе стандартов (Proposed Standard, Draft Standard, Internet Standard) указывается название Standards Track , так как уровень готовности может меняться.

Номера RFC присваиваются последовательно и никогда не выдаются повторно. Первоначальный вариант RFC никогда не обновляется. Обновленная версия публикуется под новым номером. Устаревший и замененный документ RFC получает статус исторический (Historic).

Все существующие на сегодня документы RFC можно посмотреть, например, на сайте www. rfc-editor. org . В августе 2007 года их насчитывалось более 5000. Документы RFC, упоминаемые в этом курсе, приведены в Приложении I.

Обзор основных протоколов

Протокол IP (Internet Protocol) – это основной протокол сетевого уровня, отвечающий за адресацию в составных сетях и передачу пакета между сетями. Протокол IP является дейтаграммным протоколом, т. е. не гарантирует доставку пакетов до узла назначения. Обеспечением гарантий занимается протокол транспортного уровня TCP.

Протоколы RIP (Routing Information Protocol – протокол маршрутной информации) и OSPF (Open Shortest Path First – « первыми открываются кратчайшие маршруты») – протоколы маршрутизации в IP-сетях.

Протокол ICMP (Internet Control Message Protocol – протокол управляющих сообщений в составных сетях) предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов сообщает о невозможности доставки пакета, о продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Протокол ARP (Address Resolution Protocol – протокол преобразования адресов) преобразует IP-адреса в аппаратные адреса локальных сетей. Обратное преобразование осуществляется с помощью протокола RAPR (Reverse ARP).

TCP (Transmission Control Protocol – протокол управления передачей) обеспечивает надежную передачу сообщений между удаленными узлами сети за счет образования логических соединений. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт на любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части – сегменты и передает их сетевому уровню. После того как эти сегменты будут доставлены в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

UDP (User Datagram Protocol – протокол дейтаграмм пользователя) обеспечивает передачу данных дейтаграммным способом.

HTTP (HyperText Transfer Protocol – протокол передачи гипертекста) – протокол доставки web-документов, основной протокол службы WWW.

FTP (File Transfer Protocol – протокол передачи файлов) – протокол для пересылки информации, хранящейся в файлах.

POP3 (Post Office Protocol version 3 – протокол почтового офиса) и SMTP (Simple Mail Transfer Protocol – простой протокол пересылки почты) – протоколы для доставки входящей электронной почты (POP3) и отправки исходящей (SMTP).

Telnet – протокол эмуляции терминала1, позволяющий пользователю подключаться к другим удалённым станциям и работать с ними со своей машины, как если бы она была их удалённым терминалом.

SNMP (Simple Network Management Protocol – простой протокол управления сетью) предназначен для диагностики работоспособности различных устройств сети.

1 Терминал – это сочетание устройства ввода и устройства вывода, например клавиатура и дисплей.

Утилиты диагностики TCP / IP

В состав операционной системы Windows Server 2003 входит ряд утилит (небольших программ), предназначенных для диагностики функционирования стека TCP/IP. Каждый системный администратор должен знать эти утилиты и уметь применять их на практике.

Информацию о любой утилите можно вывести, набрав в командной строке имя утилиты с ключом «/?», например: IPconfig /?

IPconfig

Утилита предназначена, во-первых, для вывода информации о конфигурации стека TCP/IP, во-вторых, для выполнения некоторых действий по настройке стека.

При вводе названия утилиты в командной строке без параметров на экране отобразится информация об основных настройках TCP/IP (эти настройки рассматриваются в следующих лекциях):

– суффикс DNS (Connection-specific DNS Suffix);

– IP-адрес (IP Address);

– маска подсети (Subnet Mask);

– шлюз по умолчанию (Default Gateway).

Приведем основные ключи утилиты:

/ all – отображение полной информации о настройке стека TCP/IP на данном компьютере. Следует отметить, что при наличии нескольких сетевых адаптеров выводятся данные по каждому адаптеру отдельно. Наиболее важные сведения кроме представленных выше – физический адрес (МАС-адрес) сетевого адаптера (Physical Address) и наличие разрешения DHCP (DHCP Enabled).

/ release – освобождение IP-адреса (имеет смысл, если DHCP разрешен).

/ renew – обновление конфигурации TCP/IP (обычно выполняется, если DHCP разрешен).

/ displaydns – вывод на экран кэша имен DNS.

/ flushdns – очистка кэша имен DNS.

/ registerdns – обновление аренды DHCP и перерегистрация доменного имени в базе данных службы DNS.

Основная цель этой популярной утилиты – выяснение возможности установления соединения с удаленным узлом. Кроме того, утилита может обратиться к удаленному компьютеру по доменному имени, чтобы проверить способность преобразования символьного доменного имени в IP-адрес.

Принцип работы: утилита отправляет на удаленный узел несколько пакетов (число пакетов определяется ключом n , по умолчанию четыре) по протоколу ICMP. Такие пакеты называются эхо-пакетами, т. е. требуют

ответа. Если удаленный узел доступен, он отвечает на каждый эхо-пакет своим пакетом, а утилита измеряет интервал между отправкой эхо-пакета и приходом ответа.

Нужно отметить, что отсутствие ответа может быть связано не с физической недоступностью удаленного компьютера, а с тем, что на нем установлено программное обеспечение, запрещающее отправку ответов на эхо-пакеты (брандмауэр – firewall).

Основные ключи:

t – пакеты отправляются до тех пор, пока пользователь не нажмет комбинацию CTRL+C.

a – определение доменного имени по IP-адресу.

l <размер> – максимальный размер пакета (по умолчанию 32 байта).

w <таймаут> – задание времени ожидания ответа в миллисекундах (по умолчанию 1000 миллисекунд = 1 секунда).

Название утилиты произошло от Trace Route – отслеживание маршрута. Утилита позволяет решить следующие задачи:

– проследить путь прохождения пакета от данного компьютера до удаленного узла (отображаются промежуточные узлы-маршрутизаторы);

– выявить участки задержки пакетов;

– выявить места потери пакетов.

Принцип работы: утилита отправляет эхо-пакеты на заданный удаленный узел. Отличие между эхо-пакетами заключается в параметре, который называется «время жизни» (TTL – Time To Live). Этот параметр обозначает количество маршрутизаторов (процесс перехода пакета через маршрутизатор называется hop – прыжок), которое может пройти пакет, прежде чем попадет на заданный узел. Каждый маршрутизатор уменьшает время жизни на единицу. Если на каком-то маршрутизаторе TTL станет равным нулю, тот отбрасывает пакет и отправляет служебное сообщение на узел-источник.

Первый эхо-пакет посылается с временем жизни, равным единице. Первый маршрутизатор отбрасывает эхо-пакет и отправляет служебное сообщение, в котором содержится информации об имени и адресе маршрутизатора. Следующий эхо-пакет имеет TTL = 2 и отбрасывается уже на втором маршрутизаторе. Таким образом, эхо-пакеты отправляются с увеличением времени жизни на единицу, пока не придет ответ от заданного удаленного узла или время ожидания не будет превышено.

Основные ключи:

/ h < maximum_ hops> – максимальное число хопов (маршрутизаторов) при поиске узла.

/ w <таймаут> – задание времени ожидания ответа в миллисекундах.

Утилита отображает статистическую информацию по протоколам IP, TCP, UDP и ICMP, а также позволяет отслеживать сетевые соединения. Основные ключи:

/ a – список всех подключений и прослушивающихся портов.

/e – статистика для Ethernet.

/ n – список всех подключений и портов в числовом формате.

/ s – статистика для перечисленных четырех протоколов.

< interval> – интервал в секундах, через который утилита выводит требуемую информацию (для прекращения вывода – CTRL+C).

Эта утилита работает с протоколами преобразования IP-адресов в МАС-адреса и обратно ARP и RARP. С её помощью можно выводить на экран таблицу соответствия IP-адресов и МАС-адресов (ARP-кэш), добавлять и удалять записи в ней.

Основные ключи:

/ a – отображение таблицы ARP или, если указан IP-адрес, запись только для этого адреса.

/ s – добавление записи в таблицу.

/ d – удаление записи из таблицы.

Hostname

Это самая простая утилита – она выводит на экран имя компьютера.

Резюме

Стек протоколов TCP/IP – это самый распространенный на сегодняшний день набор иерархически упорядоченных протоколов, применяемый как в локальных, так и в глобальных сетях. Важнейшие протоколы стека – IP, TCP и UDP – появились в начале 80-х годов в рамках проекта ARPANET, который являлся предшественником Интернета. В 90-е годы по мере развития Интернета роль стека TCP/IP сильно возросла.

Стек TCP/IP был разработан на основе модели сетевого взаимодействия DARPA, хотя между уровнями модели DARPA, международной семиуровневой моделью OSI и стеком TCP/IP может быть установлено соответствие. Стандарты протоколов TCP/IP отражены в свободно доступных документах RFC.

Основными протоколами стека являются IP, TCP, UDP, ICMP, ARP, протоколы маршрутизации RIP и OSPF, протоколы прикладного уровня HTTP, FTP, POP3, SMTP, telnet, SNMP.

Для диагностики и управления стеком TCP/IP в операционной системе Microsoft Windows Server 2003 существуют специальные утилиты – IPconfig, ping, tracert, netstat, arp, hostname и др.

Контрольные вопросы

1. Объясните, что означают свойства «платформонезависимость» и «открытость» применительно к стеку протоколов TCP/IP.

2. Что такое ARPANET?

3. Поясните, для чего предназначена модель OSI? Где она применяется?

4. Назовите функции канального, сетевого и транспортного уровней модели OSI.

5. Чем отличается модель DARPA (DoD) от модели OSI? Как вы думаете, почему?

6. Что такое RFC? В файлах какого формата издаются RFC?

7. Для чего используется протокол ICMP? Протокол ARP?

8. Поясните принцип работы утилиты ping.

9. Поясните принцип работы утилиты tracert.



Понравилась статья? Поделиться с друзьями: