Полный дуплекс по одной паре проводов. Дуплексный режим передачи данных

Обычно к коммутатору подключаются концентраторы, т.е. на отдельный порт подключается целый сегмент. Однако к порту могут подключаться и отдельные компьютеры (микросегментация). В таком случае, коммутатор и сетевая карта компьютера могут работать в полнодуплексном режиме, т.е. одновременно передавать данные во встречных направлениях, увеличивая пропускную способность сети в два раза. Полнодуплексный режим возможен только если обе стороны - и сетевая карта и коммутатор - поддерживают этот режим. В полнодуплексном режиме не существует коллизий. Наложение двух кадров в кабеле считается нормальным явлением. Для выделения принимаемого сигнала, каждая из сторон вычитает из результирующего сигнала свой собственный сигнал.

При полудуплексном режиме работы, передача данных осуществляется только одной стороной, получающей доступ к разделяемой среде по алгоритму CSMA/CD. Полудуплексный режим фактически был подробно рассмотрен ранее.

При любом режиме работы коммутатора (полудуплексном или полнодуплексном) возникает проблема управления потоков кадров. Часто возникает ситуация, когда к одному из портов коммутатора подключен файл-сервер, к которому обращаются все остальные рабочие станции:

Отношение многие порты – к одному.

Если порт 3 работает на скорости 10 Мбит/с, а кадры с остальных четырех компьютеров поступают также со скоростью 10 Мбит/с, то не переданные кадры будут накапливаться в буфере порта 3 и, рано или поздно, этот буфер переполнится. Частичным решением данной проблемы было бы выделение для файл сервера порта 3, со скоростью 100 Мбит/с. Однако это не решает проблему, а лишь откладывает ее: со временем пользователи захотят более высоких скоростей работы сети, и коммутатор будет заменен на новый, у которого все порты будут работать на скорости 100 Мбит/c. Более продуманным решением, реализованном в большинстве коммутаторов, является управление потоком кадров, генерируемых компьютерами. В полнодуплексном режиме используются специальные служебные сигналы "Приостановить передачу" и "Возобновить передачу". Получив сигнал "Приостановить передачу" сетевая карта должна прекратить передачу кадров, вплоть до последующего сигнала "Возобновить передачу" (к сожалению в текущем стандарте 802.3x не предусмотрено частичное уменьшение интенсивности передачи кадров, возможен только полный запрет). В полудуплексном режиме используется "метод обратного давления" (backpressure) и "агрессивное поведение порта коммутатора". Оба метода позволяют реализовать достаточно тонкие механизмы управления потоком кадров, частично снижая их интенсивность, но не уменьшая ее до нуля.

Метод обратного давления (backpressure) состоит в создании искусственных коллизий в сегменте, который чересчур интенсивно посылает кадры в коммутатор. Для этого коммутатор обычно использует jam-последовательность (сигналы-помехи создающие и усиливающие коллизию), отправляемую на выход порта, к которому подключен сегмент (или компьютер), чтобы приостановить его активность.

Метод агрессивного поведения порта коммутатора основан на захвате среды либо после окончания передачи очередного пакета, либо после коллизии. В первом случае коммутатор оканчивает передачу очередного кадра и, вместо технологической паузы в 9,6 мкс, делает паузу в 9,1 мкс и начинает передачу нового кадра. Компьютер не сможет захватить среду, так как он выдержал стандартную паузу в 9,6 мкс и обнаружил после этого, что среда уже занята. Во втором случае кадры коммутатора и компьютера сталкиваются и фиксируется коллизия. Компьютер делает паузу после коллизии в 51,2 мкс, как это положено по стандарту, а коммутатор - 50 мкс. И в этом случае компьютеру не удается передать свой кадр. Коммутатор может пользоваться этим механизмом адаптивно, увеличивая степень своей агрессивности по мере необходимости.

В предыдущей статье, я коротко упомянул о том, какие .

Сейчас мы ознакомимся с согласованием параметров между устройствами, а так же скорости и режима работы (full- duplex или half-duplex ).

По умолчанию, каждый порт Cisco настроен таким образом, что устройство само определяет какие настройки на этом порту использовать, какую скорость выбрать, какой режим передачи данных. Такая технология называется Auto-negotiation (Автоопределение). Так же эти параметры можно задать «вручную», на каждом порту устройства.

Cisco определяют автоматически скорость между сетевыми устройствами (например между портом коммутатора и сетевой картой компьютера), используя некоторые методы. Cisco коммутаторы используют для определния скорости Fast Link Pulse (FLP) , это некоторый электрический импульс, по которому устройства могут понять на каких оптимальных скоростях может установиться соединение между данными сетевыми устройствами.

Если скорости выставлены вручную и они совпадают, то устройства смогут установить соединение используя электрические сигналы.

Если на коммутаторе и на сетевом устройстве компьютера (для примера), установлены вручную скорости и они не совпадают, то соединение не будет установлено.

Примерно так же проходит и определение режима работы соединения: half-duplex или full-duplex .

Если оба устройства работают в режиме автоопределения, и устройства могут работать в duplex режиме, то этот режим и установится.

Если на устройствах автоопределение выключено, то режим будет присвоен по некоторым правилам «по умолчанию». Для 10 и 100 мегабитных интерфейсов установится режим half-duplex, для 1000 мегабитных установится Full-Duplex.

Для отключения автоопределения дуплексности необходимо вручную указать настройки режима.

Ethernet устройства могут работать в режиме Full-Duplex (FDX ), только тогда, когда нет коллизий в передающей среде.

Современные технологии говорят что коллизии не происходят. Коллизии происходят только там где есть разделяемая среда передача данных, например при топологии шина, или при использовании такого устройства как hub (хотя сейчас увидеть такого «динозавтра» достаточно сложно 🙂).

Все же необходимо представлять какие технологии есть и как они борятся с в таких разделяемых ресурсах.

Алгоритм, по борьбе с коллизиями называется CSMA/CD (Carrier Sense Multiple Access Collision Detection ), что означает множественный доступ с контроллем несущей и обнаружением коллизий.

Что такое коллизия вобще?

Коллизия это наложение сигнала, т.е, когда одновременно несколько сетевых устройств начинают передачу данных по разделяемой среде, два этих сигнала встречаются, накладываются друг на друга, и происходит коллизия (тоесть данные искажены, и не несут в себе никакой полезной нагрузки.

Теперь давайте рассмотрим как это работает.

  1. Устройство, которое желает отправить сначала слушает, свободна ли линия связи.
  2. Когда линия связи не занята, это устройство начинает отправлять фреймы в Ethernet.
  3. Устройство «слышит», что коллизия не происходит, значит все хорошо.
  4. Если все же коллизия произошла (а как же первый шаг? где устройство убеждалось, что линия не занята? Дело в том, что другое устройство могло тоже прослушивать линию, и эти два устройства отправили фреймы практически в одно и тоже время, поэтому и произошла коллизия). Теперь, когда отправляемые устройства «поняли», что произошла коллизия, они отправляют так называемый jam signal, который «говорит» другим участникам сети, что сейчас передача невозможно, так как возникла коллизия и придется немного подождать.
  5. После jam сигнала, у каждого отправляюшего устройства случайным образом определяется некоторое время, которое можно назвать «время простоя», когда устройство не может посылать никакие данные в сети.
  6. После истечения этого таймера, алгоритм переходит к 1 шагу.

Симплексной радиосвязью принято называть одностороннюю радиоэлектронную связь между двумя людьми, в которой прием и отправка голосовых сообщений осуществляется с помощью одного радиоканала.

Другими словами, если используется симплексная радиосвязь, то второй пользователь сети, который должен получить отправленное сообщение, не сможет ничего предпринять кроме приема голосовых данных.

То есть, второй пользователь такой радиосети не сможет ни отправить ответное сообщение, ни дать подтверждение о приеме.

Дуплексная радиосвязь

Дуплексной радиосвязью называют двухстороннюю радиосвязь между несколькими участниками радиосети. То есть, к примеру, оба абонента радиосети могут одновременно и принимать, и отправлять голосовые сообщения, используя, при этом, один и тот же радиоканал связи.

Самый наглядный пример дуплексной радиосвязи - разговор по телефону (как стационарному, так и мобильному). Но, на практике, для передачи и приема применяются два разных радиоканала.

Всего одна радиолиния может прекрасно справиться с реализацией нескольких каналов связи. Такая система будет называться многоканальной.

Двухсторонняя радиосвязь

Такая связь предполагает возможность осуществления одновременной передачи и приема сообщений каждым приемопередатчиком.

Чтобы реализовать двухстороннюю связь, необходима как минимум пара оборудования для симплексной связи. То есть, каждая точка сети должна иметь и радиоприемное, и радиопередающее устройство.

Стоит отметить, что двухсторонняя связь может быть как симплексной, так и дуплексной. Разберемся с каждой вариацией подробнее:

  • Дуплексная двухсторонняя связь . Передача и получения информации производится одновременно
  • Симплексная двухсторонняя связь . Отправка и прием сообщений осуществляется каждой радиостанцией по очереди

А) - организация симплексной радиосвязи, В) - организация дуплексной радиосвязи

При симплексной радиосвязи приемопередатчики на обеих концах радиосети будут функционировать на одной и той же радиочастоте. При дуплексной - на двух разных частотах, одна для приема, другая - для передачи информации. Последнее реализовано для того, чтобы радиоприемник получал данные только от передатчика, находящегося на другом конце сети, а не принимал свои собственные сигналы.

В дуплексной радиосети во время приема или отправки голосовых сообщений каждый приемник и передатчик должны постоянно находиться во включенном состоянии. Точнее - в то время, когда осуществляется передача данных через радиолинию.

Если вы хотите глубже вникнуть в работу симплексных и дуплексных сетей, а также, радиоустройств, которые в них входят, звоните в нашу Компанию по номеру телефона, указанному выше.

В зависимости от направления возможной передачи данных способы передачи

данных по линии связи делятся на следующие типы:

□ симплексный - передача осуществляется по линии связи только в одном на-

правлении;

□ полудуплексный - передача ведется в обоих направлениях, но попеременно

во времени (примером такой передачи служит технология Ethernet);

□ дуплексный - передача ведется одновременно в двух направлениях.

Режим, при котором передача ведётся в обоих направлениях, но с разделением по времени называют полудуплексным. В каждый момент времени передача ведётся только в одном направлении.

Разделение во времени вызвано тем, что передающий узел в конкретный момент времени полностью занимает канал передачи. Явление, когда несколько передающих узлов пытаются в один и тот же момент времени осуществлять передачу, называется коллизией и при методе управления доступом CSMA/CD считается нормальным, хотя и нежелательным явлением.

Этот режим применяется тогда, когда в сети используется коаксиальный кабель или в качестве активного оборудования используются концентраторы.

В зависимости от аппаратного обеспечения одновременный приём/передача в полудуплексном режиме может быть или физически невозможен (например, в связи с использованием одного и того же контура для приёма и передачи в рациях) или приводить к коллизиям.

Режим, при котором, в отличие от полудуплексного, передача данных может производиться одновременно с приёмом данных.

Суммарная скорость обмена информацией в данном режиме может достигать вдвое большего значения. Например, если используется технология Fast Ethernet со скоростью 100 Мбит/с, то скорость может быть близка к 200 Мбит/с (100 Мбит/с - передача и 100 Мбит/с - приём).

Дуплексная связь обычно осуществляется с использованием двух каналов связи: первый канал - исходящая связь для первого устройства и входящая для второго, второй канал - входящая для первого устройства и исходящая для второго.

В ряде случаев возможна дуплексная связь с использованием одного канала связи. В этом случае устройство при приёме данных вычитает из сигнала свой отправленный сигнал, а получаемая разница является сигналом отправителя (модемная связь по телефонным проводам, GigabitEthernet).

    Понятие ИКТ

интегральная технология передачи данных и обработки данных.

#ИКТ, именуемая также ITT, появилась в результате объединения технологий обработки и передачи данных в единое целое. Сегодня развитие и использование ИКТ определяет движение к созданию информационного общества. Так, в декабре 1999 г. Европейская Комиссия объявила о новом проекте, именуемом E-Europa - “Электронная Европа”. Его цель - преобразование европейского индустриального общества в информационное. Этот проект включает:

совершенствование сети Internet, расширение набора ее информационных ресурсов;

использование ресурсов Internet для обучения;

обеспечение быстрого и дешевого доступа к Internet;

развитие платежной системы, в том числе - компьютерных карточек;

вовлечение в электронное сообщество нетрудоспособных граждан;

развитие здравоохранения и обеспечение безопасности транспорта на основе информационно-коммуникационных технологий;

обеспечение прозрачности деятельности правительств путем создания множества сайтов Web.

К информационно-коммуникационным технологиям, в первую очередь, относятся:

    доступ и работа в информационных сетях;

    цифровое телевидение;

    электронная почта и факсимильная связь;

    работа с базами данных и хранилищами сообщений.

Технология коммутации сама по себе не имеет непосредственного отношения к методу доступа к среде, который используется портами коммутатора. При подключении к порту коммутатора сегмента, представляющего собой разделяемую среду, данный порт, как и все остальные узлы такого сегмента, должен поддерживать полудуплексный режим.

Однако когда к каждому порту коммутатора подключен не сегмент, а только один компьютер, причем по двум физически раздельным каналам, как это происходит почти во всех стандартах Ethernet, кроме коаксиальных версий Ethernet, ситуация становится не такой однозначной. Порт может работать как в обычном полудуплексном режиме, так и в дуплексном.

В полудуплексном режиме работы порт коммутатора по-прежнему распознает коллизии. Доменом коллизий в этом случае является участок сети, включающий передатчик коммутатора, приемник коммутатора, передатчик сетевого адаптера компьютера, приемник сетевого адаптера компьютера и две витые пары, соединяющие передатчики с приемниками. Коллизия возникает, когда передатчики порта коммутатора и сетевого адаптера одновременно или почти одновременно начинают передачу своих кадров.

В дуплексном режиме одновременная передача данных передатчиком порта коммутатора и сетевого адаптера коллизией не считается. В принципе, это достаточно естественный режим работы для отдельных дуплексных каналов передачи данных, и он всегда использовался в протоколах глобальных сетей. При дуплексной связи порты Ethernet стандарта 10 Мбит/с могут передавать данные со скоростью 20 Мбит/с - по 10 Мбит/с в каждом направлении.

Уже первые коммутаторы Kalpana поддерживали оба режима работы своих портов, позволяя использовать коммутаторы для объединения сегментов разделяемой среды, как делали их предшественники-мосты, и в то же время позволяя удваивать скорость обмена данными на предназначенных для связи между коммутаторами портах за счет работы этих портов в дуплексном режиме.

Долгое время коммутаторы Ethernet сосуществовали в локальных сетях с концентра торами Ethernet: на концентраторах строились нижние уровни сети здания, такие как сети рабочих групп и отделов, а коммутаторы служили для объединения этих сегментов в общую сеть.

Постепенно коммутаторы стали применяться и на нижних этажах, вытесняя концентраторы, так как цены коммутаторов постоянно снижались, а их производительность росла (за счет поддержки не только технологии Ethernet со скоростью 10 Мбит/с, но и всех последующих более скоростных версий этой технологии, то есть Fast Ethernet со скоростью 100 Мбит/с, Gigabit Ethernet со скоростью 1 Гбит/с и 10G Ethernet со скоростью 10 Гбит/с). Этот процесс завершился вытеснением концентраторов Ethernet и переходом к полностью коммутируемым сетям, пример такой сети показан на рис. 1

Рис. 1 Полностью коммутируемая сеть Ethernet.

В полностью коммутируемой сети Ethernet все порты работают в дуплексном режиме, а продвижение кадров осуществляется на основе МАС-адресов. При разработке технологий Fast Ethernet и Gigabit Ethernet дуплексный режим стал одним из двух полноправных стандартных режимов работы узлов сети. Однако уже практика применения первых коммутаторов с портами Gigabit Ethernet показала, что они практически всегда применяются в дуплексном режиме для взаимодействия с другими коммутаторами или высокоскоростными сетевыми адаптерами. Поэтому при разработке стандарта 10G Ethernet его разработчики не стали создавать версию для работы в полудуплексном режиме, окончательно закрепив уход разделяемой среды из технологии Ethernet.



Понравилась статья? Поделиться с друзьями: