Назначение сетевых технологий. Классификация сетевых технологий. Технология Token Ring

Контрольно-курсовая работа

по Информационным системам в экономике на тему №69:

«Сетевые технологии Ethernet, Token Ring, FDDI и Х.25»

Выполнил: студент гр. 720753 Авдеева Д.М.

Проверил: доцент, к.э.н. Огнянович А.В.

Введение…………………………………………………………………………...3

1. Понятие сетевых технологий……………………………………………...5

2. Технология Ethernet………………………………………………………..7

3. Технология Token Ring…………………………………………………...12

4. Технология FDDI………………………………………………………….15

5. Протокол Х.25…………………………………………………………….19

Заключение……………………………………………………………………….22

Список источников и литературы………………………………………………23

Введение

Компьютерные сети, называемые также вычислительными сетями, или сетями передачи данных, являются логическим результатом эволюции двух важнейших научно-технических отраслей современной цивилизации - компьютерных и телекоммуникационных технологий. С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютерные сети могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Основными технологиями локальных сетей остаются Ethernet, Token Ring, FDDI, Fast и Gigabit Ethernet, Token Ring и FDDI - это функционально намного более сложные технологии, чем Ethernet на разделяемой среде. Разработчики этих технологий стремились наделить сеть на разделяемой среде многими положительными качествами: сделать механизм разделения среды предсказуемым и управляемым, обеспечить отказоустойчивость сети, организовать приоритетное обслуживание для чувствительного к задержкам трафика, например голосового. Во многом их усилия оправдались, и сети FDDI довольно долгое время успешно использовались как магистрали сетей масштаба кампуса, в особенности в тех случаях, когда нужно было обеспечить высокую надежность магистрали.



Token Ring является главным примером сетей с передачей маркера. Сети с передачей маркера перемещают вдоль сети небольшой блок данных, называемый маркером. Владение этим маркером гарантирует право передачи. Если узел, принимающий маркер, не имеет информации для отправки, он просто переправляет маркер к следующей конечной станции. Каждая станция может удерживать маркер в течение определенного максимального времени.

Благодаря более высокой, чем в сетях Ethernet, скорости, детерминированности распределения пропускной способности сети между узлами, а также лучших эксплуатационных характеристик (обнаружение и изоляция неисправностей), сети Token Ring были предпочтительным выбором для таких чувствительных к подобным показателям приложений, как банковские системы и системы управления предприятием.

Технологию FDDI можно считать усовершенствованным вариантом Token Ring, так как в ней, как и в Token Ring, используется метод доступа к среде, основанный на передаче токена, а также кольцевая топология связей, но вместе с тем FDDI работает на более высокой скорости и имеет более совершенный механизм отказоустойчивости.

В стандартах FDDI много внимания отводится различным процедурам, которые позволяют определить факт наличия отказа в сети, а затем произвести необходимое реконфигурирование. Технология FDDI расширяет механизмы обнаружения отказов технологии Token Ring за счет резервных связей, которые предоставляет второе кольцо.

Актуальность данной работы обусловлена важностью изучения технологий локальных компьютерных систем.

Целью работы является изучение характеристик сети Token Ring, Ethernet, FDDI и Х.25.

Для достижения данной цели в работе были поставлены следующие задачи:

Изучить понятия основных сетевых технологий;

Выявить специфику применения технологий;

Рассмотреть преимущества и недостатки Ethernet, Token Ring, FDDI и Х.25;

Проанализировать виды сетевых технологий.

Понятие сетевых технологий

В локальных сетях, как правило, используется разделяемая среда передачи данных (моноканал) и основная роль отводится протоколами физического и канального уровней, так как эти уровни в наибольшей степени отражают специфику локальных сетей.

Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения локальной вычислительной сети. Сетевые технологии называют базовыми технологиями или сетевыми архитектурами локальных сетей.

Сетевая технология или архитектура определяет топологию и метод доступа к среде передачи данных, кабельную систему или среду передачи данных, формат сетевых кадров тип кодирования сигналов, скорость передачи в локальной сети. В современных локальных вычислительных сетях широкое распространение получили такие технологии или сетевые архитектуры, как: Ethernet, Token Ring, FDDI и Х.25.

Развитие компьютерных сетей началось с решение более простой задачи – доступ к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы в этом случае соединялись с компьютером через телефонные сети с помощью специальных устройств модемов. Следующим этапом в развитии компьютерных сетей стали соединения через модем не только «терминал – компьютер», но и «компьютер – компьютер». Компьютеры получили возможность обмениваться данными в автоматическом режиме, что является базовым механизмом любой компьютерной сети. Тогда впервые появились в сети возможности обмена файлами, синхронизация баз данных, использования электронной почты, т.е. те службы, являющимися в настоящее время традиционными сетевыми сервисами. Такие компьютерные сети получили название глобальных компьютерных сетей.

По своей сущности компьютерная сети является совокупностью компьютеров и сетевого оборудования, соединенных каналами связи. Поскольку компьютеры и сетевое оборудование могут быть разных производителей, то возникает проблема их совместимости. Без принятия всеми производителя общепринятых правил построения оборудования создание компьютерной сети было бы невозможно.

Для обычного пользователя сеть, это провод или несколько проводов, с помощью которых компьютер соединяется с другим компьютером или модемом, для выхода в интернет, но на самом деле все не так уж и просто. Возьмем самый обычный провод с разъемом RJ-45 (такие применяются почти везде в проводных сетях) и соединим два компьютера, в данном соединении использоваться будет Ethernet 802.3 протокол, позволяющий передавать данные со скоростью до 100 Мбит/с. Стандарт этот, как впрочем и многие другие, именно стандарт, то есть во всем мире применяется один набор инструкций и путаницы не происходит, информация передается от отправителя к адресату.

Передача информации по кабелю, как некоторые знают, осуществляется потоком битов, которые есть ничто иное, как отсутствие или прием сигнала. Биты, или нолики и единицы, интерпретируются специальными устройствами в компьютерах в удобный вид и мы видим на экране картинку или текст, а возможно даже и фильм. Чтобы вручную передать даже маленький кусочек текстовой информации посредством компьютерных сетей, человеку потребовалось бы очень много времени, а вычисления бы растянулись бы на огромные стопки бумаг. Чтобы такого не происходило, люди и придумали все эти протоколы и средства связи компьютеров в единое целое.

Технология Ethernet

Ethernet – это самый распространенный на сегодняшний день стандарт локаль­ных сетей. Общее количество сетей, работающих по протоколу Ethernet в на­стоящее время, оценивается в несколько миллионов.

Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии. В более узком смысле Ethernet - это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году.

Метод доступа был опробован еще раньше: во второй половине 60-х годов в радиосети Гавайского университета использовались раз­личные варианты случайного доступа к общей радиосреде, получившие общее название Aloha. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коак­сиального кабеля. Эту последнюю версию фирменного стандарта Ethernet назы­вают стандартом Ethernet DIX, или Ethernet П.

На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, кото­рый во многом совпадает со своим предшественником, но некоторые разли­чия все же имеются. В то время как в стандарте IEEE 802.3 функции протоко­ла разделены на уровни MAC и LLC, в оригинальном стандарте Ethernet они объединены в единый канальный уровень. В Ethernet DIX определяется про­токол тестирования конфигурации (Ethernet Configuration Test Protocol), ко­торый отсутствует в IEEE 802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.

Часто для того, чтобы отличить стандарт Ethernet, определенный IEEE, и фир­менный стандарт Ethernet DIX, первый называют технологией 802.3, а за фирменным стандартом оставляют название Ethernet без дополнительных обозначений. В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации - 10Base-5, 10Base-2, 10Base-T, 10Base-FL, lOBase-FB. В 1995 году был принят стандарт Fast Ethernet, который во многом не является самостоятельным стандартом, о чем говорит и тот факт, что его описание просто является дополнительным разделом к основному стандарту 802.3 - разделом 802.3b. Аналогично, принятый в 1998 году стандарт Gigabit Ethernet описан в разделе 802.3z основного документа.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet, обеспечивающих пропускную способность 10 Мбит/с, используется манчестерский код. В более скоростных версиях Ethernet приме­няются более эффективные в отношении полосы пропускания избыточные логи­ческие коды. Все виды стандартов Ethernet (в том числе Fast Ethernet и Gigabit Ethernet) используют один и тот же метод разделения среды передачи данных - метод CSMA/CD. Рассмотрим, каким образом описанные выше общие подходы к решению наибо­лее важных проблем построения сетей воплощены в наиболее популярной сете­вой технологии - Ethernet.

Сетевая технология - это согласованный набор стандартных протоколов и реа­лизующих их программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети. Эпитет «достаточный» подчеркивает то обстоятельство, что этот набор представляет собой минимальный набор средств, с помощью которых можно по­строить работоспособную сеть. Возможно, эту сеть можно улучшить, например, за счет выделения в ней подсетей, что сразу потребует кроме протоколов стан­дарта Ethernet применения протокола IP, а также специальных коммуникацион­ных устройств - маршрутизаторов. Улучшенная сеть будет, скорее всего, более надежной и быстродействующей, но за счет надстроек над средствами техноло­гии Ethernet, которая составляет базис сети.

Термин «сетевая технология» чаще всего используется в описанном выше узком смысле, но иногда применяется и его расширенное толкование как любого набо­ра средств и правил для построения сети, например «технология сквозной мар­шрутизации», «технология создания защищенного канала», «технология IP-сетей». Протоколы, на основе которых строится сеть определенной технологии (в узком смысле), специально разрабатывались для совместной работы, поэтому от разра­ботчика сети не требуется дополнительных усилий по организации их взаимо­действия. Иногда сетевые технологии называют базовыми технологиями, имея в виду то, что на их основе строится базис любой сети. Примерами базовых сете­вых технологий могут служить наряду с Ethernet такие известные технологии локальных сетей, как Token Ring и FDDI, или же технологии территориальных сетей Х.25 и frame relay. Для получения работоспособной сети в этом случае достаточно приобрести программные и аппаратные средства, относящиеся к одной базовой технологии - сетевые адаптеры с драйверами, концентраторы, коммута­торы, кабельную систему и т. п., - и соединить их в соответствии с требования­ми стандарта на данную технологию.

Основной принцип, положенный в основу Ethernet, - случайный метод доступа к разделяемой среде передачи данных. В качестве такой среды может использо­ваться толстый или тонкий коаксиальный кабель, витая пара, оптоволокно или радиоволны (кстати, первой сетью, построенной на принципе случайного досту­па к разделяемой среде, была радиосеть Aloha Гавайского университета). В стандарте Ethernet строго зафиксирована топология электрических связей. Ком­пьютеры подключаются к разделяемой среде в соответствии с типовой структу­рой «общая шина». С помощью разделяемой во времени шины любые два компьютера могут обмениваться данными. Управление доступом к линии связи осуществляется специальными контроллерами – сетевыми адаптерами Ethernet. Каждый компьютер, а более точно, каждый сетевой адаптер, имеет уни­кальный адрес. Передача данных происходит со скоростью 10 Мбит/с. Эта вели­чина является пропускной способностью сети Ethernet.

Суть случайного метода доступа состоит в следующем. Компьютер в сети Ethernet может передавать данные по сети, только если сеть свободна, то есть если никакой другой компьютер в данный момент не занимается обменом. По­этому важной частью технологии Ethernet является процедура определения дос­тупности среды. После того как компьютер убеждается, что сеть свободна, он начинает передачу, при этом «захватывает» среду.

Время монопольного использования разделяемой среды одним узлом ограничивается временем передачи одного кадра. Кадр - это единица данных, которыми обмениваются компьютеры в сети Ethernet. Кадр имеет фиксированный формат и наряду с полем данных содержит различную служебную информацию, например адрес получателя и адрес отправителя. Сеть Ethernet устроена так, что при попадании кадра в разделяемую среду пере­дачи данных все сетевые адаптеры одновременно начинают принимать этот кадр. Все они анализируют адрес назначения, располагающийся в одном из начальных полей кадра, и, если этот адрес совпадает с их собственным адресом, кадр поме­щается во внутренний буфер сетевого адаптера.

Таким образом компьютер-адре­сат получает предназначенные ему данные. Иногда может возникать ситуация, когда одновременно два или более компью­тера решают, что сеть свободна, и начинают передавать информацию. Такая си­туация, называемая коллизией, препятствует правильной передаче данных по сети. В стандарте Ethernet предусмотрен алгоритм обнаружения и корректной обра­ботки коллизий. Вероятность возникновения коллизии зависит от интенсивно­сти сетевого трафика. После обнаружения коллизии сетевые адаптеры, которые пытались передать свои кадры, прекращают передачу и после паузы случайной длительности пытаются снова получить доступ к среде и передать тот кадр, который вызвал коллизию.

Главным достоинством сетей Ethernet, благодаря которому они стали такими по­пулярными, является их экономичность. Для построения сети достаточно иметь по одному сетевому адаптеру для каждого компьютера плюс один физический сегмент коаксиального кабеля нужной длины. Другие базовые технологии, на­пример Token Ring, для создания даже небольшой сети требуют наличия допол­нительного устройства - концентратора. Кроме того, в сетях Ethernet реализованы достаточно простые алгоритмы досту­па к среде, адресации и передачи данных. Простая логика работы сети ведет к упрощению и, соответственно, удешевлению сетевых адаптеров и их драйверов. По той же причине адаптеры сети Ethernet обладают высокой надежностью.

И, наконец, еще одним замечательным свойством сетей Ethernet является их хо­рошая расширяемость, то есть легкость подключения новых узлов. Другие базовые сетевые технологии - Token Ring, FDDI, - хотя и обладают многими индивидуальными чертами, в то же время имеют много общих свойств с Ethernet. В первую очередь - это применение регулярных фиксированных то­пологий (иерархическая звезда и кольцо), а также разделяемых сред передачи данных. Существенные отличия одной технологии от другой связаны с особен­ностями используемого метода доступа к разделяемой среде. Так, отличия тех­нологии Ethernet от технологии Token Ring во многом определяются специфи­кой заложенных в них методов разделения среды – случайного алгоритма доступа в Ethernet и метода доступа путем передачи маркера в Token Ring.


Технология Token Ring

Token Ring - технология локальной вычислительной сети (LAN) кольца с «маркерным доступом» - протокол локальной сети, который находится на канальном уровне (DLL) модели OSI. Он использует специальный трехбайтовый фрейм, названный маркером, который перемещается вокруг кольца. Владение маркером предоставляет право обладателю передавать информацию на носителе. Кадры кольцевой сети с маркерным доступом перемещаются в цикле.

Станции на локальной вычислительной сети (LAN) Token Ring логически организованы в кольцевой топологии с данными, передаваемыми последовательно от одной кольцевой станции до другой с управляющим маркером, циркулирующим вокруг кольцевого доступа управления. Этот механизм передачи маркера совместно использован ARCNET, маркерной шиной, и FDDI, и имеет теоретические преимущества перед стохастическим CSMA/CD Ethernet.

Изначально технология была разработана компанией IBM в 1984 году. В 1985 комитет IEEE 802 на основе этой технологии принял стандарт IEEE 802.5. В последнее время даже в продукции IBM доминируют технологии семейства Ethernet, несмотря на то, что ранее в течение долгого времени компания использовала Token Ring в качестве основной технологии для построения локальных сетей.

Данная технология предлагает вариант решения проблемы коллизий, которая возникает при работе локальной сети. В технологии Ethernet, такие коллизии возникают при одновременной передаче информации несколькими рабочими станциями, находящимися в пределах одного сегмента, то есть использующих общий физический канал данных.

Если у станции, владеющей маркером, имеется информации для передачи, она захватывает маркер, изменяет у него один бит (в результате чего маркер превращается в последовательность «начало блока данных»), дополняет информацией, которую он хочет передать и отсылает эту информацию к следующей станции кольцевой сети. Когда информационный блок циркулирует по кольцу, маркер в сети отсутствует (если только кольцо не обеспечивает «раннего освобождения маркера» - early token release), поэтому другие станции, желающие передать информацию, вынуждены ожидать. Следовательно, в сетях Token Ring не может быть коллизий. Если обеспечивается раннее высвобождение маркера, то новый маркер может быть выпущен после завершения передачи блока данных.

Информационный блок циркулирует по кольцу, пока не достигнет предполагаемой станции назначения, которая копирует информацию для дальнейшей обработки. Информационный блок продолжает циркулировать по кольцу; он окончательно удаляется после достижения станции, отославшей этот блок. Станция отправки может проверить вернувшийся блок, чтобы убедиться, что он был просмотрен и затем скопирован станцией назначения.

В отличие от сетей CSMA/CD (например, Ethernet) сети с передачей маркера являются детерминистическими сетями. Это означает, что можно вычислить максимальное время, которое пройдет, прежде чем любая конечная станция сможет передавать. Эта характеристика, а также некоторые характеристики надежности, делают сеть Token Ring идеальной для применений, где задержка должна быть предсказуема и важна устойчивость функционирования сети. Примерами таких применений является среда автоматизированных станций на заводах. Применяется как более дешевая технология, получила распространение везде, где есть ответственные приложения, для которых важна не столько скорость, сколько надежная доставка информации. В настоящее время Ethernet по надежности не уступает Token Ring и существенно выше по производительности.

Сети стандарта Token Ring, также как и сети Ethernet, используют разделяемую среду передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему используется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциями права на использование кольца в определенном порядке. Право на использование кольца передается с помощью кадра специального формата, называемого маркером или токеном.

Стандарт Token Ring был принят комитетом 802.5 в 1985 году. В это же время компания IBM приняла стандарт Token Ring в качестве своей основной сетевой технологии. В настоящее время именно компания IBM является основным законодателем моды технологии Token Ring, производя около 60% сетевых адаптеров этой технологии.

Сети Token Ring работают с двумя битовыми скоростями - 4 Мб/с и 16 Мб/с. Первая скорость определена в стандарте 802.5, а вторая является новым стандартом де-факто, появившимся в результате развития технологии Token Ring. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Сети Token Ring, работающие со скоростью 16 Мб/с, имеют и некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мб/с.


Технология FDDI

Технология Fiber Distributed Data Interface – первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.

Попытки применения света в качестве среды, несущей информацию, предпринимались давно – еще в 1880 году Александр Белл запатентовал устройство, которое передавало речь на расстояние до 200 метров с помощью зеркала, вибрировавшего синхронно со звуковыми волнами и модулировавшего отраженный свет.

В 1960-е годы появились оптические волокна, которые могли передавать свет в кабельных системах, подобно тому как медные провода передают электрические сигналы в традиционных кабелях. Однако потери света в этих волокнах были слишком велики, чтобы они могли быть использованы как альтернатива медным жилам.

В 1980-е годы начались также работы по созданию стандартных технологий и устройств для использования оптоволоконных каналов в локальных сетях. Работы по обобщению опыта и разработке первого оптоволоконного стандарта для локальных сетей были сосредоточены в Американском Национальном Институте по Стандартизации – ANSI, в рамках созданного для этой цели комитета X3T9.5.

Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом Х3Т9.5 в 1986 - 1988 годах, и тогда же появилось первое оборудование – сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.

В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

· повысить битовую скорость передачи данных до 100 Мб/с;

· повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода – повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.;

· максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети.

Использование двух колец – это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru – «сквозным» или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, образуя вновь единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному – по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Этот случай приведен на рисунке. Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше над FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции. В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее. При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.


Протокол Х.25

X.25 - семейство протоколов сетевого уровня сетевой модели OSI. Предназначалось для организации WAN на основе телефонных сетей с линиями с достаточно высокой частотой ошибок, поэтому содержит развитые механизмы коррекции ошибок. Ориентирован на работу с установлением соединений. Исторически является предшественником протокола Frame Relay.

X.25 обеспечивает множество независимых виртуальных каналов (Permanent Virtual Circuits, PVC и Switched Virtual Circuits, SVC) в одной линии связи, идентифицируемых в X.25-сети по идентификаторам подключения к соединению (идентификаторы логического канала (Logical Channel Identifyer, LCI) или номера логического канала (Logical Channel Number, LCN).

Благодаря надёжности протокола и его работе поверх телефонных сетей общего пользования X.25 широко использовался как в корпоративных сетях, так и во всемирных специализированных сетях предоставления услуг, таких как SWIFT (банковская платёжная система) и SITA (фр. Société Internationale de Télécommunications Aéronautiques - система информационного обслуживания воздушного транспорта), однако в настоящее время X.25 вытесняется другими технологиями канального уровня (Frame Relay, ISDN, ATM) и протоколом IP, оставаясь, однако, достаточно распространённым в странах и территориях с неразвитой телекоммуникационной инфраструктурой.

Разработан Study Group VII Международного союза электросвязи (ITU) в качестве пакетного протокола передачи данных в телефонных сетях принят в 1976 г. и стал основой всемирной системы PSPDN (англ. Packet-Switched Public Data Networks), то есть WAN. Существенные дополнения к протоколу были приняты в 1984 г., в настоящее время действует стандарт ISO 8208 протокола X.25, стандартизовано также и применение X.25 в локальных сетях (стандарт ISO 8881).

Х.25 определяет характеристики телефонной сети для передачи данных. Чтобы начать связь, один компьютер обращается к другому с запросом о сеансе связи. Вызванный компьютер может принять или отклонить связь. Если вызов принят, то обе системы могут начать передачу информации с полным дублированием. Любая сторона может в любой момент прекратить связь.

Спецификация Х.25 определяет двухточечное взаимодействие между терминальным оборудованием (DTE) и оборудованием завершения действия информационной цепи (DCE). Устройства DTE (терминалы и главные вычислительные машины в аппаратуре пользователя) подключаются к устройствам DCE (модемы, коммутаторы пакетов и другие порты в сеть PDN, обычно расположенные в аппаратуре этой сети), которые соединяются с «коммутаторами переключения пакетов» (packet switching exchange) (PSE или просто switches) и другими DCE внутри PSN и, наконец, к другому устройству DTE.

DTE может быть терминалом, который не полностью реализует все функциональные возможности Х.25. Такие DTE подключаются к DCE через трансляционное устройство, называемое пакетный ассемблер/дизассемблер - packet assembler/disassembler – PAD. Действие интерфейса терминал/PAD, услуги, предлагаемые PAD и взаимодействие между PAD и главной вычислительной машиной определены соответственно CCITT Recommendations X.28, X3 и Х.29.

Спецификация Х.25 составляет схемы Уровней 1-3 эталонной модели OSI. Уровень 3 Х.25 описывает форматы пакетов и процедуры обмена пакетами между равноправными объектами Уровня 3. Уровень 2 Х.25 реализован Протоколом Link Access Procedure, Balanced (LAPB). LAPB определяет кадрирование пакетов для звена DTE/DCE. Уровень 1 Х.25 определяет электрические и механические процедуры активации и дезактивации физической среды, соединяющей данные DTE и DCE. Необходимо отметить, что на Уровни 2 и 3 также ссылаются как на стандарты ISO - ISO 7776 (LAPB) и ISO 8208 (пакетный уровень Х.25).

Сквозная передача между устройствами DTE выполняется через двунаправленную связь, называемую виртуальной цепью. Виртуальные цепи позволяют осуществлять связь между различными элементами сети через любое число промежуточных узлов без назначения частей физической среды, что является характерным для физических цепей. Виртуальные цепи могут быть либо перманентными, либо коммутируемыми (временно). Перманентные виртуальные цепи обычно называют PVC; переключаемые виртуальные цепи – SVC. PVC обычно применяются для наиболее часто используемых передач данных, в то время как SVC применяются для спорадических передач данных. Уровень 3 Х.25 отвечает за сквозную передачу, включающую как PVC, так и SVC.

После того, как виртуальная цепь организована, DTE отсылает пакет на другой конец связи путем отправки его в DCE, используя соответствующую виртуальную цепь. DCE просматривает номер виртуальной цепи для определения маршрута этого пакета через сеть Х.25. Протокол Уровня 3 Х.25 осуществляет мультиплексную передачу между всеми DTE, которые обслуживает устройство DCE, расположенное в сети со стороны пункта назначения, в результате чего пакет доставлен к DTE пункта назначения.


Заключение

Развитие компьютерной техники и информационных технологий послужило толчком к развитию общества, построенного на использовании различной информации и получившего название информационного общества.

Информационные сетевые технологии ориентированы в основном на предоставление информационных услуг пользователям.

Все сетевые технологии, как-то: Ethernet, Token Ring, FDDI или Х.25 – можно сказать одно из самых значительных и ярких демократических достижений технологического процесса. С их появлением информация, и право на правду и свободу слова становится потенциальным достоянием и возможностью большинства жителей планеты, люди могут объединяться и взаимодействовать вне зависимости от временных, расстояния, государственных и многих других границ.

В настоящее время весь мир охвачен глобальной сетью Интернет. Именно Интернет стирает все границы и обеспечивает распространение информации для практически не­ограниченного круга людей. Позволяет людям в любой точке планеты без всякого труда включиться в обсуждение насущных проблем. Главная особенность и назначение Интернета – это свободное распространение информации и установление связи между людьми.


Список источников и литературы:

1) Вендров А.М. Проектирование программного обеспечения экономических информационных систем: Учебник для экон. вузов / А.М.Вендров. – М.: Финансы и статистика, 2000. – 352с.: ил.

2) Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- 336с.

3) Карпенков, С.Х. Современные средства информационных технологий: учеб. пособие для вузов / С.Х. Карпенков. - 2-е изд., испр. и доп. - М.: Кнорус, 2009. - 400 с.

4) Коноплева, И.А. Информационные технологии [Электронный ресурс]: электронный учебник / И.А. Коноплева, О.А. Хохлова, А.В. Денисов. - М.: Проспект, 2009.

5) Корнеев, И.К. Информационные технологии: учебник / И.К. Корнеев, Г.Н. Ксандопуло, В.А. Машурцев. - М.: Проспект, 2009. – 222 с.

6) Петров В.Н. Информационные системы / Петров В.Н. – СПб.: Питер, 2008. – 688с.: ил.

7) Информационные системы и технологии: Учебник. – 3-е изд. /Под ред. Г.А.Титоренка. – М.: Юнити-Дана, 2010. – 591 с.

8) Трофимов В. В. Информационные технологии. Учебник для вузов / Трофимов В. В. Издательство: Москва, ЮРАЙТ, 2011. – 624 с.

9) http://nwzone.ru/ - «Современные технологии»: новости со всего мира: hi-tech инновации, гаджеты, мобильная электроника, интернет, дизайн, наука.


Информационные системы и технологии: Учебник. – 3-е изд. / Под ред. Г.А.Титоренка. – М.: Юнити-Дана, 2010. – с. 176, 177.

Карпенков, С.Х. Современные средства информационных технологий: учеб. пособие для вузов / С.Х. Карпенков. - 2-е изд., испр. и доп. - М.: Кнорус, 2009. – с. 140 с.

Корнеев, И.К. Информационные технологии: учебник / И.К. Корнеев, Г.Н. Ксандопуло, В.А. Машурцев. - М.: Проспект, 2009. – с. 87.

Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- с.33.

Http://nwzone.ru/ - «Современные технологии»: новости со всего мира: hi-tech инновации, гаджеты.

Петров В.Н. Информационные системы / Петров В.Н. – СПб.: Питер, 2008. – с.68.

Вендров А.М. Проектирование программного обеспечения экономических информационных систем: Учебник для экон. вузов / А.М.Вендров. – М.: Финансы и статистика, 2000. – с.35.

Коноплева, И.А. Информационные технологии [Электронный ресурс] : электронный учебник / И.А. Коноплева, О.А. Хохлова, А.В. Денисов. - М.: Проспект, 2009.

Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- с.95.

Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- с.99.

Информационные системы и технологии: Учебник. – 3-е изд. /Под ред. Г.А.Титоренка. – М.: Юнити-Дана, 2010. – с.91, 92.

Коноплева, И.А. Информационные технологии [Электронный ресурс] : электронный учебник / И.А. Коноплева, О.А. Хохлова, А.В. Денисов. - М.: Проспект, 2009.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Чувашева В.С.

Размещено на http://www.allbest.ru/

МОСКОВСКИЙ ГУМАНИТАРНО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ КИРОВСКИЙ ФИЛИАЛ

Реферат

Сетевые технологии

Выполнила: Чувашева В.С.

Проверил: Страбыкина Л.А.

КИРОВ - 2011

Введение

1.1 Сетевые технологии. Общая информация

2. Маршрутизация и доменная система имен в Интернет

2.2 Процесс маршрутизации

2.3 Система имён в сети Интернет

2.4 DNS-сервис

Заключение

Введение

сетевой интернет домен маршрутизация

В настоящее время нет такого человека, пожалуй, которому ни разу не довелось работать с компьютером. Современные компьютерные технологии используются повсеместно: от обыкновенных точек розничной торговли до научных центров.

В качестве подтверждения исследуем данные, которые опубликовал Минкомсвязи России и которые были представлены в электронной база данных ООН "MilleniumDevelopment, GoalsIndicators" в 2009 году:

Диаграмма 1. Динамика роста количества персональных компьютеров в мире (на 1000 человек)

Поэтому исследования тем, напрямую связанных с информационными технологиями, крайне актуальны. Ни один экономист не сможет быть высоко эффективен в своей работе, если он не имеет даже малейшего представления о работе с компьютером.

Однако я считаю, что современный работник финансовой сферы деятельности должен не только уметь использовать стандартный пакет программ на примитивном уровне, но также знать, как работают данные программы, сам процесс изнутри.

Поэтому в своём реферате, не претендуя на исчерпывающее изложение темы, я ставила себе цель рассказать об общих принципах организации и функционирования сетевых технологий. В данном пункте я освещу такие подпункты как общая информация о сетевых технологиях, преимущества сетевого объединения, система передачи данных и множества вычислительных сетей. Также я расскажу о маршрутизации и доменной системы имён в сети Интернет. В рамках данной темы будут затронуты такие пункты как общая структура сети Интернет, процесс маршрутизации, система имён в сети Интернет, а также DNS-сервис.

В ходе работы над рефератом были использованы статистические данные Федеральной службы государственной статистики, различные учебно-методические издания, а также статьи из сети Интернет.

1. Общие принципы организации и функционирования сетевых технологий

1.1 Сетевые технологии. Общая информация

В 1960-х гг. появились первые вычислительные сети и началась новая научно-техническая революция. Впервые произошло объединение компьютерных технологий сбора, хранения, обработки информации с технологиями передачи данных и технологиями связи. Это сделало возможным применять распределенную обработку данных, обширно использовать сетевые технологии в автоматизации различных сфер деятельности: коммерческой, производственной, научной и др.

Под сетевыми технологиями следует понимать совокупность программных, аппаратных и организационных средств, обеспечивающих коммуникацию и распределение вычислительных ресурсов компьютеров, подключенных к сети.

Вычислительные сети принято подразделять на:

· локальные (ЛВС)

· глобальные

В отличие от глобальных, локальные сети могут охватывать только незначительные расстояния. Например: группа рядом стоящих зданий, несколько компьютерных классов и т.д. Если же сеть, охватывает довольно большие расстояния, такие как между городами или даже континентами, то такие сети называются глобальными.

Компьютеры, объединенные в сеть, можно разделить на 2 группы функциональному признаку (см. таблицу 1):

Таблица 1. Классификация компьютеров, объединенных в сеть

Если упрощенно изобразить принцип взаимодействия «клиент-сервер», то он выглядит следующим образом:

Рисунок 1. Взаимодействие "клиент-сервер"

1.2 Преимущества сетевого объединения

Сетевое объединение компьютеров на сегодняшний день явление массовое. И это понятно, так как такое объединение даёт массу преимуществ, выполняя ряд функций. Назовем основные из них:

Таблица 2. Функции сетевого объединения

Описание

1. Ресурсно-разделительная

· Позволяет высокоэффективно использовать компьютерные возможности.

· Ресурсы памяти, мощности процессоров и периферийных устройств распределены максимально эффективно среди всех устройств, объединенных в сеть

2. Разделения данных

· Предполагает возможность к одной или нескольким базам данных для всех компьютеров сети

· Уровни доступа к информационным ресурсам ограничиваются в соответствии с определенной моделью управления данными

3. Обеспечения надежности

· Позволяет повысить надежность информационной системы

· Обеспечивает ее работоспособность, даже в случае выхода из строя отдельного сегмента сети

4. Стоимостная

· Снижает стоимость обработки информации

5. Инновационная

· позволяет использовать принципиально новые возможности и технологии, не существовавшие ранее(системы электронного документооборота, технологии электронной почты, видеоконференции и др.)

1.3 Система передачи данных и множество вычислительных сетей

Комплекс технических средств любой вычислительной сети включает в себя компьютеры и системы передачи данных. Системы передачи данных состоят из приемо-передающих устройств (модемы, сетевые карты, концентраторы и др.) и коммуникационных каналов.

Существует большое множество вычислительных сетей. Поэтому необходимо выделять критерии, согласно которым их можно классифицировать. Самым важным, пожалуй, является конфигурация физических соединений, узлов и компонентов сети - или топологическая структура. По топологическому типу можно установить производительность и надежность сети, а также насколько сильно он влияет на эффективность функционирования сети в целом.

Рассмотрим взаимодействие компьютеров в сети. Если один компьютер передает информацию другому, то в этот момент передающее устройство первого трансформирует данные в сигнал, который может быть идентифицирован данным каналом связи. С другой стороны, второе передающее устройство декодирует информацию в первоначальный вид.

Если рассматривать сети с организационно-управленческой точки зрения, то можно выделить 2 типа: централизованные и децентрализованные.

Первая характеризуется обработкой и хранением информации по средствам специального компьютера «файл-сервера» (архитектура такого построения системы распределенной обработки данных также имеет название «файл-сервер»). Рабочие станции (компьютеры пользователей) передают данные для обработки на файл-сервер, который предоставляет им уже обработанную информацию. Данный подход часто используется при необходимости централизации и концентрации информационных ресурсов в едином узле сети.

Рисунок 2.Централизованная организация управления. Преимущества и недостатки

Система, построенная по архитектуре «клиент-сервер», называется децентрализованной. Здесь данные могут быть обработаны на различных компьютерах. Главное из достоинств такой системы заключается в том, что все недостатки централизованной нейтрализуются. Такие сети не содержат в своем составе специально выделенных серверов: функции управления передаются от одной рабочей станции к другой. Однако существуют и недостатки. Наиболее значимым является сложность контроля над данными, которые могут находиться в абсолютно разных узлах сети. Более того, вызывает затруднение координация всех рабочих станций. Значительная стоимость внедрения также является неотъемлемым недостатком.

Глобальная сеть Интернет основана на распределенной технологии обработки данных по архитектуре «клиент-сервер» и в общем смысле представляет собой совокупность взаимосвязанных локальных сетей, между которыми возможен обмен информацией по протоколу передачи данных TCР/IР (Transmission Control Рrotocol/Internet Рrotocol). Под таким протоколом понимается набор технических правил и процедур, который создавался для реализации обмена информацией между разнородными сетями.

На сегодняшний день практически каждая страна мира обеспечивает возможность подключения к сети Интернет для своих граждан. Так как данная сеть основана по архитектуре «клиент-сервер», то следовательно, имеет децентрализованную структуру. Это значит, что не существует ни одного управляющего органа, который имел власть, управлял всеми. Однако если рассматривать сеть по сегментно, то на национальном и международном уровнях такие единые органы управления существуют.

По данным Федеральной службы государственной статистики, удельный вес домашних хозяйств, имеющих доступ к сети Интернет, вырос за период с 2005 года по 2009 в 4 раза - с 9 процентов до 36. В высокоразвитых странах данный показатель более стабилен. В США же он вовсе остается неизменным.

Диаграмма 2. Удельный вес домашних хозяйств, имеющих доступ к сети Интернет

Если рассматривать ситуацию более детально, то в России наблюдаются действительно высокие темпы роста численности пользователей Сети. За 9 лет показатели подскочили с отметки в 20 пользователей на каждые 1000 жителей до отметки в 421 пользователь/1000 жителей Российской Федерации: По данным Федеральной службы государственной статистики за 2010 год

Диаграмма 3. Рост численности пользователей сети Интернет в России

2. Маршрутизация и доменная система имён в Интернет

2.1 Общая структура сети Интернет

Сеть Интернет, как уже сказано выше, не имеет единого центра администрации, но они существуют на сегментах. Таким образом, можно сказать, что сеть имеет иерархическую структуру (см. рисунок 3) Домены - это регионы

Рисунок 3. Иерархическая структура сети Интернет

Процесс маршрутизации

Однако реально Интернет имеет намного более сложную структуру. Отправленное сообщение, к примеру, может идти вовсе не по данной структуре, а гораздо по более сложному маршруту. Это обусловлено большим количеством доступных путей. Отсюда и пошло название сети Интернет как «всемирная паутина».

Согласно правилам протокола TCР/IР, сообщение может быть передано только при условии, что оно разбито на пакеты со стандартизированной структурой. Для этого существует ряд условий. Такой пакет должен обязательно содержать в себеадрес отправителя, адрес назначения, заголовок, собственно передаваемую информацию. Маршрут, по которому будет отправлено сообщение, заранее не известен.

В процессе отправки, пакеты нумеруются. Это делается для того, чтобы при получении их можно было собрать в исходном виде. Далее, всем пакетам присваивается определенная сумма, которая соответствует содержимому каждого. В точке получения она подсчитывается повторно. Это делается для того, чтобы проконтролировать правильность получателя. Если оказалось так, что суммы не совпадают, то передача запрашивается еще раз.

Процедура установления пути от отправителя к получателю называется маршрутизацией. Она выполняется для каждого передаваемого пакета на основании алгоритмов, описанных в специальных протоколах маршрутизации.

Для того, чтобы выполнить данную процедуру, были созданы специальные устройства, такие как маршрутизаторы (роутеры). Функционально они схожи с почтовыми подстанциями. Чтобы дойти до адресата, письмо должно пройти несколько почтовых подстанций. Аналогично этому электронные сообщения, письма могут проходить через N-ное количество роутеров. Другая параллель: существует довольно много уровней почтовых отделений. Например: районный, областные. Так и для маршрутизаторов - они могут соответствовать городским, районным и прочим доменам. В настоящее время существует более 130 протоколов маршрутизации.

2.2 Система имён в сети Интернет

Как много существует протоколов маршрутизации, так много существует различных доменов. Чтобы идентифицировать компьютер, подсоединённый к Сети, нужно присвоить ему уникальный код. Этим кодом является IP-адрес. Он состоит из набора цифр, который в свою очередь определяется четырьмя группами цифр, разделенных точками.

До 1984 года в системе имен использовались только цифровые уникальные адреса компьютеров, подключенных к Сети. Позже, для предоставления пользователям возможности использовать легко запоминающиеся символьные имена, была введена доменная система имен. Принцип построения доменных имен схож с построением иерархической структуры сети Интернет. А именно: более мелкие домены входят в состав крупных. Доменный адрес представляетсобой набор групп символов, разделенных точками.

Рассмотрим адрес fa.ru. Здесь ru - домен высшего уровня, обозначающий страну, fa- обозначает домен, входящий в состав домена высшего уровня (официальный сайт Финансового университета).

Родина доменных имен - США. Именно поэтому имена доменов верхнего уровня соответствуют типам организаций:

Таблица 3. Доменные имена

Таким образом, вся система доменных имен представлена древовидной структурой. Корнем дерева является корневой домен, внутри домена верхнего уровня регистрируется домен второго уровня, внутри него субдомен.

Рисунок 4. Структура система доменных имен

2.3 DNS-сервис

Сетевые протоколы имеют массу своих особенностей. Например, информация может быть доставлена только по адресу, представленному цифрами. Это вызвало необходимость преобразования доменных имён. Нужно было изменить их с символьных на цифровые. Первоначально даже были созданы таблицы соответствия, которые хранились на каждом компьютере. Однако, с высокими темпами роста сети Интернет, от них пришлось отказаться

Так как таблицы соответствия не могли больше удовлетворять потребностям Сети, то создание нового сервиса было просто необходимо. Таким сервисом стал DNS(DomainName Sуstem). Программы функционировали на DNS-сервере. Если существует необходимость отправки сообщения компьютеру с указанным доменным именем, происходит следующий процесс:

Рисунок 5. Принцип функционирования DNS-сервера

Таким образом, общий принцип состоит в том, что DNS-сервер выполняет последовательные обращения к цепочке таких же серверов, объединенных в иерархическую систему, с целью преобразования символьного адреса в цифровой.

Заключение

Таким образом, информационные технологии в различном своем проявлении прочно закрепились в нашей жизни.

В данной работе были освещены такие пункты как:

· общие принципы организации и функционирования сетевых технологий:

o общая информация о сетевых технологиях

o преимущества сетевого объединения

o система передачи данных и множества вычислительных сетей.

· маршрутизации и доменной системы имён в сети Интернет:

o общая структура сети Интернет

o процесс маршрутизации,

o система имён в сети Интернет

o также DNS-сервис

Очевидно, что вовсе не каждый офисный работник располагает всей той информацией, что была указана выше. Именно поэтому, владение такого рода знаниями позволяет не только усовершенствовать свои навыки по работе с персональным компьютером, сетью Интернет, но и преподнести себя в лучшем свете перед руководством, увеличить свои конкурентные преимущества на рынке труда, который, как всем известно, определяется высокой степенью жесткой конкуренции.

Более того, теоретические знания в сфере именно внутреннего процесса работы сетевых технологий, в частности сети Интернет, позволит быть более независимым в плане того, чтобы самому самостоятельно настроить маршрутизатор, установить соединение по локальной сети или узнать свой личный IP-адрес.

Список используемой литературы

1. Божко В.П., Власов Д.В., Гаспариан М.С. Информационные технологии в экономике и управлении. Учебно-методический комплекс. - М.: ЕАОИ. 2008.

2. Столлингс В. Современные компьютерные сети. - СПб.: Питер. 2003

3. Хелеби С. Принципы маршрутизации в Internet. - М.: Вильямс. 2001

4. Официальный сайт Федеральной службы статистики. - http://www.gks.ru

5. Официальныйсайт International Telecommunication Union. - http://www.itu.int

Размещено на Allbest.ru

Подобные документы

    Рассмотрение понятия сетевых технологий как совокупности программных, аппаратных и организационных средств; принципы их организации и функционирования. Маршрутизация и доменная система имен в Интернет. Характеристика популярных сервисов Интернет.

    презентация , добавлен 15.07.2014

    Компьютерные сети и их классификация. Аппаратные средства компьютерных сетей и топологии локальных сетей. Технологии и протоколы вычислительных сетей. Адресация компьютеров в сети и основные сетевые протоколы. Достоинства использования сетевых технологий.

    курсовая работа , добавлен 22.04.2012

    Достоинства компьютерных сетей. Основы построения и функционирования компьютерных сетей. Подбор сетевого оборудования. Уровни модели OSI. Базовые сетевые технологии. Осуществление интерактивной связи. Протоколы сеансового уровня. Среда передачи данных.

    курсовая работа , добавлен 20.11.2012

    Просмотр сведений о сетевых подключениях компьютера с помощью ОС Windows. Установление параметров сетевых протоколов (команда ipconfig), отчет об использовании. Разрешение имен NetBios. Проверка IP-адресов, трассировка маршрутов, команды сети NET.

    лабораторная работа , добавлен 11.09.2013

    Анализ сетевых технологий и сетевого оборудования. Разработка логической и физической схемы локальной вычислительной сети офисного здания, включающей общий выход в Интернет. Построение схемы кабельной разводки. Маршрутизация потоков данных в сети.

    курсовая работа , добавлен 11.04.2014

    Описание общих функций сетевого уровня модели OSI: протоколирование, маршрутизация и логическая адресация. Изучение принципов работы сетевого протокола TCP/IP и сетевых утилит командной строки. Адрес локальной сети и определение класса сети Интернет.

    презентация , добавлен 05.12.2013

    История создания сети Интернет и локальных вычислительных сетей (LAN). Функции межсетевого протокола передачи информации. Применение доменной системы имен и выбор способа переадресации данных. Правовые нормы при поиске и просмотре информации в Интернете.

    презентация , добавлен 25.04.2013

    Структура современных корпоративных сетей. Применение технологии Intranet в корпоративных сетях передачи данных. Принципы их построения и главные тенденции развития. Особенности стандартов Fast Ethernet и Gigabit Ethernet. Технология 100VG-AnyLAN.

    курсовая работа , добавлен 02.07.2011

    Распространенные сетевые протоколы и стандарты, применяемые в современных компьютерных сетях. Классификация сетей по определенным признакам. Модели сетевого взаимодействия, технологии и протоколы передачи данных. Вопросы технической реализации сети.

    реферат , добавлен 07.02.2011

    Классификации сетей по расстоянию между вычислительными машинами, по типу среды и скорости передачи информации. Схема соединения компьютеров в сети и каналы связи. Суть доменной системы имен. Маршрутизация и транспортировка данных по компьютерным сетям.

Сегодня сети и сетевые технологии соединяют людей в любых уголках мира и обеспечивают им доступ к самой большой роскоши на свете - человеческому общению. Люди без помех общаются и играют с друзьями, находящимися в других частях света.

Происходящие события становятся известны во всех странах мира за считанные секунды. Каждый в состоянии подключиться к Интернету и выложить свою порцию информации.

Сетевые информационные технологии: корни их возникновения

Во второй половине прошлого века человеческой цивилизацией были сформированы две ее важнейшие научно-технические отрасли - компьютерные и Около четверти века обе эти отрасли развивались самостоятельно, и в их рамках были созданы соответственно компьютерные и телекоммуникационные сети. Однако в последней четверти ХХ столетия в результате эволюции и взаимопроникновения этих двух отраслей человеческого знания и возникло то, что мы называем термином «сетевая технология», являющимся подразделом более общего понятия «информационная технология».

В результате их появления в мире произошла новая технологическая революция. Подобно тому как за несколько десятилетий до нее поверхность суши покрылась сетью скоростных автомагистралей, в конце прошлого века все страны, города и села, предприятия и организации, а также индивидуальные жилища оказались связанными "информационными магистралями". При этом все они стали элементами различных сетей передачи данных между компьютерами, в которых были реализованы те или иные технологии передачи информации.

Технология сети: понятие и содержание

Сетевая технология представляет собой достаточный для построения некоторой целостный комплекс правил представления и передачи информации, реализуемых в виде так называемых «стандартных протоколов», а также аппаратных и программных средств, включающих сетевые адаптеры с драйверами, кабели и ВОЛС, различные коннекторы (разъемы).

"Достаточность" этого комплекса средств означает его минимализацию при сохранении возможности построения работоспособной сети. Она должна иметь потенциал совершенствования, например, за счет создания в ней подсетей, требующих применения протоколов различного уровня, а также спецкоммуникаторов, именуемых обычно «маршрутизаторами». После усовершенствования сеть становится надежнее и быстрее, но ценой появления надстроек над основной сетевой технологией, составляющей ее базис.

Термин "сетевая технология" наиболее часто применяется в вышеописанном узком смысле, однако зачастую он расширенно трактуется как любой набор средств и правил построения сетей определенного типа, например "технология локальных компьютерных сетей".

Прообраз сетевой технологии

Первым прообразом компьютерной сети, но еще не самой сетью, стали в 60-80-х гг. прошлого века многотерминальные системы. Представляя собой совокупность монитора и клавиатуры, располагающихся на больших расстояниях от больших ЭВМ и соединяющихся с ними посредством телефонных модемов или по выделенным каналам, терминалы выходили из помещений ИВЦ и рассредоточивались по всему зданию.

При этом, кроме оператора самой ЭВМ на ИВЦ, все пользователи терминалов получали возможность вводить с клавиатуры свои задания и наблюдать за их выполнением на мониторе, осуществляя и некоторые операции управления заданиями. Такие системы, реализующие как алгоритмы разделения времени, так и пакетной обработки, назывались системами удаленного ввода заданий.

Глобальные сети

Вслед за многотерминальными системами в конце 60-х гг. ХХ в. был создан и первый тип сетей - глобальные компьютерные сети (ГКС). Они связали суперкомпьютеры, существовавшие в единичных экземплярах и хранившие уникальные данные и ПО, с большими ЭВМ, находившимися от них на расстояниях до многих тысяч километров, посредством телефонных сетей и модемов. Эта сетевая технология была ранее апробирована в многотерминальных системах.

Первой ГКС в 1969 г. стала ARPANET, работавшая в Минобороны США и объединявшая разнотипные компьютеры с различными ОС. Они оснащались допмодулями для реализации коммуникационных общих для всех входящих в сеть компьютеров. Именно на ней были разработаны основы сетевых технологий, применяемые и в настоящее время.

Первый пример конвергенции компьютерных и телекоммуникационных сетей

ГКС достались в наследство линии связи от более старых и более глобальных сетей — телефонных, т. к. прокладывать новые линии большой протяженности было очень дорого. Поэтому многие годы в них использовались аналоговые телефонные каналы для передачи в данный момент времени только одного разговора. Цифровые данные передавались по ним с очень низкой скоростью (десятки кбит/с), а возможности ограничивались передачей файлов данных и электронной почтой.

Однако унаследовав телефонные линии связи, ГКС не взяли их основную технологию, основанную на принципе коммутации каналов, когда каждой паре абонентов на все время сеанса связи выделялся канал с постоянной скоростью. В ГКС использовали новые компьютерные сетевые технологии, основанные на принципе пакетной коммутации, при котором данные в виде небольших порций-пакетов с постоянной скоростью выдаются в некоммутируемую сеть и принимаются их адресатами в сети по адресным кодам, встроенным в заголовки пакетов.

Предшественники локальных сетей

Появление в конце 70-х гг. ХХ в. БИС привело к созданию мини-ЭВМ с невысокой стоимостью и богатыми функциональными возможностями. Они стали реально конкурировать с большими ЭВМ.

Широкую популярность приобрели мини-ЭВМ семейства PDP-11. Их стали устанавливать во все, даже очень небольшие производственные подразделения для управления техпроцессами и отдельными технологическими установками, а также в отделы управлений предприятий для выполнения офисных задач.

Возникла концепция распределенных по всему предприятию компьютерных ресурсов, хотя все мини-ЭВМ все еще работали автономно.

Появление LAN-сетей

К середине 80-х гг. ХХ в. были внедрены технологии объединения мини-ЭВМ в сети, основанные на коммутации пакетов данных, как и в ГКС.

Они превратили построение сети одного предприятия, называемую локальной (LAN - сеть), в почти тривиальную задачу. Для ее создания нужно только купить сетевые адаптеры под выбранную LAN-технологию, например, Ethernet, стандартную кабельную систему, установить на ее кабели коннекторы (разъемы) и соединить адаптеры с мини-ЭВМ и между собой посредством этих кабелей. Далее на ЭВМ-сервер устанавливалась одна из ОС, предназначенная для организации LAN - сети. После этого она начинала работать, и последующее присоединение каждой новой мини-ЭВМ не вызывало никаких проблем.

Неизбежность появления Интернета

Если появление мини-ЭВМ позволило распределить компьютерные ресурсы равномерно по территориям предприятий, то появление в начале 90-х гг. ПК обусловило их постепенное появление сначала на каждом рабочем месте любого работника умственного труда, а затем и в индивидуальных человеческих жилищах.

Относительная дешевизна и высокая надежность работы ПК сначала дали мощный толчок развитию LAN-сетей, а затем привели и к возникновению глобальной компьютерной сети - Интернета, охватившей сегодня все страны мира.

Размер Интернета каждый месяц прирастает на 7-10%. Он представляет собой ядро, связующее различные локальные и глобальные сети предприятий и учреждений во всем мире друг с другом.

Если на первом этапе через Интернет в основном передавались файлы данных и сообщения электронной почты, то сегодня он обеспечивает в основном удаленный доступ к распределенным информресурсам и электронным архивам, к коммерческим и некоммерческим информслужбам многих стран. Его архивы свободного доступа содержат сведения практически по всем областям знания и деятельности человека - от новых направлений в науке до прогнозов погоды.

Основные сетевые технологии LAN-сетей

Среди них выделяют базовые технологии, на которых может строиться базис любой конкретной сети. В качестве примера можно привести такие известные LAN-технологии как Ethernet (1980), Token Ring (1985) и FDDI (конец 80-х гг.).

В конце 90-х гг. в лидеры технологии LAN-сетей вышла технология Ethernet, объединившая классический его вариант со до 10 мбит/с, а также Fast Ethernet (до100 Мбит/c) и Gigabit Ethernet (до 1000 Мбит/c). Все Ethernet-технологии имеют близкие принципы работы, упрощающие их обслуживание и объединение построенных на их основе LAN-сетей.

В тот же период в ядра практически всех компьютерных ОС их разработчиками стали встраиваться сетевые функции, реализующие вышеперечисленные сетевые информационные технологии. Появились даже специализированные коммуникационные ОС вроде IOS компании Cisco Systems.

Как развивались ГКС-технологии

Технологии ГКС на аналоговых телефонных каналах из-за большого уровня искажений в них отличались сложными алгоритмами контроля и восстановления данных. Примером их является технология X.25 разработки еще начала 70-х гг. ХХ в. Более современные сетевые технологии - это frame relay, ISDN, ATM.

ISDN - аббревиатура, означающая «цифровую сеть с интеграцией услуг», позволяет проведение удаленных видеоконференций. Удаленный доступ обеспечивается установкой в ПК адаптеров ISDN, работающих во много раз быстрее любых модемов. Имеется и специальное ПО, позволяющее популярным ОС и браузерам работать с ISDN. Но дороговизна оборудования и необходимость прокладывать специальные линии связи тормозит развитие этой технологии.

Технологии глобальных сетей прогрессировали вместе с телефонными сетями. После появления цифровой телефонии была разработана спецтехнология Plesiochronous Digital Hierarchy (PDH), поддерживающая скорости до 140 Мбит/с и используемая для создания предприятиями их собственных сетей.

Новая технология Synchronous Digital Hierarchy (SDH) в конце 80-х гг. ХХ в. расширила пропускную способность цифровых телефонных каналов до 10 Гбит/c, а технология Dense Wave Division Multiplexing (DWDM) — до сотен Гбит/c и даже до нескольких Тбит/c.

Технологии Интернета

Сетевые основаны на использовании языка гипертекста (или HTML-языка) - спецязыка разметки представляющего собой упорядоченный набор атрибутов (тегов), внедряемых предварительно разработчиками интернет-сайтов в каждую их страницу. Конечно, речь в данном случае не идет о текстовых или графических документах (фотографиях, картинках), которые уже «скачаны» пользователем из Интернета, находятся в памяти его ПК и просматриваются через текстовые или Речь идет о так называемых веб-страницах, просматриваемых через программы-браузеры.

Разработчики интернет-сайтов создают их на HTML-языке (сейчас создано множество средств и технологий этой работы, обобщенно называемой «версткой сайтов») в виде совокупности веб-страниц, а владельцы сайтов помещают в интернет-серверы на условиях аренды у владельцев серверов их памяти (так называемого «хостинга»). Они круглосуточно работают в Интернете, обслуживая запросы его пользователей на просмотр загруженных в них веб-страниц.

Браузеры пользовательских ПК, получив через сервер своего интернет-провайдера доступ к конкретному серверу, адрес которого содержится в имени запрашиваемого интернет-сайта, получают доступ к этому сайту. Далее, анализируя HTML-теги каждой просматриваемой страницы, браузеры формируют ее изображение на экране монитора в том виде, как это было задумано разработчиком сайта - со всеми заголовками, цветами шрифта и фона, различными вставками в виде фото, диаграмм, картинок и т. п.

Сетевые компьютерные технологии бурно развиваются. Если раньше основной заботой сетевого администратора была локальная вычислительная сеть предприятия или организации, то теперь эта сеть все чаще становится территориально распределенной. Пользователи должны иметь возможность получать доступ к ресурсам сети предприятия практически из любого места. При этом они хотят не только просматривать и отправлять электронную почту, но и иметь возможность обращаться к файлам, базам данных и другим ресурсам сети предприятия. В рамках организации часто создаются удаленно расположенные отделения со своими локальными сетями, которые необходимо соединить с сетью основного подразделения с помощью надежной, защищенной и прозрачной для пользователей связи. Такие сети называются корпоративными. Учитывая сегодняшние реалии, пользователям корпоративной сети предприятия также необходимо предоставить возможность доступа к ресурсам глобальной мировой сети Internet, обезопасив при этом внутреннюю сеть от несанкционированного доступа извне.

Таким образом, корпоративная сеть - это аппаратно-программная система, обеспечивающая надежную передачу информации между различными приложениями, используемыми в организации. Часто узлы корпоративной сети оказываются расположенными в различных городах. Принципы, по которым строится подобная сеть, достаточно сильно отличаются от тех, которые используются при создании локальной сети, даже охватывающей несколько зданий. Основное отличие состоит в том, что территориально распределенные сети используют достаточно медленные (на сегодня это чаще десятки и сотни килобит в секунду, иногда 2 Мбит/с и выше) арендованные линии связи. Если при создании локальной сети основные затраты приходятся на закупку оборудования и прокладку кабеля, то в территориально распределенных сетях наиболее существенным элементом стоимости оказывается арендная плата за использование каналов, которая быстро растет с увеличением качества и скорости передачи данных. В остальном же корпоративная сеть не должна накладывать ограничений на то, какие именно приложения и каким образом обрабатывают переносимую по ней информацию. Основная проблема, которую приходится решать при создании корпоративной сети, - организация каналов связи. Если в пределах одного города можно рассчитывать на аренду выделенных линий, в том числе высокоскоростных, то при переходе к географически удаленным узлам стоимость аренды каналов становится очень большой, а качество и надежность их часто оказываются весьма невысокими. Естественным решением этой проблемы является использование уже существующих глобальных сетей. В этом случае достаточно обеспечить каналы от офисов до ближайших узлов сети. Задачу доставки информации между узлами глобальная сеть при этом возьмет на себя.

Идеальным вариантом для корпоративной сети было бы создание каналов связи только на тех участках, где это необходимо, и передача по ним любых сетевых протоколов, которые требуются работающим приложениям. На первый взгляд это возврат к арендованным линиям связи. Однако существуют технологии построения сетей передачи данных, позволяющие организовать внутри них каналы, возникающие только в нужное время и в нужном месте. Такие каналы называются виртуальными. Систему, объединяющую удаленные ресурсы с помощью виртуальных каналов, естественно назвать виртуальной сетью. На сегодня существуют две основные технологии виртуальных сетей - сети с коммутацией каналов и сети с коммутацией пакетов. К первым относится обычная телефонная сеть, ISDN и ряд других более экзотических технологий. Сети с коммутацией пакетов представлены технологиями X.25, Frame Relay и в последнее время ATM. Остальные типы виртуальных (в различных сочетаниях) сетей широко используются при построении корпоративных информационных систем. Сети с коммутацией каналов обеспечивают абоненту несколько каналов связи с фиксированной пропускной способностью на каждое подключение. Обычная телефонная сеть дает один канал связи между абонентами. При необходимости увеличить количество одновременно доступных ресурсов приходится устанавливать дополнительные телефонные номера. Даже если забыть о низком качестве связи, видно, что ограничение количества каналов и длительное время установления соединения не позволяют использовать телефонную связь в качестве основы корпоративной сети. Для подключения же отдельных удаленных пользователей это достаточно удобный и часто единственно доступный метод.

Альтернативой сетям с коммутацией каналов являются сети с коммутацией пакетов. При использовании пакетной коммутации один канал связи используется в режиме разделения времени многими пользователями - примерно так же, как и в Internet. Однако в отличие от сетей типа Internet, где каждый пакет маршрутизируется отдельно, сети пакетной коммутации перед передачей информации требуют установления соединения между конечными ресурсами. После установления соединения сеть «запоминает» маршрут (виртуальный канал), по которому должна передаваться информация между абонентами, и помнит его, пока не получит сигнала о разрыве связи. Для приложений, работающих в сети пакетной коммутации, виртуальные каналы выглядят как обычные линии связи - с той только разницей, что их пропускная способность и вносимые задержки меняются в зависимости от загруженности сети. Рассмотрим основные технологии, которые используются для построения корпоративных сетей.

ISDN

Широко распространенным примером виртуальной сети с коммутацией каналов является ISDN (цифровая сеть с интеграцией услуг). ISDN обеспечивает цифровые каналы (64 Кбит/с), по которым могут передаваться как голос, так и данные. Базовое подключение ISDN (Basic Rate Interface) включает два таких канала и дополнительный канал управления со скоростью 16 Кбит/с (такая комбинация обозначается как 2B+D ). Возможно использование большего числа каналов - до тридцати (Primary Rate Interface, 30B+D ). Это существенно увеличивает полосу пропускания, но приводит к соответствующему удорожанию аппаратуры и каналов связи. Кроме того, пропорционально увеличиваются затраты на аренду и использование сети. В целом ограничения количества одновременно доступных ресурсов, налагаемые ISDN, приводят к тому, что этот тип связи оказывается удобным использовать в основном как альтернативу телефонным сетям. В системах с небольшим количеством узлов ISDN может использоваться также и как основной протокол сети. Следует только иметь в виду, что доступ к ISDN в нашей стране пока, скорее, исключение, чем правило.

X.25

Классической технологией коммутации пакетов является протокол X.25 . Сегодня практически не существует сетей X.25, использующих скорости выше 128 Кбит/с, что достаточно медленно. Но протокол X.25 включает мощные средства коррекции ошибок, обеспечивая надежную доставку информации даже на плохих линиях и широко используется там, где нет качественных каналов связи. (В нашей стране их нет почти повсеместно.) Естественно, за надежность приходится платить - в данном случае быстродействием оборудования сети и сравнительно большими, но предсказуемыми задержками распространения информации. В то же время X.25 - универсальный протокол, позволяющий передавать практически любые типы данных. «Естественной» для сетей X.25 является работа приложений, использующих стек протоколов OSI . К ним относятся системы, использующие стандарты X.400 (электронная почта) и FTAM (обмен файлами), а также некоторые другие. Доступны средства, позволяющие реализовать на базе протоколов OSI взаимодействие Unix-систем. Другая стандартная возможность сетей X.25 - связь через обычные асинхронные COM-порты. Образно говоря, сеть X.25 «удлиняет» кабель, подключенный к последовательному порту, донося его разъем до удаленных ресурсов. Таким образом, практически любое приложение, допускающее обращение к нему через COM-порт, может быть легко интегрировано в сеть X.25. В качестве примеров таких приложений следует упомянуть не только терминальный доступ к удаленным хост-компьютерам, например Unix-машинам, но и взаимодействие Unix-компьютеров друг с другом (cu, uucp), системы на базе Lotus Notes, электронную почту cc:Mail и MS Mail и т.п. Для объединения LAN в узлах, имеющих подключение к сети X.25, существуют методы инкапсуляции пакетов информации из локальной сети в пакеты X.25. Часть служебной информации при этом не передается, поскольку она может быть однозначно восстановлена на стороне получателя. Стандартным механизмом инкапсуляции считается описанный в документе RFC 1356. Он позволяет передавать различные протоколы локальных сетей (IP, IPX и т.д.) одновременно через одно виртуальное соединение. Этот механизм (или более старая его реализация RFC 877, допускающая только передачу IP) реализован практически во всех современных маршрутизаторах. Существуют также методы передачи по X.25 и других коммуникационных протоколов, в частности SNA , используемого в сетях мэйнфреймов IBM, а также ряда частных протоколов различных производителей. Таким образом, сети X.25 предлагают универсальный транспортный механизм для передачи информации между практически любыми приложениями. При этом разные типы трафика передаются по одному каналу связи, ничего «не зная» друг о друге. При объединении локальных сетей через X.25 можно изолировать друг от друга отдельные фрагменты корпоративной сети, даже если они используют одни и те же линии связи.

Сегодня в мире насчитываются десятки глобальных сетей X.25 общего пользования, их узлы имеются практически во всех крупных деловых, промышленных и административных центрах. В России услуги X.25 предлагают «Спринт Сеть», Infotel, «Роспак», «Роснет», Sovam Teleport и ряд других поставщиков. Кроме объединения удаленных узлов в сетях X.25 всегда предусмотрены средства доступа для конечных пользователей. Для того чтобы подключиться к любому ресурсу сети X.25, пользователю достаточно иметь компьютер с асинхронным последовательным портом и модем. При этом проблем с авторизацией доступа в географически удаленных узлах не возникает; если ваш ресурс подключен к сети X.25, вы можете получить доступ к нему как с узлов вашего поставщика, так и через узлы других сетей - то есть практически из любой точки мира. Недостатком технологии X.25 является наличие ряда принципиальных ограничений скорости. Первое из них связано именно с развитыми возможностями коррекции и восстановления. Эти средства вызывают задержки передачи информации и требуют от аппаратуры X.25 большой вычислительной мощности и производительности, в результате чего она просто «не успевает» за быстрыми линиями связи. Хотя существует оборудование, имеющее высокоскоростные порты, реально обеспечиваемая им скорость не превышает 250-300 Кбит/с на порт. В то же время для современных скоростных линий связи средства коррекции X.25 оказываются избыточными и при их использовании мощности оборудования часто работают вхолостую. Вторая особенность, заставляющая рассматривать сети X.25 как медленные, состоит в особенностях инкапсуляции протоколов локальных сетей (в первую очередь IP и IPX). При прочих равных условиях связь локальных сетей по X.25 оказывается в зависимости от параметров сети на 15-40% медленнее, чем при использовании HDLC по выделенной линии.

Все-таки на линиях связи невысокого качества сети X.25 вполне эффективны и дают значительный выигрыш в цене и возможностях по сравнению с выделенными линиями.

Frame Relay

Технология Frame Relay появилась как средство, позволяющее реализовать преимущества пакетной коммутации на скоростных линиях связи. Основное отличие сетей Frame Relay от X.25 состоит в том, что в них исключена коррекция ошибок между узлами сети. Задачи восстановления потока информации возлагаются на оконечное оборудование и программное обеспечение пользователей. Естественно, это требует использования достаточно качественных каналов связи. Считается, что для успешной работы с Frame Relay вероятность ошибки в канале должна быть не выше 10-6-10-7. Качество, обеспечиваемое обычными аналоговыми линиями, обычно на один-три порядка ниже. Вторым отличием сетей Frame Relay является то, что в настоящее время практически во всех них реализован только механизм постоянных виртуальных соединений (PVC ). Это означает, что, подключаясь к порту Frame Relay, вы должны заранее определить, к каким именно удаленным ресурсам будете иметь доступ. Принцип пакетной коммутации - множество независимых виртуальных соединений в одном канале связи - здесь остается, однако вы не можете выбрать адрес любого абонента сети. Все доступные вам ресурсы определяются при настройке порта. Таким образом, на базе технологии Frame Relay удобно строить замкнутые виртуальные сети, используемые для передачи других протоколов, средствами которых осуществляется маршрутизация. «Замкнутость» виртуальной сети означает, что она полностью недоступна для других пользователей, работающих в той же сети Frame Relay. Например, в США сети Frame Relay широко применяются в качестве опорных для работы Internet. Однако ваша частная сеть может использовать виртуальные каналы Frame Relay в тех же линиях, что и трафик Inernet, - и быть абсолютно от него изолированной. Как и сети X.25, Frame Relay предоставляет универсальную среду передачи практически для любых приложений. Основной областью применения Frame Relay сегодня является объединение удаленных LAN. При этом коррекция ошибок и восстановление информации производятся на уровне транспортных протоколов LAN - TCP, SPX и т.п. Потери на инкапсуляцию трафика LAN во Frame Relay не превышают двух-трех процентов. Отсутствие коррекции ошибок и сложных механизмов коммутации пакетов, характерных для X.25, позволяет передавать информацию по Frame Relay с минимальными задержками. Дополнительно возможно включение механизма приоритезации, позволяющего пользователю иметь гарантированную минимальную скорость передачи информации для виртуального канала. Такая возможность позволяет использовать Frame Relay для передачи критичной к задержкам информации, например голоса и видео в реальном времени. Эта сравнительно новая возможность приобретает все большую популярность и часто является основным аргументом в пользу выбора Frame Relay как основы корпоративной сети. Следует помнить, что сегодня услуги сетей Frame Relay доступны в нашей стране не более чем в полутора десятках городов, в то время как X.25 - примерно в двухстах. Есть все основания полагать, что по мере развития каналов связи технология Frame Relay будет становиться все более распространенной - прежде всего там, где сейчас существуют сети X.25. К сожалению, не существует единого стандарта, описывающего взаимодействие различных сетей Frame Relay, поэтому пользователи оказываются привязаны к одному поставщику услуг. При необходимости расширить географию возможно подключение в одной точке к сетям разных поставщиков - с соответствующим увеличением расходов. Существуют также частные сети Frame Relay, работающие в пределах одного города или использующие междугородние (как правило, спутниковые) выделенные каналы. Построение частных сетей на базе Frame Relay позволяет сократить количество арендуемых линий и интегрировать передачу голоса и данных.

Ethernet/Fast Ethernet

Ethernet - наиболее популярная топология локальных сетей. В ее основе лежит стандарт IEEE 802.3. За годы своего существования Ethernet претерпел значительную эволюцию, и теперь эта технология обеспечивает поддержку новых сред передачи данных и обладает рядом таких характеристик, которые не были предусмотрены в исходном стандарте. Имеющаяся полоса пропускания может либо разделяться между несколькими пользователями с помощью концентраторов, либо полностью предоставляться индивидуальным ПК с помощью коммутаторов. Не так давно сформировалась отчетливо выраженная тенденция к предоставлению пользователям настольных станций полнодуплексных каналов связи на 10 Мбит/с. Такая тенденция смогла укорениться благодаря появлению недорогих коммутаторов Ethernet, позволивших без больших затрат создавать высокопроизводительные многофункциональные сети.

Технология Fast Ethernet была разработана с целью предоставить более широкую полосу пропускания устройствам, которые в этом нуждались, - в первую очередь серверам и коммутаторам для настольных станций. В основе Fast Ethernet лежит стандарт Ethernet; это означает, что для внедрения этой скоростной технологии не требуется перестройки существующей инфраструктуры, замены системы управления и переподготовки сотрудников отдела информационных технологий. Сейчас это одна из самых популярных высокоскоростных технологий - она недорога, стабильна и полностью совместима с существующими сетями Ethernet. В сетях Fast Ethernet можно использовать оптоволоконные (100Base-FX) или медные (100Base-TX) кабели. Поддерживается полнодуплексная связь.

Все администраторы информационных систем сталкиваются с проблемой предоставления каналов Fast Ethernet для подключения наиболее мощных настольных станций и серверов без нарушения работы тех пользователей, которым хватает Ethernet 10Base-T. Именно для этого нужна технология автоматического распознавания скорости работы сети Ethernet/Fast Ethernet. В соответствии с этой технологией одно и то же устройство поддерживает и 10Base-T, и 100Base-TX. Один и тот же коммутатор обеспечит поддержку Ethernet и Fast Ethernet, предоставляя настольным станциям более широкую полосу пропускания, объединяя концентраторы на 10 и 100 Мбит/с и не внося никаких изменений в условия работы тех пользователей, которые полностью удовлетворены каналами 10 Мбит/с. Кроме того при работе с коммутатором, автоматически распознающим скорость передачи данных, нет необходимости конфигурировать каждый из портов отдельно. Это - один из наиболее эффективных способов избирательного наращивания полосы пропускания в местах возникновения перегрузок с полным сохранением возможностей дальнейшего расширения полосы пропускания в будущем.

Gigabit Ethernet

В технологии Gigabit Ethernet полностью сохраняется традиционная простота и управляемость Ethernet и Fast Ethernet, поэтому ее легко интегрировать в существующие локальные сети. Использование этой технологии позволяет на порядок увеличить полосу пропускания магистральной сети по сравнению с Fast Ethernet. Дополнительная полоса пропускания позволяет справиться с проблемами, связанными с незапланированным изменением структуры сети и добавлением к ней новых устройств, и избавляет от необходимости постоянно корректировать работу сети. Технология Gigabit Ethernet прекрасно подходит для магистральных участков сети и каналов связи с сервером, поскольку она дает широкую полосу пропускания без больших затрат, не требует отказа от традиционного формата кадров Ethernet и поддерживается существующими системами управления сетью.

Появление стандарта 802.3ab, позволяющего в качестве среды Gigabit Ethernet использовать медный кабель (правда на расстояния не более 100 метров), является еще одним важным аргументом в пользу данной технологии. Нельзя не отметить и работу IEEE над новым стандартом на 10 Гбит/с.

ATM

ATM - популярная технология для магистралей локальных вычислительных сетей. Ее использование сулит значительные выгоды большим организациям, поскольку обеспечивает тесную интеграцию между локальными и территориально распределенными сетями и характеризуется высоким уровнем отказоустойчивости и резервирования. Для передачи данных по сети используются каналы связи OC-3 (155 Мбит/с) и OC-12 (622 Мбит/с). Если просто сравнивать цифры, то эти значения меньше, чем для Gigabit Ethernet, однако в ATM используются альтернативные методы выделения полосы пропускания; задав тот или иной уровень качества услуг (Quality of Service, QoS), можно гарантировать предоставление полосы пропускания, необходимой для работы приложения. Средства управления трафиком, предоставляемые технологией АТМ, позволяют добиться полной определенности в работе приложений и обеспечении услуг в сложных сетях. Технология АТМ обладает важными преимуществами перед существующими методами передачи данных в локальных и глобальных сетях, которые должны обусловить ее широкое распространение во всем мире. Одно из важнейших достоинств АТМ - обеспечение высокой скорости передачи информации (широкой полосы пропускания). АТМ устраняет различия между локальными и глобальными сетями, превращая их в единую интегрированную сеть. Сочетая в себе масштабируемость и эффективность аппаратной передачи информации, присущие телефонным сетям, метод АТМ обеспечивает более дешевое наращивание мощности сети. Это техническое решение, способное удовлетворить грядущие потребности, поэтому многие пользователи часто выбирают АТМ больше ради ее будущей, нежели сегодняшней значимости. Стандарты АТМ унифицируют процедуры доступа, коммутации и передачи информации различного типа (данных, речи, видеоизображений и т.д.) в одной сети связи с возможностью работы в реальном масштабе времени. В отличие от ранних технологий локальных и глобальных сетей ячейки АТМ могут передаваться по широкому спектру носителей - от медного провода и волоконно-оптического кабеля до спутниковых линий связи, при любых скоростях передачи, достигающих сегодняшнего предела 622 Мбит/с. Технология АТМ обеспечивает возможность одновременного обслуживания потребителей, предъявляющих различные требования к пропускной способности телекоммуникационной системы. Технология АТМ уже в течение нескольких лет постепенно прокладывает путь в инфраструктуры корпораций. Пользователи строят сеть АТМ поэтапно, эксплуатируя ее параллельно с уже существующими у них системами. Конечно, в первую очередь технология АТМ окажет влияние на глобальные сети, в меньшей степени - на магистральные линии связи, соединяющие несколько локальных вычислительных сетей. Недавний опрос, проведенный компанией Sege Research, в котором приняли участие 175 пользователей, касался вопроса о том, какие технологии они намерены использовать в своих сетях в 1999 году. АТМ обогнал по популярности Ethernet. Более 40% пользователей хотели бы установить Ethernet на 100 Мбит/с, а около 45% планируют использовать АТМ на 155 Мбит/с. Совершенно неожиданно оказалось, что 28% опрошенных намерены использовать АТМ на 622 Мбит/с. Несколько слов о взаимоотношениях АТМ и Gigabit Ethernet. У каждой из этих технологий своя, достаточно четко определенная ниша. Для АТМ - это опорные сети группы зданий, объединенных в корпоративную сеть, и магистрали глобальных сетей. Для Gigabit Ethernet - это магистрали локальных сетей и линии связи с высокопроизводительными серверами. Успешно решаются проблемы обмена трафиком между Gigabit Ethernet и ATM и проблемы прозрачной маршрутизации. Компания Cisco Systems недавно разработала специальный АТМ-модуль для маршрутизирующего коммутатора Catalyst 8500. Этот модуль позволяет проводить маршрутизацию между портами АТМ и Ethernet.

Построение корпоративной сети

При построении территориально распределенной корпоративной сети могут использоваться все описанные выше технологии. На уровне локальных сетей альтернативы технологиям Ethernet, включая Fast Ethernet и Gigabit Ethernet, не существует; в качестве физической среды передачи предпочтительнее витая пара категории 5. Для подключения удаленных пользователей самым простым и доступным вариантом является использование телефонной связи. Там, где это возможно, могут использоваться сети ISDN. Для объединения узлов сети в большинстве случаев используются глобальные сети передачи данных. Даже там, где возможна прокладка выделенных линий, использование технологий пакетной коммутации позволяет уменьшить количество необходимых каналов связи и, что немаловажно, обеспечить совместимость системы с существующим оборудованием глобальных сетей. Подключение корпоративной сети к Internet оправданно, если вам нужен доступ к соответствующим услугам. Использовать Internet как среду передачи данных имеет смысл только тогда, когда другие способы недоступны и финансовые соображения перевешивают требования надежности и безопасности. Если вы будете использовать Internet только в качестве источника информации, лучше пользоваться технологией «соединение по запросу», то есть таким способом подключения, когда соединение с узлом Internet устанавливается только по вашей инициативе и на нужное время. Это резко снижает риск несанкционированного проникновения в вашу сеть извне. Простейший способ обеспечить такое подключение - использовать дозвон до узла Internet по телефонной линии или, если возможно, через ISDN. Другой более надежный способ обеспечить соединение по запросу - использовать выделенную линию и протокол Frame Relay. В этом случае маршрутизатор с вашей стороны должен быть настроен так, чтобы разрывать виртуальное соединение при отсутствии данных в течение определенного времени и вновь устанавливать его тогда, когда требуется доступ к данным. Широко распространенные способы подключения с использованием PPP или HDLC такой возможности не дают. Если же вы хотите предоставлять свою информацию в Internet (например, установить WWW- или FTP-сервер), соединение по запросу оказывается неприменимым. В этом случае следует не только использовать ограничение доступа с помощью Firewall, но и максимально изолировать сервер Internet от остальных ресурсов. Хорошим решением является использование единственной точки подключения к Internet для всей территориально распределенной сети, узлы которой связаны друг с другом с помощью виртуальных каналов X.25 или Frame Relay. В этом случае доступ из Internet возможен к единственному узлу, пользователи же в остальных узлах могут попасть в Internet с помощью соединения по запросу. Для передачи данных внутри корпоративной сети также стоит использовать виртуальные каналы сетей пакетной коммутации. Основные достоинства такого подхода - универсальность, гибкость, безопасность. В качестве виртуальной сети при построении корпоративной информационной системы может использоваться как X.25, так и Frame Relay или АТМ. Выбор между ними определяется качеством каналов связи, доступностью услуг в точках подключения и не в последнюю очередь - финансовыми соображениями. Сегодня затраты при использовании Frame Relay для междугородной связи оказываются в несколько раз выше, чем для сетей X.25. В то же время более высокая скорость передачи информации и возможность одновременно передавать данные и голос могут оказаться решающими аргументами в пользу Frame Relay. На тех участках корпоративной сети, где доступны арендованные линии, более предпочтительной является технология Frame Relay. Кроме того, по этой же сети возможна телефонная связь между узлами. Для Frame Relay лучше использовать цифровые каналы связи, однако даже на физических линиях или каналах тональной частоты можно создать вполне эффективную сеть, установив соответствующее канальное оборудование. Там, где необходимо организовать широкополосную связь, например при передаче видеоинформации, целесообразно применение АТМ. Для подключения удаленных пользователей к корпоративной сети могут использоваться узлы доступа сетей X.25, а также собственные коммуникационные узлы. В последнем случае требуется выделение нужного количества телефонных номеров (или каналов ISDN), что может оказаться слишком дорого.

При подготовке этой статьи использованы материалы сайтов www.3com.ru и www.race.ru

КомпьютерПресс 10"1999

6. Определение сетевой технологии. Сетевая технология Ethernet. Метод CSMA/CD. Понятие и структура кадра. Манчестерское кодирование. Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения локальной вычислительной сети. Сетевая технология определяет топологию и метод доступа к среде передачи данных, кабельную систему или среду передачи данных, формат сетевых кадров, тип кодирования сигналов, скорость передачи в локальной сети. В современных локальных вычислительных сетях широкое распространение получили такие технологии, как: Ethernet, Token-Ring, ArcNet, FDDI. Сетевые технологии локальных сетей IEEE802.3/Ethernet В настоящее время эта сетевая технология наиболее популярна в мире. Популярность обеспечивается простыми, надежными и недорогими технологиями. В классической локальной сети Ethernet применяется стандартный коаксиальный кабель двух видов (толстый и тонкий). Однако все большее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары, так как монтаж и обслуживание их гораздо проще. В локальных сетях Ethernet применяются топологии типа "шина" и типа "пассивная звезда", а метод доступа CSMA/CD. Стандарт IEEE802.3 в зависимости от типа среды передачи данных имеет модификации: * 10BASE5 (толстый коаксиальный кабель) - обеспечивает скорость передачи данных 10 Мбит/с и длину сегмента до 500м; * 10BASE2 (тонкий коаксиальный кабель) - обеспечивает скорость передачи данных 10 Мбит/с и длину сегмента до 200м; * 10BASE-T (неэкранированная витая пара) - позволяет создавать сеть по звездной топологии. Расстояние от концентратора до конечного узла до 100м. Общее количество узлов не должно превышать 1024; * 10BASE-F (оптоволоконный кабель) - позволяет создавать сеть по звездной топологии. Расстояние от концентратора до конечного узла до 2000м. В развитие сетевой технологии Ethernet созданы высокоскоростные варианты: IEEE802.3u/Fast Ethernet и IEEE802.3z/Gigabit Ethernet. Основная топология, которая используется в локальных сетях Fast Ethernet и Gigabit Ethernet, пассивная звезда. Сетевая технология Fast Ethernet обеспечивает скорость передачи 100 Мбит/с и имеет три модификации: * 100BASE-T4 - используется неэкранированная витая пара (счетверенная витая пара). Расстояние от концентратора до конечного узла до 100м; * 100BASE-TX - используются две витые пары (неэкранированная и экранированная). Расстояние от концентратора до конечного узла до 100м; * 100BASE-FX - используется оптоволоконный кабель (два волокна в кабеле). Расстояние от концентратора до конечного узла до 2000м. Сетевая технология локальных сетей Gigabit Ethernet - обеспечивает скорость передачи 1000 Мбит/с. Существуют следующие модификации стандарта: * 1000BASE-SX - применяется оптоволоконный кабель с длиной волны светового сигнала 850 нм. * 1000BASE-LX - используется оптоволоконный кабель с длиной волны светового сигнала 1300 нм. * 1000BASE-CX - используется экранированная витая пара. * 1000BASE-T - применяется счетверенная неэкранированная витая пара. Локальные сети Fast Ethernet и Gigabit Ethernet совместимы с локальными сетями, выполненными по технологии (стандарту) Ethernet, поэтому легко и просто соединять сегменты Ethernet, Fast Ethernet и Gigabit Ethernet в единую вычислительную сеть. CSMA/CD (Carrier Sense Multiple Access/Collision Detect) - множественный доступ с прослушиванием несущей и обнаружением коллизий. Узел, готовый послать кадр, прослушивает линию. При отсутствии несущей он начинает передачу кадра, одновременно контролируя состояние линии. При обнаружении коллизии передача прекращается, и повторная попытка откладывается на случайное время. Коллизии - нормальное, хотя и не очень частое явление для CSMA/CD. Их частота связана с количеством и активностью подключенных узлов. Метод требует сложных и дорогих схем цепей доступа. Применяется во многих сетевых архитектурах: Ethernet, EtherTalk (реализация Ethernet фирмы Apple), G-Net, IBM PC Network, AT&T Star LAN. Приведем основные правила алгоритма CSMA/CD для предающей станции. Передача кадра: 1. Станция, собравшаяся передавать, прослушивает среду. И передает, если среда свободна. В противном случае (т.е. если среда занята) переходит к шагу 2. При передаче нескольких кадров подряд станция выдерживает определенную паузу между посылками кадров - межкадровый интервал, причем после каждой такой паузы перед отправкой следующего кадра станция вновь прослушивает среду (возвращение на начало шага 1); 2. Если среда занята, станция продолжает прослушивать среду до тех пор, пока среда не станет свободной, и затем сразу же начинает передачу; 3. Каждая станция, ведущая передачу прослушивает среду, и в случае обнаружения коллизии, не прекращает сразу же передачу, а сначала передает короткий специальный сигнал коллизии - jam-сигнал, информируя другие станции о коллизии, и прекращает передачу; 4. После передачи jam-сигнала станция замолкает и ждет некоторое произвольное время в соответствии с правилом бинарной экспоненциальной задержки и затем возвращаясь к шагу 1. Межкадровый интервал IFG (interframe gap) составляет в 9,6 мксек (12 байт). С одной стороны он необходим для того, чтобы принимающая станция могла корректно завершить прием кадра. Кроме этого, если бы станция передавала кадры непрерывно, она бы полностью захватила канал и тем самым лишила другие станции возможности передачи. Jam-сигнал (jamming - дословно глушение). Передача jam-сигнала гарантирует, что не один кадр не будет потерян, так как все узлы, которые передавали кадры до возникновения коллизии, приняв jam-сигнал, прервут свои передачи и замолкнут в преддверии новой попытки передать кадры. Jam-сигнал должен быть достаточной длины, чтобы он дошел до самых удаленных станций коллизионного домена, с учетом дополнительной задержки SF (safety margin) на возможных повторителях. Содержание jam-сигнала не принципиально за исключением того, что оно не должно соответствовать значению поля CRC частично переданного кадра (802.3), и первые 62 бита должны представлять чередование "1" и "0" со стартовым битом "1". Сеть Ethernet разработана в 1976 году Меткальфом и Боггсом (фирма Ксерокс). Ethernet совместно со своей скоростной версией Fast Ethernet, GigaEthernet (1Гбит/с) и 10GE (10Гигабит/с) занимает в настоящее время абсолютно лидирующую позицию. В настоящее время на основе этого стандарта строятся уже не только локальные но и общегородские сети, а также межгородские каналы. Единственным недостатком данной сети является отсутствие гарантии времени доступа к среде (и механизмов, обеспечивающих приоритетное обслуживание), что делает сеть малоперспективной для решения технологических проблем реального времени. Определенные проблемы иногда создает ограничение на максимальное поле данных, равное ~1500 байт. Формат кадра сетей Ethernet (цифры в верхней части рисунка показывают размер поля в байтах) Поле преамбула содержит 7 байт 0хАА и служит для стабилизации и синхронизации среды (чередующиеся сигналы CD1 и CD0 при завершающем CD0), далее следует поле SFD (start frame delimiter = 0xab), которое предназначено для выявления начала кадра. Поле EFD (end frame delimiter) задает конец кадра. Поле контрольной суммы (CRC - cyclic redundancy check), также как и преамбула, SFD и EFD, формируются и контролируются на аппаратном уровне. В некоторых модификациях протокола поле efd не используется. Пользователю доступны поля, начиная с адреса получателя и кончая полем информация, включительно. После crc следует межпакетная пауза (IPG - interpacket gap - межпакетный интервал) длиной 9,6 мксек или более. Максимальный размер кадра равен 1518 байт (сюда не включены поля преамбулы, SFD и EFD). Интерфейс просматривает все пакеты, следующие по кабельному сегменту, к которому он подключен, ведь определить, корректен ли принятый пакет и кому он адресован, можно лишь приняв его целиком. Корректность пакета по CRC, по длине и кратности целому числу байт производится после проверки адреса места назначения. Вероятность ошибки передачи при наличии crc контроля составляет ~2-32. Манчестерский код объединяет в бит-сигнале данные и синхронизацию. Каждый бит-символ делится на 2 части, причем вторая часть всегда является инверсной по отношению первой. В первой половине кодируемый сигнал представлен в логически дополнительном виде, а во второй - в обычном. Таким образом, сигнал логического 0 - CD0 характеризуется в первой половине уровнем HI, а во второй LO. Соответственно сигнал CD1 характеризуется в первой половине бит-символа уровнем LO, а во второй - HI. Примеры форм сигналов при манчестерском кодировании представлены на рисунке: Минимальная длина пакета должна быть больше удвоенного значения максимальной задержки в сети Ethernet (выбрано 64 байта = 512 тактов). Если размер пакета меньше 64 байт, добавляются байты-заполнители, чтобы кадр в любом случае имел соответствующий размер. При приеме контролируется длина пакета и, если она превышает 1518 байт, пакет считается избыточным и обрабатываться не будет. Аналогичная судьба ждет кадры короче 64 байт. Любой пакет должен иметь длину, кратную 8 бит (целое число байт). Если в поле адресата содержатся все единицы, адрес считается широковещательным, то есть обращенным ко всем рабочим станциям локальной сети. Пакет ethernet может нести от 46 до 1500 байт данных. Формат адреса получателя или отправителя (MAC) показан на рисунке 4.1.1.1.4. Для передачи данных на физическом уровне используется манчестерский код. Рис. 4.1.1.1.4. Формат mac-адреса В верхней части рисунка указана длина полей адреса, в нижней - нумерация разрядов. Субполе I/G представляет собой флаг индивидуального или группового адреса. I/G=0 - указывает на то, что адрес является индивидуальным адресом сетевого объекта. I/G=1 характеризует адрес как мультикастинговый, в этом случае дальнейшее разбиение адреса на субполя теряет смысл. Субполе UL является флагом универсального или местного управления (определяет механизм присвоения адреса сетевому интерфейсу). U/L=1 указывает на локальную адресацию (адрес задан не производителем и ответственность за уникальность лежит на администраторе LAN). U/L=I/G=0 характерно для стандартных уникальных адресов, присваиваемых интерфейсу его изготовителем. Субполе OUI (organizationally unique identifier) позволяет определить производителя сетевого интерфейса. Каждому производителю присваивается один или несколько OUI. Размер субполя позволяет идентифицировать около 4 миллионов различных производителей. За корректность присвоения уникального адреса интерфейса (OUA - organizationally unique address) несет ответственность производитель. Двух интерфейсов одного и того же производителя с идентичными номерами не должно существовать. Размер поля позволяет произвести примерно 16 миллионов интерфейсов. Комбинация oui и oua составляют UAA (universally administrated address = IEEE-адрес). Если в поле кадра протокол/тип записан код менее 1500, то это поле характеризует длину кадра. В противном случае - это код протокола, пакет которого инкапсулирован в кадр Ethernet.



Понравилась статья? Поделиться с друзьями: