Виды, устройство и принцип работы дисковых тормозов. Фрикционы и стальные диски Как выглядит фрикционный диск тормоза под микроскопом

Фрикционы (фрикционные диски, пакеты фрикционов) — элементы сцепления между передачами в , необходимые для включения и . Фрикцион состоит из основы (стального диска). На указанный диск наклеена специальная фрикционная накладка.

Основной задачей фрикционов является смыкание (сжатие) и размыкание (разжатие) в строго определенный момент, благодаря чему нужная шестерня , которая соответствует той или иной передаче, останавливается или начинает вращаться. Фрикционы сжимаются и разжимаются под давлением трансмиссионной жидкости ATF.

Читайте в этой статье

Устройство фрикционных дисков АКПП и принцип работы

Прежде всего, бывает два вида фрикционов:

  • металлические диски с фрикционной накладкой, которые находятся в зацеплении с корпусом автоматической коробки. Такие фрикционы неподвижны.
  • мягкие фрикционы, вращающиеся одновременно с солнечными шестернями. Такие фрикционы изготовлены из мягкого материала (например, прессованный картон) и имеют упрочняющее напыление (графитовое и т.д.)

Различные АКПП могут иметь разные типы фрикционов. Например, в автоматических коробках, произведенных в 20-м веке и которые сегодня устарели, фрикционные диски односторонние, без накладок. Фактически это означает, что диска два, причем один стальной, а другой картонный.

Более современные типы АКПП получили доработанные фрикционные диски с наладками, в результате чего увеличен ресурс фрикционов, улучшено теплоотведение и т.д. Набирают фрикционные диски так называемыми «пакетами» (пакет фрикционов), когда один диск из металла, а другой из мягкого материала. Указанные пары дублируются по нескольку раз, чтобы образовать готовый пакет. Например, простой 4-х ступенчатый автомат имеет 2 или 3 набора фрикционов.

Если говорить о принципах работы, нужно понимать, что в устройстве АКПП применяется так называемая планетарная передача. Итак, в двух словах, когда передача выключена, фрикционные диски вращаются без ограничений, то есть они не зажаты по причине отсутствия давления масла.

Однако в момент включения передачи трансмиссионная жидкость ATF под давлением проходит по каналам гидроблока, в результате чего диски сжимаются (фрикционы плотно прижаты друг к другу). В результате подключается нужная шестерня, при этом остальные шестерни в АКПП останавливаются.

Срок службы фрикционов и основные поломки

Многие автолюбители хорошо знают, что наиболее распространенной неисправностью коробки — автомат является износ фрикционных дисков (износ фрикционов). При этом избежать такого износа невозможно, однако грамотное обслуживание и эксплуатация АКПП позволяет увеличить ресурс пакетов фрикционов до 250-400 тыс. км. пробега.

Для этого необходимо своевременно менять масло в коробке автомат (каждые 40-50 тыс. км.), следить за уровнем масла в коробке, не допускать перегревов, не буксовать на машине с АКПП и т.д. Если же фрикционные диски вышли из строя, как правило, можно услышать, что фрикционы сгорели. На практике это проявляется таким образом, что передачи АКПП не включаются, передачи пробуксовывают и т.д. Давайте разбираться.

Итак, сами фрикционные диски вполне могут служить долго (вполне реален показатель пробега около 500 тыс. км.), так как вращаются указанные диски в масле. Так вот, именно от состояния масла в значительной степени зависит их ресурс. Если не менять масло в автомате и масляный фильтр, и при этом подвергать трансмиссию серьезным нагрузкам, вполне реально, что фрикционы также выйдут из строя уже к 80-150 тыс. км.

Причина — потеря свойств масла АТФ и старение, снижение давления, загрязнение самой жидкости продуктами износа КПП, проблемы с каналами гидроблока, соленоидами и т.д. В совокупности давление масла на фрикционы упадет, сжатие не будет таким эффективным и фрикционные диски в этом случае буксуют.

Получается, от трения они нагреваются и «подгорают», происходит разрушение фрикционных пакетов. Зачастую запах гари можно также заметить при анализе жидкости ATF, когда масло в коробке автомат пахнет горелым именно по причине проскальзывания и подгорания фрикционов.

Что в итоге

Как видно, фрикционные диски АКПП являются неким подобием сцепления в МКПП. При этом элемент достаточно надежен, однако только в том случае, если с давлением масла в коробке «автомат» все в порядке и сама жидкость чистая.

Снижение давления обычно происходит в случаях, когда:

  • уровень масла (ATF) в коробке не соответствует норме;
  • сама трансмиссионная жидкость потеряла свои свойства и/или сильно загрязнена;
  • возникли проблемы с маслонасосом, снижена пропускная способность фильтра масла АКПП или масляного радиатора;
  • забиты каналы гидроблока, некорректно работают соленоиды и т.п.

При наличии подобных неполадок передачи могут переключаться рывками, . Как правило, если проблеме не уделить внимания, первыми из строя выходят фрикционные диски, фрикционы проскальзывают и горят. В результате масло ATF в АКПП пахнет горелым, меняется цвет масла в коробке автомат и т.д.

Для решения проблемы в одних случаях может быть достаточно промывки масляного радиатора, замены масла в коробке автомат, а также масляного фильтра. В других ситуациях может потребоваться разборка АКПП для замены пакетов фрикционов, промывки каналов гидроблока, проверки работоспособности соленоидов.

Так или иначе, при выявлении первых признаков проскальзывания фрикционов, необходимо прекратить эксплуатацию ТС и доставить автомобиль на СТО с целью проведения углубленной диагностики АКПП.

Читайте также

Как работает коробка-автомат: классическая гидромеханическая АКПП, составные элементы, управление, механическая часть. Плюсы, минусы данного типа КПП.

  • Почему коробка-автомат пинается, дергается АКПП при переключении передач, в автоматической коробке возникают толчки рывки и удары: основные причины.
  • Автоматическая коробка передач (АКПП, АКП) "классического" типа с гидротрансформатором: устройство и принцип работы. Плюсы и минусы гидромеханической АКПП.
  • Дисковые тормоза давно вытеснили все остальные , и только редкие барабанные еще пытаются что-то им противопоставить . Но со временем сами дисковые тормоза стали разнообразнее: менялись материалы и устройство дисков и суппортов, равно как и размеры. Что же, попробуем разобраться в их эволюции. И в ее смысле.

    Коротко о плюсах дисков

    Своим успехом дисковые тормозные механизмы обязаны двум факторам. Во-первых, простоте создания большого усилия – сжимать чугунный диск можно очень сильно, и он не согнется, не сломается и не потеряет своих характеристик. А раз усилие сжатия велико, то и тормозная мощность будет ограничена только прочностью суппорта и тепловой нагрузкой на сам диск.

    Во-вторых, собственно, хорошей способностью к восприятию этой самой тепловой нагрузки, или, другими словами, хорошими способностями к охлаждению. Пока диск вращается, он создает непрерывный поток воздуха на своей поверхности, эффективно удаляющий тепло и продукты износа.

    Помимо двух этих основных факторов, нашлось и множество второстепенных вроде простоты создания авторегулировки тормозов, точности и «прозрачности» усилий, малой массы тормозного механизма, удобства компоновки со ступицей, простоты обслуживания и прочих. Хотя без первых двух они были бы не столь важны.

    А первые два фактора можно охарактеризовать в сумме одним словом – это «мощность». Именно мощность тормозных механизмов при малой массе стала тем, что сделало их успешными. Это способствовало созданию все более и более мощных тормозов, способных без ухудшения характеристик переносить многочисленные торможения с большой скорости.

    Зачем нужно усложнять диск?

    На первом этапе усовершенствования дисковых тормозов постарались улучшить в первую очередь именно способность к охлаждению, чтобы дополнительно снизить риск перегрева при затяжных или частых торможениях. В дальнейшем именно желание увеличить тепловую мощность тормозов будет толкать конструкторов все к новым и новым решениям.

    Диск нельзя нагревать бесконечно – материалы банально теряют прочность, колодки «горят», уплотнения суппорта разрушаются, в общем, греть диски ради большей теплоотдачи нельзя, нужно «держать» температуру и охлаждать.

    Вентиляция

    Обеспечить лучшее охлаждение диску можно двумя путями: либо увеличивая его площадь (об этом чуть позже), либо введя вентиляцию. За счет создания внутренних радиальных каналов внутри диска площадь охлаждения увеличилась в пять-шесть раз, и во столько же раз увеличилась мощность.

    Еще немного увеличить площадь охлаждения позволяет перфорация, и она же чуть улучшает очистку диска при прижатии колодок. К сожалению, усложнение конструкции диска дальше маловероятно и ограничено теплопроводностью чугуна. По сути, почти все современные тормозные механизмы выполнены именно по этой схеме: передние – практически всегда вентилируемые, но без перфорации – она ослабляет диск, снижает его ресурс и применяется нечасто.

    Увеличение диаметра

    Теперь вернемся к размерам. Увеличивая диаметр диска, мы решаем две проблемы. Во-первых, при этом возрастает площадь охлаждения, а во-вторых – тормозной момент и одновременно скорость вращения диска в зоне трения колодок. Тормозная мощность «размазывается» по площади, уменьшается нагрев. Появляется возможность уменьшить давление прижатия колодок, а значит, снижаются требования к фрикционным материалам и повышается удобство пользования тормозами.

    Путь увеличения площади хороший, если бы не одна проблема: внешний диаметр диска всегда ограничен размером колеса. Примерно до 19 дюймов увеличение диаметра колесного диска еще может быть , но дальше гигантомания идет во вред. Прежде всего – из-за того, что критически вырастает неподрессоренная масса, страдает комфорт и, как ни странно, управляемость автомобиля. Да и слишком большой диск быстрее коробится. Эту проблему можно было бы решить утолщением диска, но тогда вырастет масса, а она, как мы поняли, и так уже велика... Но конструкторская мысль нашла выход из положения.

    Составные диски

    По сути, рабочей зоной тормозных колодок является только внешний край тормозного диска. Использовать всю его площадь просто не нужно – тормозное усилие зависит не от площади контакта колодок. При увеличении площади улучшается модуляция и уменьшается износ накладок, но площадь можно сохранить, увеличив только «длину» колодки, а не ее «высоту». Это значит, что вместо большого и тяжелого сплошного диска можно использовать лишь сравнительно тонкое кольцо максимального диаметра.

    Конструктивно проблему можно было решить двумя способами. Традиционный заключается в том, что можно выполнить центральную часть тормозного диска из легкого сплава и прикрепить к ней чугунное кольцо, по которому будут работать колодки.

    Второй вариант – прикрепить чугунное кольцо к легкосплавному колесному центру изнутри. Соответственно, и тормозной суппорт тогда будет охватывать тормозное кольцо изнутри, а не снаружи. Второе решение не очень-то прижилось, разве что владельцы ЗАЗ Таврия помнят сей конструктив, да знатоки железнодорожной техники вспомнят локомотивы с подобными тормозными механизмами.

    А вот более классическая конструкция диска с легкосплавным центром завоевала мир гоночных и спортивных автомобилей. Составные тормозные диски позволяют экономить по несколько килограмм массы на каждом колесе и к тому же дешевле в эксплуатации – внутренняя сложная легкосплавная часть зачастую не требует замены, меняется лишь простое по конфигурации наружное кольцо из чугуна или другого материала с похожими свойствами.

    Плавающие диски

    Следующим логичным шагом по пути улучшения стало создание «плавающих» тормозных дисков. Не бойтесь, ни о каком водяном охлаждении речи не пойдет, впрыск воды остается для дисковых тормозов крайне экзотической технологией. Суть куда проще: крепление центральной части такого составного тормозного диска позволяет внешней чугунной части при расширении немного сдвигаться. Тем самым уменьшаются нагрузки, которые возникают из-за разницы в коэффициенте расширения у разных металлов и разнице температур между центральной частью и тормозным кольцом.

    А раз нет риска коробления, то можно допустить прогрев диска до большей температуры без риска критического перегрева. Кроме того, улучшаются условия прилегания колодок, и тормоза заработают в полную силу при большей нагрузке. Такой диск может иметь мощность на все 20–30% выше, чем у «жесткой» конструкции, при незначительном, в общем-то, усложнении.

    Композитные материалы

    При создании составных дисков открылось еще одно направление в развитии тормозных механизмов. Увеличить теплоотдачу можно еще и повышением температуры тормозов, но тогда придется заменить на что-то, умеющее работать при температурах под тысячу градусов. Кандидаты нашлись быстро: в первую очередь это биметаллические диски, металлокерамика и углеволокно.

    Биметаллические диски позволяли получить выигрыш в массе, но по совокупности характеристик не получили выигрыша в сравнении с поверхностно упрочненным чугуном, так что эта тюнинговая экзотика почти не встречается. А вот материалы на основе углерод-углеродной, керамической и метал-керамической матрицы прижились, несмотря на очень высокую цену относительно чугуна.

    Причин сразу несколько. Во-первых, по сравнению с чугуном композитные материалы имеют в несколько раз меньшую плотность, а значит, на 50-75 % снижается масса диска. Рабочая температура выше 1 100 градусов для них не является проблемой, причем температура поверхности может доходить до 1 400 градусов, поэтому теплоотдача вырастает примерно в полтора-два раза в сравнении с чугуном.

    Во-вторых, волокнистые композиты на основе SiC-матрицы обладают очень высокой износостойкостью – такие диски практически «вечные», даже если учитывать особенности эксплуатации в гоночных автомобилях. Чаще всего они выходят из строя не из-за износа поверхности, а из-за разрушения точек крепления и расслоений, свойственных композитам.

    В-третьих, у композитных дисков полностью отсутствуют «прихватывания» – точки локального изменения поверхности диска под воздействием высокой температуры и материала колодок.

    Именно такие диски можно сделать наибольшего размера, к тому же вдвое увеличив мощность тормозных механизмов. Так почему же композитные материалы до сих пор не вытеснили чугун? Минусы проявились тоже достаточно быстро. Высокая стоимость является очевидным недостатком, но по сути сильно зависит от технологии производства, при появлении массового спроса в автомобилестроении шансы на ее снижение довольно велики. Сами материалы, на самом деле, не столь дороги.

    Но помимо цены есть еще два существенных минуса. Во-первых, это плохая модуляция работы тормозов – углерод более «скользкий» и колодки начинают эффективно работать по нему только при большой температуре и большом усилии. В «горячем» состоянии диск работает отлично, а вот пока температура диска и колодок низкая, эффективность тормозов тоже ниже, чем у чугунных. Соответственно, дозировать тормозное усилие сложнее.

    Во-вторых, тормозное усилие на композитных дисках часто имеет склонность к небольшим колебаниям из-за неоднородности поверхности и ошибок мехобработки диска, которые не устраняются сами со временем, как это происходит с чугуном.

    В-третьих, это низкая механическая прочность композита и уязвимость его торцевой части при ударах. А ведь именно торцевая поверхность оказывается нагружена тормозным моментом со стороны крепления диска. Стало быть, приходится применять сложные меры для предотвращения растрескивания и использовать неоптимальные размеры креплений.

    Многодисковость

    Многодисковые тормозные механизмы в автомобилестроении не прижились – тут в почете строго однодисковые конструкции. Зато на самолетах многодисковые фрикционные тормоза используются давно и довольно успешно. Наличие дополнительных дисков позволяет увеличить площадь простого тормозного диска, не увеличивая размера колеса, которое он затормаживает. Зато сильно возрастает масса и трудоемкость обслуживания. Серьезным минусом для машин оказалась и склонность к неполному растормаживанию у таких механизмов. Если для самолета это мелочи, то на автомобиле на счету каждый лишний ватт.

    Усложнение суппорта

    Как известно, суппорт – это второй важнейший узел дискового тормозного механизма – при помощи своих цилиндров он прижимает колодки к дискам. Его история развития, как ни странно, оказалась гораздо менее насыщенной, чем у диска.

    Изначальная конструкция дискового тормоза предусматривала два тормозных цилиндра, по одному на каждую колодку. Она была несколько массивна, но зато максимально проста в исполнении.

    Очень быстро нашли способ упростить конструкцию: оставили один гидроцилиндр, а скобу сделали «плавающей». Опять же, термин не имеет никакого отношения к жидкостям, просто в такой конструкции тормозной цилиндр толкает «свою» колодку от себя и тянет в противоположную сторону скобу, в которой закреплен. К этой скобе, в свою очередь, прикреплена вторая тормозная колодка, и она просто прижимается к диску с другой стороны. Такая конструкция получается немного легче, но главное, она гораздо компактнее, что оставляет больше свободы конструкторам.

    С ростом диаметра дисков проявился такой дефект, как перекос колодок относительно тормозного диска. Если колодка работает только одной стороной, то снижается эффективность торможения, возникают локальные перегревы диска, да и сами колодки изнашиваются значительно быстрее.

    Точно уравнять усилие по всей поверхности двух колодок оказалось возможным с помощью усложнения гидравлики. Конструкторы просто увеличили количество цилиндров суппорта – теперь на колодку давил не один и не два цилиндра, а четыре или шесть. Разумеется, во всех цилиндрах давление одинаковое, а значит, никаких перекосов колодки просто не может возникнуть. И чем больше площадь колодки, ее «длина» и «высота», тем важнее обеспечить равномерный прижим. И тем сложнее приходится делать суппорт.

    А вот увеличение числа суппортов на один тормозной диск ради повышения эффективности не пригодилось, зато такая конструкция приглянулась тем, кто больше всего на свете ценит надежность тормозов. На престижных лимузинах вроде Роллс-Ройсов или наших ЗиЛах каждый тормозной диск имеет два суппорта от двух независимых систем торможения. На всякий случай, вдруг чего…

    Унифицированная пневматическая муфта-тормоз УВ31... широко применяется в кривошипных прессах и гильотинах, а также других кузнечно-прессовых машинах для сцепления эксцентрикового вала с вращающимся приводом и его торможения при выполнении рабочих ходов машины. Муфта УВ31... имеет надежную, проверенную временем конструкцию, что при правильной эксплуатации и своевременном регулировании обеспечивает долгий срок службы муфты.
    Тем не мене, подобно любому другому механизму, со временем муфта-тормоз начинает работать неэффективно. Как правило, изнашиваются резиновые уплотнения (пневматические манжеты ), ведущие и тормозные диски с фрикционными накладками и ведомые зубчатые диски. При наличии запчастей муфту-тормоз УВ31... можно легко восстановить.
    Наша компания предлагает следующие запчасти: диски с фрикционными накладками к пневматической муфте-тормозу УВ3132, УВ3135, УВ3138, УВ3141, УВ3144, УВ3146 . Диски тормозные изготовлены при помощи лазерной резки из стали марки Ст3 толщиной 6 мм. Отклонение от чертежных размеров не более ± 0,1 мм. Для накладок к тормозным дискам используется фрикционный композитный материал, отличающийся высокой износостойкостью.
    с фрикционными накладками комплектуются двумя стальными закаленными втулками для соединения со станиной или маховиком машины.

    Муфта-тормоз Усилие пресса, тс Размеры, мм
    H H 1 H 2 d d 1 h l D М
    УВ3132 10 410 265 90 40 20 22 18 150 215 345
    УВ3135 16 480 300 100 50 30 32 28 155 250 400
    УВ3138 25 550 365 135 50 30 32 28 172 290 465
    УВ3141 40 660 455 175 50 36 38 32 180 380 570
    63 760 550 225 50 36 38 32 210 470 670
    УВ3146 100 860 640 280 50 50 55 47 225 525 755

    УВ-3132-00Б-009 диски тормозные (фрикционные) с накладками


    УВ-3132-00Б-009 диски тормозные (фрикционные) с накладками

    Диск тормозной с накладками к муфте-тормоз УВ3132

    Диски тормозные УВ-3132-00Б-009 для муфты-тормоз УВ3132 (для прессов типа КД2120, КД2320, КД2120К, КД2320К, КД2120Е, КД2320Е , ножниц НК3418 и т.д.) с накладками из фрикционного материала предназначены для торможения подвижных частей прессов и ножниц. Торможение осуществляется за счёт силы трения, возникающей в плоскости контакта (секторов) тормозных дисков с промежуточным и нажимным дисками.
    диски тормозные с накладками

    УВ-3135-00Б-009 диски тормозные (фрикционные) с накладками


    УВ-3135-00Б-009 диски тормозные (фрикционные) с накладками

    Диск тормозной с накладками к муфте-тормоз УВ3135

    Диски тормозные УВ-3135-00Б-009 для муфты-тормоз УВ3135 (для прессов типа КД2122, КД2322, КД2122К, КД2322К, КД2122Е, КД2322Е и другого ) с накладками из фрикционного материала предназначены для торможения приводного вала. Торможение реализуется за счёт силы трения, возникающей в плоскости контакта фрикционных накладок (секторов) тормозных дисков с промежуточным и нажимным дисками.
    В нашей компании Вы можете купить диски тормозные с накладками как поштучно, так и комплектом из трёх штук для любого типа тормозных муфт типа УВ31...

    УВ-3138-00Б-009 диски тормозные (фрикционные) с накладками


    УВ-3138-00Б-009 диски тормозные (фрикционные) с накладками

    Диск тормозной с накладками к муфте-тормоз УВ3138

    Диски тормозные УВ-3138-00Б-009 для муфты-тормоз УВ3138 (для прессов типа КД2124, КД2324, КД2124К, КД2324К, КД2124Е, КД2324Е и другого кузнечно-прессового оборудования) с накладками из фрикционного материала предназначены для торможения приводного вала. Торможение реализуется за счёт силы трения, возникающей в плоскости контакта фрикционных накладок (секторов) тормозных дисков с промежуточным и нажимным дисками. Данный вид управления приводом пресса называется механическим (или пневматическим, т.к. муфта-тормоз управляется пневмораспределителем, обычно это У71-24А).
    В нашей компании Вы можете купить диски тормозные с накладками как поштучно, так и комплектом из трёх штук для любого типа тормозных муфт типа УВ31...

    УВ-3141-00Б-009 диски тормозные (фрикционные) с накладками


    УВ-3141-00Б-009 диски тормозные (фрикционные) с накладками

    Диск тормозной с накладками к муфте-тормоз УВ3141

    Диски тормозные УВ-3141-00Б-009 для муфты-тормоза УВ3141 (для прессов типа КД2126, КД2326, КД2126К, КД2326К, КД2126Е, КД2326Е
    В нашей компании Вы можете купить диски тормозные с накладками

    - ;
    - ;
    - ;
    - ;
    - ;
    - .

    УВ-3144-00Б-009 диски тормозные (фрикционные) с накладками


    УВ-3144-00Б-009 диск тормозной (фрикционный) с накладками

    Диск тормозной с накладками к муфте-тормоз УВ3144

    Диски тормозные УВ-3144-00Б-009 для муфты-тормоза УВ3144 (для прессов типа КД2128, КД2328, КД2128К, КД2328К, КД2128Е, КД2328Е и т.д.) с закреплёнными на них фрикционными накладками предназначены для торможения подвижных частей пресса. Торможение осуществляется за счёт силы трения, возникающей в плоскости контакта фрикционных накладок (секторов) тормозных дисков.
    В нашей компании Вы можете купить диски тормозные с накладками как поштучно, так и комплектом из трёх штук для любого типа тормозных муфт типа УВ31..., а именно:

    - диски тормозные с накладками для УВ-3132 ;
    - диски тормозные с накладками для УВ-3135 ;
    - диски тормозные с накладками для УВ-3138 ;
    - диски тормозные с накладками для УВ-3141 ;
    - диски тормозные с накладками для УВ-3144 ;
    - диски тормозные с накладками для УВ-3146 .

    По вопросу приобретения запасных частей к муфте-тормоз УВ31... обращайтесь к менеджерам нашей компании по телефонам, указанным в разделе Контакты .

    Почему лебедка манипулятора не держит груз.

    Рано или поздно владельцы тросовых манипуляторов UNIC, Tadano, Kanglim, Dong Yang, Soosan сталкиваются с проблемой, когда грузовая лебедка не держит груз, то есть при поднятии груза она не фиксируется и груз падает. Чтобы понять, почему так происходит, рассмотрим устройство грузовой лебедки на примере манипулятора UNIC.

    Как видно из рисунка в тормоз грузовой лебедки фрикционного типа. Два фрикционных диска и между ними храповик. Эти диски находятся в масляной ванне. В народе называют "мокрые тормоза".

    При износе фрикционных дисков не обеспечивается требуемый тормозной момент и груз падает. Вот тут и встает вопрос как менять мокрые тормоза.

    Почему быстро изнашиваются фрикционные диски грузовой лебедки манипулятора.

    Почему быстро изнашиваются фрикционы тормоза грузовой лебедки манипулятора? Основной причиной является отсутствие смазки в редукторе, смазка несоответствующего качества, попадание в смазку воды (чаще всего это происходит через сапун), неправильная регулировка тормозных фрикционов.

    Согласно руководства по эксплуатации, тормозные фрикционные диски должны меняться после трех лет эксплуатации вне зависимости от их внешнего состояния.

    Что происходит на практике? В связи с относительно высокой стоимостью фрикционных тормозных дисков грузовой лебедки манипулятора их владельцы начинают изобретать фрикционные диски из подручного материала.

    Фрикционные диски грузовой лебедки манипуляторов изготавливают методом подбора из Российских аналогов тракторной техники, а некоторые даже изготавливают самостоятельно из текстолита. Но все же тормоз грузовой лебедки является ответственным узлом и пренебрежение его обслуживанием и самовольным внесением изменения в конструкцию может обернуться аварией. Не рискуйте своей жизнью и жизнями обслуживающего персонала. Всегда используйте качественные материалы для ремонта тормоза грузовой лебедки.

    Как самостоятельно поменять тормозные фрикционные диски грузовой лебедки на манипуляторе?

    Замену фрикционных дисков на манипуляторе лучше всего доверить сервисным центрам. Такую работу должен производить мастер, имеющий достаточную квалификацию и опыт.

    Как отрегулировать тормоз грузовой лебедки.

    Процесс регулировки тормоза грузовой лебедки манипулятора не является сложным и его вполне можно произвести самостоятельно. Для этого необходимо рукой затянуть корончатую гайку (см. рисунок выше) и затем открутить ее (ослабить) на 1/6 оборота совместить отверстием на валу и зафиксировать шплинтом. Не затягивайте корончатую гайку ключом.

    Как самостоятельно поменять мало в редукторе грузовой лебедки манипулятора.

    При работе грузовой лебедкой происходит ее естественный износ. В редуктор грузовой лебедки попадает воздух, влага, грязь. Чтобы исключить продукты износа из редуктора грузовой лебедки производите смену масла через шесть месяцев с начала ввода в эксплуатацию КМУ, после этого трансмиссионное масло меняется один раз в год. Для работы редуктора грузовой лебедки манипулятора необходимо залить в него масло до середины (примерно 1 литр)

    Какое масло заливать в редуктор лебедки манипулятора.



    Понравилась статья? Поделиться с друзьями: