Новейшие наноразмерные технологии записи на магнитные диски. Магниторезистивная память. Магниторезистивная оперативная память

Нобелевская премия по физике этого года была присуждена двум ученым: Альберту Ферту и Питеру Грюнбергу с формулировкой «за открытие эффекта гигантского магнитосопротивления ».

Рис.1 Альберт Ферт (р.1938) и Питер Грюнберг (р.1939) -
нобелевские лауреаты по физике 2007 года

Со времен открытия прошло почти 20 лет, и за это время приборы, основанные на гигантском магнитном сопротивлении (ГМС, или, как принято его называть в англоязычной литературе GMR) вошли в плоть и кровь современной цифровой цивилизации (головки считывания на ГМС используются в жестком диске каждого компьютера), а концепция спинового транспорта, спиновой инжекции, спиновых поляризаторов и анализаторов легли в основу понятийного аппарата нового направления науки и техники - спиновой электроники .

  1. Эффект гигантского магнитосопротивления

Эффект гигантского магнитосопротивления, первоначально наблюдался в многослойных структурах, которые состоят из чередующихся магнитных и немагнитных проводящих слоев (см. рис. 2), например, (Co/Cu) n или (Fe/Cr) n . Такие структуры называют магнитными сверхрешетками. Толщины слоев, как правило, составляют доли-единицы нанометров. Эффект состоит в том, что сопротивление структуры, измеренное при токе, текущем в плоскости системы, зависит от взаимного направления намагниченности соседних магнитных слоев. Так, при параллельной намагниченности слоев сопротивление, как правило, низкое, а при антипараллельном - высокое. Относительное изменение сопротивления системы составляет от 5 до 50% в зависимости от материалов, количества слоев и температуры. Эта величина на порядок больше, чем у предшественника эффекта гигантского магнитосопротивления - эффекта анизотропного магнитосопротивления , чем и объясняется название первого.


a) б)

Рис. 2. Магнитные сверхрешетки, на которых наблюдается эффект ГМС.

Схематично изображен транспорт электронов противоположных поляризаций в случае

а) параллельной и б) антипараллельной ориентаций намагниченностей магнитных слоев.

В нижних частях рисунков изображены эквивалентные электрические схемы,

соответствующие этим двум конфигурациям.

В основе эффекта ГМС лежат два важных явления. Первое состоит в том, что в ферромагнетике электроны с одним направлением спина (или одной спиновой поляризации , как принято говорить) рассеиваются гораздо сильнее, чем электроны противоположной поляризации (выделенное направление задает намагниченность образца). Второе явление состоит в том, что электроны, выходя из одного ферромагнитного слоя, попадают в другой, сохраняя свою поляризацию. Таким образом, в случае параллельной конфигурации слоев те из носителей, которые рассеваются меньше, проходят все структуру без рассеяния; а носители противоположной поляризации испытывают сильное рассеяние в каждом из магнитных слоев (см. рис. 2а). В случае же антипараллельной конфигурации системы (см. рис. 2б), носители обоих поляризаций испытывают сильное рассеяние в одних слоях и слабое в других. Сопротивление системы можно условно изобразить в виде двух соединенных параллельно наборов сопротивлений, соответствующих двум спиновым поляризациям; при этом каждое из сопротивлений в этих наборах соответствует большому или малому рассеянию носителей данной поляризации в конкретном магнитном слое. Такие схемы для параллельной и антипараллельной конфигураций слоев изображены внизу рисунков 2 а, б.

Для функционирования устройств на основе эффекта ГМС важной является возможность создания антипараллельной конфигурации слоев (см. рис. 2б). Такие конфигурации удается получать при нулевом поле благодаря наличию так называемого межслойного обменного взаимодействия. Оказывается, энергия E int . l . взаимодействия двух магнитных слоев с намагниченностями M 1 м M 2 , разделенных немагнитной прослойкой толщиной d s , имеет (в первом приближении) гейзенберговский вид:

. (1)

При этом коэффициент J 1 зависит от толщины немагнитной прослойки d s осциллирующим образом, так, что при одних значениях d s J 1 является положительной, а при других - отрицательной величиной. Соответственно, можно подобрать толщину немагнитных слоев так, чтобы энергетически выгодной была антипараллельная конфигурация слоев. Интересно, что именно исследованием межслойного взаимодействия в многослойных магнитных структурах занимались первоначально открыватели эффекта, прежде чем обнаружили новое необычное их свойство - гигантское магнитосопротивление.

Рис. 3. Схематичное изображение спинового вентиля. Нижний слой - слой антиферромагнетика.

В качестве элементов на основе эффекта ГМС как правило используется структура, получившая название спиновый вентиль (spin valve), см. рис. 3. В ней один магнитных из слоев (например, Co или Co 90 Fe 10) напылен на слой антиферромагнетика (напр., Mn 76 Ir 24 или Mn 50 Pt 50 ). Благодаря обменному взаимодействию между электронами ферромагнетика и антиферромагнетика спины в этих двух слоях становятся жестко связанными между собой. Поскольку внешнее магнитное поле не очень большой величины не оказывает влияния на антиферромагнетик, то намагниченность магнитного слоя оказывается закрепленной (это явление получило название однонаправленной или обменной анизотропии .

Такой слой, намагниченность которого в некотором интервале полей может считаться неизменной, называют закрепленным или фиксированным. Второй же магнитный слой (часто Co, или Co 90 Fe 10 , или двухслойный Ni 80 Fe 20 /Co или Ni 80 Fe 20 /Co 90 Fe 10 ,) может быть свободно перемагничен внешним полем, поэтому его называют свободным. Промежуточный слой немагнитного металла, как правило, представлен Cu. Такая структура получила название спинового переключателя или спинового вентиля (spin-valve). Сопротивление спинового вентиля R может быть с хорошей точностью описано с помощью формулы:



Здесь R 0 - сопротивление структуры при параллельной намагниченности слоев, дельта R gmr - инкремент сопротивления, обусловленный эффектом ГМС, и Q - угол между намагниченностями магнитных слоев (принимает значения между p и -p ). Типичные значения R составляют десятки Ом, а для используемых в индустрии спиновых вентилей составляет 6-10% .


Эффект ГМС был обнаружен при измерении сопротивления магнитных сверхрешеток по току, текущему в плоскости системы. В 1991 году изменение сопротивления магнитных металлических сверхрешеток при изменении взаимной ориентации магнитных слоев было обнаружено для тока, текущего перпендикулярно плоскости слоев. Эти две геометрии измерения сопротивления многослойных магнитных структур обозначаются ставшими уже стандартными аббревиатурами CIP (current-in-plane) и CPP (current-perpendicular-to-plane) соответственно. Механизмы эффектов ГМС в CPP и в CIP геометриях в основных чертах схожи ; при этом значения магнититосопротивления, полученные для первого эффекта, примерно в два раза больше, чем для второго. Однако абсолютное сопротивление металлических сверхрешеток, полная толщина которых составляет порядка десятков нанометров, при измерении в CPP геометрии очень мало и его довольно трудно измерить. Поэтому для практических применений эффект ГМС в CPP геометрии гораздо менее привлекателен.

Следующий прорыв в области эффектов магнитосопротивления обусловлен обнаружением эффекта туннельного магнитосопротивления (ТМС) . Он имеет место в СРР системах, в которых место проводящей немагнитной прослойки занимает тонкий (1-2 нм) слой изолятора. Сопротивление такой структуры, измеренное в CPP-геометрии, сильно зависит от относительного направления намагниченности слоев благодаря различным вероятностям прохождения носителей с противоположными ориентациями спина через туннельный барьер. Оказалось, что для весьма распространенного аморфного изолирующего слоя Al 2 O 3 относительное изменение сопротивление достигает 70% при комнатной температуре (КТ). Ещё более перспективным является барьер в виде монокристаллического слоя MgO, который позволяет достичь значений до 500% при комнатной температуре .

2. Приложения ГМС в индустрии памяти

В настоящее время эффекты магнитосопротивления уже получили широкое коммерческое применение. Наиболее часто эти эффекты используются для создания магниточувствительных элементов датчиков различного назначения. Так, уже более 10 лет магниточувствительные элементы на основе магниторезистивных наноструктур используются в считывающих головках в жестких дисках. Кроме того, широким фронтом идут разработки новых видов памяти, основанных на магниторезистивных элементах; совсем недавно начались продажи одного из них - так называемой магнитной оперативной памяти MRAM. По целому ряду показателей последняя превосходит существующие в настоящее время полупроводниковые аналоги.

В данной секции рассказывается об этих двух ключевых приложениях: о строении считывающих головок в HDD и о магнитной памяти MRAM.

2.1. Считывающие головки для жестких дисков

Наибольший рост последние годы продемонстрировали продажи самых миниатюрных жестких дисков (предназначенных для портативных карт памяти, mp3-плееров, видеокамер, сотовых телефонов и др.) они заняли до 23% всего рынка жестких дисков (HDD - hard disc drivers); ожидается, что к 2009 году эта доля увеличится до 40%, обогнав сегмент HDD для настольных компьютеров. В результате, общие тенденции рынка ведут к потребности появления устройств со все большей плотностью записи информации. Так, последние десять лет плотность записи в коммерческих устройствах растет со скоростью от 50-100% в год . Поддержание столь активной тенденции к миниатюризации требует использования самых высоких инновационных технологий в области создания магнитных сред (для хранения информации), записывающих и считывающих головок, системной электроники.

С самого начала в жестких дисках (первые HDD появились в середине 1950-х годов) использовались индуктивные считывающие головки. Их в начале 1990-х сменили магниточувствительные датчики, схематичное устройство которых изображено на рисунке 4. Считывающая головка состоит из тонкопленочного магниторезистивного элемента, экранированного с двух сторон с помощью пленок мягкого магнитного материала. (Роль экранов заключается в том, чтобы по возможности уменьшить до нуля поле от дальних битов). Эта конструкция пролетает на расстоянии порядка десятков-единиц нанометров над поверхностью магнитной пленки, на которой в виде направления намагниченности в доменах, упорядоченных по размеру и расположению, записана информация. Домены противоположной полярности соответствуют битам «0» или «1». Поле от границы между противоположно намагниченными битами, над которой пролетает головка, перемагничивает магниторезистивный элемент. В результате сопротивление элемента меняется, что фиксируется электроникой и передается на шину данных. Данная конструкция в целом используется и в настоящее время.

Рис. 4. Схематичное изображение считывающей головки жесткого диска и принципа ее работы.

Постоянное увеличение плотности записи (соответственно, уменьшение размера одного бита), приводит к уменьшению магнитного потока, приходящегося на магниточувствительный элемент. Чтобы сохранить отношение сигнал/шум, требуется использование все более и более чувствительных головок.

Магниточувствительные элементы на эффекте анизотропного магнитосопротивления имели выход (отношение сопротивления головки при переходе от «0» к «1») порядка 2%, обладали простой конструкцией и позволили создавать HDD с плотностью записи до 1-5 Гбит/дюйм 2 . Дальнейшее повышение плотности записи потребовало введения считывающих элементов на основе эффекта ГМС. Они обладают гораздо более сложной конструкцией (магниточувствительный элемент содержит до 10 различных слоев), и, в различных модификациях, позволяют получить выход от 6 до 12% и плотность записи до 50 Гбит/дюйм 2 . Переход на считывающие головки, основанные на эффекте ГМС, был осуществлен практически всеми основными производителями жестких дисков с 1997 года . Следующее поколение головок основано на эффекте ТМС. Как ожидается, они позволяют получить выход более 200% и плотность записи до 1 Тбит/дюйм 2 . В настоящее время происходит переход производителей жестких дисков на этот тип считывающих головок .


2.2. Магнитная оперативная память MRAM

В компьютерах, контроллерах, мобильных устройствах используется одновременно несколько типов полупроводниковой памяти. Одни из них, например SRAM (static random access memory), являются очень быстрыми, они используются в качестве кэш-памяти в процессорах; однако они имеют сложную конструкцию и поэтому очень дорогие. Другие виды памяти, например, оперативная память DRAM (dynamicrandom access memory), являются более простыми и дешевыми, но и более медленными. Также, SRAM и DRAM не сохраняют свое состояние при отключении энергии. Память типа EEPROM (наиболее известная ее модификация - Flash-память), сохраняет свое состояние при отключении энергии, однако она является очень медленной и не может выполнять функции оперативной памяти даже в относительно несложных устройствах типа mp3-плееров или сотовых телефонов. Кроме того, Flash-память очень энергоемкая и обладает ограничением на количество циклов перезаписи (порядка 10 5 -10 6), при превышении которого она может выйти из строя.

В этом контексте особое внимание стало уделяться созданию универсальной памяти, которая смогла бы совместить в себе достоинства всех перечисленных видов памяти. Согласно сказанному выше, она должна обладать:

а) достаточно простой конструкцией,

б) высокой скоростью записи/считывания,

в) сохранять свое состояние при отключении энергии,

г) позволять производить большое количество циклов записи,

д) потреблять малое количество энергии.

В настоящее время наиболее вероятным кандидатом на роль такой универсальной памяти считается так называемая магнитная оперативная память MRAM (magnetic random access memory) . Схема работы MRAM изображена на рисунке 5. Ячейка памяти состоит из многослойного магниторезистивного элемента, основанного на эффекте ТМС. Свободный слой этого элемента содержит в себе информацию в виде направления намагниченности. Считывание производится путем измерения сопротивления R m данного элемента: при параллельной конфигурации свободного и фиксированного слоев оно будет малым, а при антипараллельной - большим. Этим двум значениям приписываются логические «0» и «1». Запись производится с помощью подачи на токовые шины 1 и 2 (которые по аналогии с полупроводниковыми видами памяти называют соответственно битовой и словарной) импульсов тока. При этом вокруг каждой из них возникает вихревое магнитное поле. Конфигурация элементов подбирается так, что для перемагничивания каждой ячейки необходимо действие поля от обеих токовых шин, а при воздействии поля только от одной из шин элемент сохраняет свое магнитное состояние (см. рис. 5б). В качестве свободного слоя используются, например, Fe или двойной слой CoFe/NiFe, в качестве фиксированного - CoFe на подложке из антиферромагнетика IrMn, в качестве туннельного контакта - оксид алюминия Al 2 O 3 или, обладающий лучшими параметрами ТМС, оксид марганца MnO.

Такая память обладает простой конструкцией (один магниторезистивный элемент и один транзистор на каждую ячейку), она естественным образом сохраняет свое состояние при отключении энергии. Кроме того, она позволяет производить практически бесконечное количество циклов перезаписи (10 16 и более), и, как показывают эксперименты, время цикла записи/считывания составляет для разных образцов десятки-единицы наносекунд (подобно памяти типа SRAM) .



Рис. 5. а) Схематичное изображение ячейки памяти MRAM. При записи в ячейку вокруг токовых шин

создается магнитное поле, которое перемагничивает данный элемент.

б) адресация ячейки при записи. Магнитное поле создается вокруг всей токовой шины,

однако перемагничивается только тот элемент, который расположен на пересечении двух токовых шин.


На пути воплощения идеи о MRAM как универсальной памяти возникает немало проблем, связанных, в основном, с механизмом записи информации: необходимость создания больших магнитных полей записи, относительно большая потребляемая мощность данного устройства (порядка 100 пВт на цикл записи), повышенные требования к надежности процесса переключения ячейки и др., но можно с уверенностью говорить, что рано или поздно они будут решены .


В заключение, стоит отметить следующее. Не секрет, что сейчас модный ярлычок «нано-» приклеивается сейчас повсеместно, но само по себе наличие структуры с характерным размером 1-100 нм и менее еще не является нанотехнологией в подлинном смысле, поскольку отражает лишь количественную, а не качественную сторону явлений. Так 45-нм технология освоенная микроэлектроникой является лишь очередным шагом на пути масштабирования, физические же принципы, лежащие в основе их действия, остаются неизменными. В то же время, эффект ГМС - это возникновение принципиально нового свойства у системы, структурированной на наномасштабе: толщины проводящих слоев должны быть меньше длины свободного пробега электрона (CIP геометрия) или длины релаксации спина (CPP геометрия), которые составляют единицы нанометров. В этом контексте становится ясной формулировка Шведской Академии Наук, присудивших Нобелевскую премию «за открытие эффекта гигантского магнитосопротивлени я» технологии, которая «может рассматриваться как первое по-настоящему эффективное приложение многообещающей области нанотехнологий ».

Важной особенностью технологического процесса при производстве eMRAM Samsung можно признать то, что блок памяти добавляется в чип на этапе сборки, упаковки и тестирования. Это означает, что блок eMRAM выпускается отдельно с использованием всего трёх фотомасок и может быть добавлен к чипу вне зависимости от техпроцесса, с помощью которого тот выпущен и без привязки к планарным или FinFET-транзисторам. Вообще без какой-либо привязки к базовому решению. Тем самым блок eMRAM Samsung можно адаптировать под уже готовые и давно запущенные в массовое производство решения, существенно модернизировав актуальные разработки.

Ещё раз повторим, Samsung не даёт точного описания приборов с eMRAM, которые она запустила в массовое производство. Уточнённые данные мы узнаем чуть позже, и всё расскажем на наших страницах. Пока заявлено, что скорость работы eMRAM в 1000 раз больше eNAND (eFlash). В демонстрационном ролике выше компания показывает, что скорости чтения из eMRAM и SRAM одинаковые. Потребление в режиме записи памяти eMRAM составляет всего 1/400 от потребления при записи eNAND, а устойчивость к износу на несколько порядков выше. Также следует ожидать, о чём Samsung не говорит в пресс-релизе, что её память eMRAM относится, скорее всего, к типу STT-MRAM с записью с переносом момента спина электрона. Собственно, об этом говорят энергетические показатели в режиме записи. Очень экономная, энергонезависимая и быстрая память.

Память MRAM, как известно, обладает меньшими задержками и лучшей скоростью доступа, чем память NAND. При этом MRAM является энергонезависимой памятью, хотя несколько уступает DRAM и SRAM по скорости доступа. В качестве памяти встраиваемой в микроконтроллеры и SoC, память MRAM повысит надёжность и устойчивость работы обычной бытовой и носимой электроники, электроники для вещей с подключением к Интернету, а также промышленных и автомобильных схемотехнических решений.

Партнёры не намерены бесконечно оставаться на 28-нм техпроцессе, и рассчитывают со временем перевести производство встроенных блоков MRAM на техпроцессы с меньшими нормами производства. Несколько слов о компании Avalanche Technology. Компания основана в 2006 году Петром Эстахри (Petro Estakhri). Петро Эстахри стал учредителем и гендиректором Avalanche. До этого он основал в 1996 году и работал главным технологом в компании Lexar Media, пока её в 2006 году не купила компания Micron. До Lexar Петро разрабатывал контроллеры флеш-памяти для компании Cirrus Logic. Можно ожидать, что UMC заключила договор с правильным разработчиком.

Доступ компании UMC к лицензионным технологиям производства MRAM особенно интересен по одной важной причине. Аналогичным образом UMC получила доступ к технологиям производства встраиваемой памяти DRAM и памяти вообще. На данном этапе это сыграло ключевую роль в передаче технологий производства DRAM китайцам, с чем, например, в корне компания Micron. Поэтому аналогичным образом технология производства MRAM тоже может перейти в руки китайских производителей. Кстати, как и интересная технология производства памяти на углеродных нанотрубках, которую UMC может получить вместе с завода Fujitsu.

Кое-что новенькое: память SOT-MRAM можно выпускать в промышленных масштабах

Как мы знаем , энергонезависимую память STT-MRAM (spin-transfer torque MRAM) в настоящее время выпускает компания GlobalFoundries по проекту компании Everspin Technologies. Плотность 40-нм микросхем STT-MRAM составляет всего 256 Мбит (32 Мбайт), что выгодно компенсируется высокой скоростью работы и большей устойчивостью к разрушению во время операций очистки, чем в случае памяти NAND. Эти высокие качества STT-MRAM позволяют претендовать магниторезистивной памяти с записью данных с помощью переноса спинового момента (spin-transfer torque) на место в процессоре. Как минимум речь идёт о замене массивов SRAM на массивы STT-MRAM в качестве кеш-памяти третьего уровня (L3). А что же с кеш-памятью L1 и L2?

По мнению специалистов бельгийского исследовательского центра Imec, для использования магниторезистивной памяти MRAM в качестве энергонезависимого кеша первого и второго уровней память STT-MRAM подходит не очень хорошо. На эту роль претендует более совершенный вариант магниторезистивной памяти, а именно — SOT-MRAM (spin-orbit torque MRAM). Запись в ячейку SOT-MRAM также происходит спин-поляризованным током, но только в виде передачи вращательного момента, используя для этого спин-орбитальный момент электронов.

Принципиальная разница заключается в схеме управления туннельным переходом в составе ячейки памяти и в методе записи. Так, ячейка STT-MRAM представляет собой бутерброд из двух тонкоплёночных структур (разделённых диэлектриком), одна из которых имеет постоянную намагниченность, а вторая «свободную» — зависящую от поляризации приложенного тока. Запись и чтение данных из такой ячейки происходят одинаково при пропускании токов перпендикулярно через туннельный переход. Тем самым износ ячейки происходит как во время записи, так и во время чтения, хотя при чтении токи значительно меньше, чем при записи.

Ячейка с туннельным переходом SOT-MRAM, также содержащая свободный слой и слой с постоянной намагниченностью, записывается током, который движется вдоль туннельного перехода, а не через все слои. Изменение «геометрии» подачи тока, заявляют в Imec, значительно повышает как устойчивость ячейки к износу, так и скорость переключения слоя. При сравнении работы ячеек STT-MRAM и SOT-MRAM, выпущенных на одной и той же пластине типоразмера 300 мм, для SOT-MRAM устойчивость к износу превысила 5·10 10 , а скорость переключения ячейки (запись) снизилась с 5 нс до 210 пс (пикосекунд). Потребление при этом было на низком уровне, равном 300 пДж (пикоджоулей).

Особый шарм всей этой истории заключается в том, что в Imec показали возможность выпускать память SOT-MRAM на штатном оборудовании на 300-мм кремниевых подложках. Иначе говоря, на практическом уровне доказали возможность запуска массового производства памяти типа SOT-MRAM.

GlobalFoundries предлагает эталонные 22-нм контроллеры с eMRAM

Многолетнее партнёрство компании GlobalFoundries и разработчика магниторезистивной памяти eMRAM и MRAM компании Everspin Technologies уже ь в производство 40-нм чипов энергонезависимой памяти типа ST MRAM (Spin-Torque MRAM). На линиях GlobalFoundries выпускаются массовые 256-Мбит 40-нм микросхемы ST MRAM и опытные 1-Гбит 28-нм чипы. Для производства памяти Everspin используются обычные пластины из монолитного кремния.

На следующем этапе GlobalFoundries собирается освоить выпуск ST MRAM с использованием пластин FD-SOI (полностью обеднённый кремний на изоляторе) с нормами 22 нм (кодовое название техпроцесса 22FDX). В текущем году техпроцесс 22FDX будет внедрён в массовое производство на заводах компании в Дрездене, а в следующем году — на новом производстве GlobalFoundries в Китае.

Встраиваемую память eMRAM в сочетании с эталонными микроконтроллерами GlobalFoundries планирует предложить своим клиентам ближе к концу 2018 года. За разработку контроллеров отвечает компания eVaderis, а GlobalFoundries предложит техпроцесс 22FDX и технологию интеграции массивов eMRAM в состав контроллера. В качестве опции клиенты смогут заказать интеграцию в MCU eVaderis блоков NAND-флеш и SRAM.

Техпроцесс 22FDX позволит создавать экономичные по потреблению и площади решения. Платформа в виде eMRAM с MCU eVaderis будет распространяться в виде IP-блоков для самостоятельного производства и для интеграции в решения клиентов GlobalFoundries. Это могут быть контроллеры для вещей с подключением к Интернету, в том числе с батарейным питанием, контроллеры для потребительской и промышленной электроники, а также контроллеры для автомобилей.

Samsung первой приблизилась к выпуску 28-нм eMRAM на подложках FD-SOI

Все предыдущие годы главными шагами по развитию производства полупроводников оставалась смена масштаба технологических норм. Сегодня, когда уменьшить размер элемента на кристалле становится предельно трудно, популярность обретают обходные пути, в частности, переход на полупроводниковые пластины с изолирующим слоем из полностью обеднённого кремния или FD-SOI. Пластины FD-SOI в производстве уже активно использует компания STMicroelectronics и готовятся использовать компании GlobalFoundries и Samsung.

На прошлой неделе мы познакомились с планами GlobalFoundries, которая начнёт рисковое производство с техпроцессом 22FDX (22 нм) в конце 2018 года. Компания Samsung, как стало известно из свежего официального сообщения производителя, вскоре планирует приступить к массовому выпуску решений с использованием фирменного техпроцесса 28FDS (28 нм). Обратим ваше внимание, что техпроцессы GlobalFoundries и Samsung отличаются, хотя в случае обработки монолитного кремния GlobalFoundries лицензировала у Samsung техпроцессы с нормами 28 нм и 14 нм FinFET. Техпроцесс 22FDX компания GlobalFoundries лицензировала у STMicroelectronics.

Возвращаясь к анонсу Samsung, отметим, что производитель сообщил о создании первого в индустрии цифрового проекта встроенной памяти eMRAM применительно к техпроцессу 28FDS. Тем самым выпуск опытного блока eMRAM с нормами 28 нм на пластинах FD-SOI можно ожидать в конце весны или в начале лета следующего года. Массовое производство решений, очевидно, стартует ближе к концу 2018 года, когда GlobalFoundries только-только увидит первые опытные решения, выпускаемые с техпроцессом 22FDX.

Принцип хранения информации в ячейке памяти MRAM

Компания GlobalFoundries, в техпроцессе 22FDX тоже будет выпускать решения со встроенной памятью eMRAM. Магниторезистивная память с произвольным доступом (MRAM) работает со скоростью, близкой к скорости обычной оперативной памяти. Большая площадь ячейки магниторезистивной памяти не позволяет выпускать ёмкие чипы MRAM, что тормозит её массовое появление в компьютерных системах. Начало производства 28-нм и 22-нм кристаллов MRAM обещает появление чипов ёмкостью от 1 Гбит и выше. Этого уже достаточно, чтобы те же SSD получили нормальный и энергонезависимый буфер памяти вместо привычной памяти DDR. И GlobalFoundries, и Samsung делают всё возможное, чтобы это стало реальностью после 2018 года.

GlobalFoundries готовится выпускать 22-нм контроллеры с памятью eMRAM

На сегодня наибольшего прогресса в деле освоения производства такого нового типа энергонезависимой памяти, как MRAM (магниторезистивная память), добилась компания GlobalFoundries. В GlobalFoundries заключила договор на внедрение в производство памяти ST MRAM (Spin-Torque MRAM), которую разработала компания Everspin Technologies. Это память с записью данных в ячейку с помощью переноса спина электрона на основе тоннельного эффекта. Такая память значительно энергоэффективнее NAND-флеш и намного быстрее и надёжнее её. Основная проблема MRAM заключается в сравнительно крупной ячейке и низкой плотности записи. Эту проблему компания GlobalFoundries постепенно решает.

В августе на мероприятии Flash Summit 2017 GlobalFoundries и Everspin показали самую передовую и плотную в индустрии память MRAM: массово выпускаемые и опытные 1-Гбит 28-нм чипы. Всю эту память выпускает компания GlobalFoundries. Но главной услугой стала возможность выпускать на мощностях GlobalFoundries контроллеры и SoC со встроенным массивом памяти MRAM. Такие решения отличаются быстрой и надёжной встроенной памятью, выполнение кода в которой происходит почти также быстро, как в оперативной памяти. А с настоящего момента GlobalFoundries предлагает инструменты для проектирования 22-нм контроллеров со встроенной памятью MRAM на пластинах FD-SOI (кремний на изоляторе с полностью обеднённым слоем).

Первые проекты решений для техпроцесса 22FDX со встроенной памятью MRAM будут собраны для опытного производства к первому кварталу 2018 года. Рисковое производство по этим проектам будет проведено в конце 2018 года. В GlobalFoundries ожидают, что техпроцессом 22FDX воспользуются проектировщики бытовых, индустриальных и автомобильных контроллеров и решений для вещей с подключением к Интернету с батарейным питанием. Техпроцесс 22FDX обещает достаточно экономное потребление для чипов и высокую надёжность хранения данных. Например, ячейки MRAM в техпроцессе 22FDX могут хранить данные без потери 10 лет при температуре 125 градусов по Цельсию. Также опыты подтверждают, что в процессе перепайки памяти с нагревом до 260 градусов ячейки MRAM не теряют информацию. Подобные характеристики востребованы для бортовой электроники, и они гарантированно найдут применение на практике.

TSMC займётся производством микрочипов памяти eMRAM и eRRAM

Taiwan Semiconductor Manufacturing Company (TSMC), по информации сетевых источников, намерена организовать производство чипов памяти нового поколения.

Речь идёт об изделиях MRAM и RRAM для встраиваемых устройств. Напомним, что MRAM — это магниторезистивная память с произвольным доступом: информация в данном случае хранится при помощи магнитных моментов, а не электрических зарядов. Что касается RRAM, то это резистивная память с произвольным доступом, принцип работы которой заключается в изменении сопротивления ячейки памяти под действием приложенного напряжения. Важно отметить, что оба типа памяти являются энергонезависимыми, то есть могут сохранять записанную информацию при отсутствии внешнего питания.

Итак, сообщается, что TSMC планирует организовать рисковое производство eMRAM (Embedded MRAM) в 2018 году, а eRRAM — в 2019. При этом планируется задействовать 22-нанометровую технологию.

Ожидается, что изделия eMRAM и eRRAM, выпущенные на линиях TSMC, будут применяться в системах для «умных» автомобилей, устройствах Интернета вещей, всевозможных мобильных гаджетах и пр.

Отметим также, что в следующем году TSMC планирует начать массовый выпуск продукции с применением передовой 7-нанометровой технологии. Эта методика будет использоваться при изготовлении микрочипов для мобильных устройств, систем высокопроизводительных вычислений и автомобильной техники.

SK Hynix и Toshiba создали модуль памяти STT-MRAM ёмкостью 4 Гбит

Компании SK Hynix и Toshiba отрапортовали о новых достижениях в разработке магниторезистивной памяти (MRAM).

Информация в MRAM хранится при помощи магнитных моментов, а не электрических зарядов. Магнитные элементы сформированы из двух ферромагнитных слоёв, разделённых тонким слоем диэлектрика. Один из слоёв представляет собой постоянный магнит, намагниченный в определённом направлении, а намагниченность другого слоя изменяется под действием внешнего поля.

SK Hynix и Toshiba применяют технологию STT-MRAM — Spin-Transfer Torque Magnetic Random Access Memory. Она использует «перенос спина» для перезаписи ячеек памяти. Данный эффект позволяет уменьшить величину тока, необходимую для записи информации в ячейку.

Модуль памяти STT-MRAM, созданный специалистами SK Hynix и Toshiba, имеет ёмкость 4 Гбит. Он состоит из восьми блоков объёмом 512 Мбит каждый. Изделие обладает энергонезависимостью, малым временем доступа и высокой скоростью передачи данных.

Более подробно о решении компании расскажут на мероприятии ISSCC 2017, которое пройдёт в феврале. Вывести разработку на коммерческий рынок SK Hynix и Toshiba рассчитывают в течение двух-трёх лет.

Выпуск 256-Мбит памяти MRAM повысит надёжность работы SSD

Слабым местом накопителей на твердотельной памяти или SSD остаётся кеш-буфер из памяти типа DRAM. В настоящий момент в качестве буферной памяти широко используются микросхемы памяти DDR3. Давно планируется, что в качестве энергонезависимого буфера SSD будет использоваться какой-то из новых и перспективных видов энергонезависимой памяти — MRAM, RRAM, PCM или что-то другое (3D XPoint?). Собственно, отдельные накопители или подсистемы для кеширования данных в стоечных системах хранения уже используют магниторезистивную память MRAM и даже память на основе эффекта изменяемого фазового состояния вещества (PCM). Широкое использование памяти MRAM и PCM ограничено малой ёмкостью микросхем этих типов памяти. В будущем, тем не менее, всё обещает измениться. И это будущее может оказаться ближе, чем ожидается.

В интервью сайту EE Times исполнительный директор компании Everspin Technologies сообщил , что до конца года будет налажен выпуск 1-Гбит микросхем MRAM типа ST-MRAM. В основе разновидности этой памяти MRAM — ST-MRAM — лежит эффект записи ячейки с помощью туннельного переноса информации магнитным спином электронов. В настоящий момент компания Everspin приступила к массовому выпуску памяти ST-MRAM ёмкостью 256 Мбит (32 Мбайт). Подобная ёмкость, уверены в компании, позволяет памяти ST-MRAM уверенно войти в состав SSD и стать «неубиваемой» заменой RAM-буфера, ведь с отключением питания данные в ST-MRAM не пропадают. Для этого компания выпускает микросхемы ST-MRAM с интерфейсами DDR3 и DDR4.

Ранее память ST-MRAM компании Everspin в системах кеширования данных использовала компания Dell в серверах PowerEdge и в системах хранения PowerVault (DAS) и EqualLogic (SAN). Компания LSI задействовала энергонезависимую память ST-MRAM в RAID-накопителях для ведения истории транзакций, а японская компания Melco (торговая марка Buffalo) даже выпускала определённые модели SSD с буфером из ST-MRAM микросхем. С выходом более ёмкой памяти ST-MRAM подобная практика обещает стать распространённой, что повысит надёжность работы с SSD.

Московский физико-технический институт (МФТИ) и компания «Крокус НаноЭлектроника» (КНЭ) сообщили о начале совместной исследовательской программы по разработке и апробации технологии производства магниторезистивной памяти STT-MRAM.

Память MRAM хранит информацию при помощи магнитных моментов. Технология STT-MRAM (Spin-Transfer Torque Magnetic Random Access Memory), в свою очередь, использует «перенос спина» для перезаписи ячеек памяти. Применение этого эффекта в традиционной магниторезистивной памяти позволяет уменьшить величину тока, необходимую для записи информации в ячейку, а также использовать техпроцесс с нормами от 90 до 22 нанометров и меньше.

Сообщается, что МФТИ и КНЭ направят свои усилия на разработку новых материалов, дизайн микрочипов, а также разработку методов их контроля и моделирования. Выпуск памяти STT-MRAM планируется организовать на мощностях КНЭ: технологическая площадка этой компании позволяет производить продукцию на основе магнитных туннельных структур по топологической норме до 90/65 нанометров на пластинах диаметром 300 мм.

«Производственные мощности нашей компании идеально подходят для создания встроенных или дискретных продуктов на основе STT-MRAM. Мы ожидаем, что в ближайшее время у этой технологии появится большой рынок — этому поспособствует превосходство STT-MRAM по таким показателям, как количество циклов перезаписи, скорость и энергопотребление », — сообщили в КНЭ.

Добавим, что в настоящее время все крупнейшие производители динамической оперативной памяти DRAM имеют свои программы STT-MRAM — данная технология считается основным кандидатом на замещение DRAM в ближайшем будущем.

Министерство образования и науки Российской Федерации

Федеральное государственное образовательное учреждение высшего профессионального образования

« Южно-Уральский Государственный Университет »

Факультет « Энергетический »

Кафедра « ЭСИС »

Магниторезистивная оперативная память реферат по дисциплине« Информатика »

Проверил, (доцент) _______________ / Башмакова Н.Ю. / _______________ 20__г. Автор работы студент группы Э-164 _______________ / Кулагин А.Д. / _______________ 20__г. Реферат защищён с оценкой (прописью, цифрой) _____________________ _______________20__г.

Аннотация

Кулагин А.Д. Магниторезистивная оперативная память Э-164 13

Цель реферата – отразить процесс энергонезавсемости при отсутствии внешнего питания.

Задачи реферата – изучить свойства и назначения запоминающего устройства с произвольным доступом MRAM.

1 Введение 4

2 История создания технологии MRAM 5

3 Свойства магниторезистивной памяти 5

3.1 Преимущества 5

3.2 Недостатки 5

3.2.1 Сравнительные характеристики основных типов памяти 6

4 Структура и функционирование битовых ячеек MRAM 6

5 Микросхема памяти MR2A16A 8

5.1 Функции выводов MR2A16A 8

6 Области применения энергонезависимой памяти MRAM 9

7 Перспективы развития 10

8 Заключение 12

9 Библиографический список 13

  1. Введение

Магниторезистивная оперативная память (MRAM) - запоминающее устройство с произвольным доступом, которое хранит информацию при помощи магнитных моментов, а не электрических зарядов.

Важнейшее преимущество этого типа памяти - энергонезависимость, то есть способность сохранять записанную информацию при отсутствии внешнего питания.

  1. История создания технологии mram

История создания магниторезистивной памяти MRAM (Magnetoresistive Random Access Memory) насчитывает уже не один десяток лет. В частности, в России также проводились работы по созданию магниторезистивной памяти для применения в военной и аэрокосмической областях. Однако практически все попытки создания серийной памяти MRAM не приводили к появлению надежного продукта, пригодного для серийного производства.

Такие крупные фирмы, как IBM, Cypress, Toshiba, Renesas, Hitachi, Mitsubishi, Motorola и др., работали над созданием памяти более 10 лет. Компания Motorola приступила к исследованиям в области магниторезистивных структур в 1995 г. совместно с агентством перспективных исследований МО США (DARPA US). После отделения всего сектора полупроводниковых компонентов от Motorola в 2004 г. уже независимая компания Freescale Semiconductor продолжила работы по доведению продукта до серийного производства. В результате 10 июля 2006 г. был анонсирован законченный коммерческий продукт, использующий технологию MRAM, - автономный модуль MR2A16A с объемом памяти 4 Мбит.

Магниторезистивная память является революционной технологией, обладающей всеми необходимыми свойствами для того, чтобы стать действительно универсальной. Кроме того, она имеет ряд уникальных особенностей, открывающих широкие рыночные перспективы.

  1. Свойства магниторезистивной памяти

    1. Преимущества

    энергонезависимость;

    высокое быстродействие;

    не требуется регенерация ячеек.

    1. Недостатки

    сложности с существующими способами записи;

    большой размер ячейки памяти, из-за технологии записи;

    высокое энергопотребление по той же причине.

Магниторезистивная память MRAM - быстродействующие ОЗУ и ПЗУ в одной микросхеме

Михаил Соколов, инженер по применению, компания Freescale Semiconductor
Александр Гришин, инженер, МЭИ (ТУ)

Исследование магниторезистивных структур как энергонезависимых элементов для хранения информации началось еще в первой половине ХХ века. Но только летом 2006 г. была представлена первая в мире микросхема энергонезависимой памяти, использующая технологию MRAM.

В некоторых публикациях этот факт называют прорывом в области разработки памяти за последние 10 лет. Так ли это, и что из себя представляет магниторезистивная память - на эти вопросы отвечает данная статья. Также приводится подробное описание характеристик микросхемы MR2A16A - первого продукта в линейке памяти MRAM.

Технология MRAM - долгий путь к успеху

История создания магниторезистивной памяти MRAM (Magnetoresistive Random Access Memory) насчитывает уже не один десяток лет. В частности, в России также проводились работы по созданию магниторезистивной памяти для применения в военной и аэрокосмической областях. Однако практически все попытки создания серийной памяти MRAM не приводили к появлению надежного продукта, пригодного для серийного производства.

Такие крупные фирмы, как IBM, Cypress, Toshiba, Renesas, Hitachi, Mitsubishi, Motorola и др., работали над созданием памяти более 10 лет. Компания Motorola приступила к исследованиям в области магниторезистивных структур в 1995 г. совместно с агентством перспективных исследований МО США (DARPA US). После отделения всего сектора полупроводниковых компонентов от Motorola в 2004 г. уже независимая компания Freescale Semiconductor продолжила работы по доведению продукта до серийного производства. В результате 10 июля 2006 г. был анонсирован законченный коммерческий продукт, использующий технологию MRAM, - автономный модуль MR2A16A с объемом памяти 4 Мбит.

Магниторезистивная память является революционной технологией, обладающей всеми необходимыми свойствами для того, чтобы стать действительно универсальной. Кроме того, она имеет ряд уникальных особенностей, открывающих широкие рыночные перспективы.

Преимущества магниторезистивной памяти

Объем мирового рынка микросхем памяти, по некоторым оценкам, превышает 48 млрд. долл. США и продолжает расти. Чтобы выйти на рынок и не быть статистом во втором десятке производителей устройств памяти, необходимо предложить новый, уникальный продукт, сочетающий в себе преимущества всех распространенных технологий: энергонезависимое хранение данных практически неограниченное время без необходимости регенерации, скорость чтения/записи, сравнимую с лидирующей на сегодняшней день технологией SRAM, неограниченное число циклов стирания/записи данных, высокую масштабируемость и плотность ячеек для создания микросхем памяти различного объема. Задача на первый взгляд невыполнима, однако наиболее близко к ее решению подошла технология MRAM. Конечно, скорость чтения/записи еще не достигла долей наносекунд, пока не отработаны технологические процессы создания микросхем MRAM объемом сотни мегабит и в компактных корпусах, стоимость не всегда та, что хотелось бы. Но уже сейчас можно с достаточной уверенностью утверждать, что технология MRAM преодолеет эти недостатки и через несколько лет постепенно начнет отвоевывать значительную часть рынка у существующих технологий памяти. На чем основаны такие утверждения? Рассмотрим более подробно особенности памяти MRAM, отличающие ее от распространенных технологий (см. табл. 1).

Таблица 1. Сравнительные характеристики основных типов памяти

MRAM SRAM DRAM FLASH FRAM
Скорость чтения Высокая Самая высокая Средняя Высокая Высокая
Скорость записи Высокая Самая высокая Средняя Низкая Средняя
Маштабируемость Хорошая Хорошая Ограниченная Ограниченная Ограниченная
Плотность ячеек Средняя/высокая Низкая Высокая Средняя Средняя
Энергонезависимость Да Нет Нет Да Да
Число циклов стирания/записи Неограниченное Неограниченное Неограниченное Ограниченное Ограниченное
Ток утечки ячеек Низкий Низкий/высокий Высокий Низкий Низкий
Возможность работы при низких напряжениях Да Да Ограниченная Ограниченная Ограниченная
Сложность производства Средняя Низкая Средняя Средняя Средняя

Энергонезависимая память EEPROM (ЭСППЗУ) на данный момент находится на последних стадиях своего жизненного цикла. Значительно более медленная скорость работы, а также ограниченное количество циклов перезаписи по сравнению с MRAM не позволяют использовать эту память в качестве оперативной. Она годится только для хранения кода программ либо данных, не требующих частого изменения либо обращения к ним.

Основным недостатком памяти типа Flash (флэш) является малое число циклов перезаписи. В зависимости от условий эксплуатации флэшпамять может быть перезаписана примерно 10 тыс. - 1 млн. раз прежде, чем битовая ячейка перестанет функционировать. В отличие от флэш-памяти, число циклов перезаписи памяти MRAM бесконечно благодаря принципиально другой технологии работы битовых ячеек. Здесь программирование происходит путем изменения полярности магнитных слоев, а данная операция не разрушает материал, из которого состоят ячейки памяти.

К другим недостаткам флэш-памяти стоит отнести низкую скорость записи, а также поблочный характер стирания/записи ячеек памяти. В MRAM можно выполнять любые операции над отдельными ячейками независимо. Кроме того, магниторезистивная память не требует предварительного стирания бита перед его перезаписью.

Динамическая память DRAM требует частой регенерации ячеек для сохранения данных, что приводит к повышенному потреблению электроэнергии и не позволяет использовать ее в качестве энергонезависимой памяти.

Статическая память SRAM не является энергонезависимой. К тому же, вследствие низкой плотности ячеек технология SRAM не позволяет создавать память значительного объема (десятки - сотни мегабит) в малом форм-факторе.

Статическую память с резервным батарейным питанием (Battery Backed SRAM) можно назвать универсальной памятью, но с существенными ограничениями. Встроенные батареи имеют ограниченный срок службы, лимитированную емкость вследствие компактных размеров батареи, а ее наличие в устройстве создает дополнительные проблемы при хранении, монтаже и эксплуатации памяти. Нельзя забывать и про сильную температурную зависимость характеристик батареи и дополнительные сложности при утилизации устройств.

Скорость записи/стирания памяти MRAM больше, чем у Battery Backed SRAM. Отсутствие батареи означает большую надежность и долговечность памяти MRAM, независимость ее рабочих характеристик от температуры во всем диапазоне, определенном производителем.

Энергонезависимая ферроэлектрическая память FRAM до недавнего времени наиболее полно соответствовала определению «универсальной памяти» из всех доступных на рынке серийно выпускаемых микросхем. Однако и у нее есть ряд недостатков, самый серьезный их которых заключается в большом размере ее ячеек. Благодаря усилиям разработчиков он постепенно приближается к физическому пределу, за которым дальнейшее уменьшение габаритов сопряжено с серьезными техническими и технологическими проблемами. Однако при этом ячейки остаются достаточно крупными, что не позволяет создавать микросхемы памяти большого объема с малыми габаритами. На сегодняшний день объем памяти микросхем FRAM составляет от единиц килобит до единиц мегабит. Производители предпринимают попытки создать память объемом десятки мегабит, однако серийное производство микросхем объемом 16, 32 либо 64 Мбит если и будет возможно, то не раньше чем через 3–5 лет.

Технология MRAM не накладывает ограничений на объем памяти. По сравнению с FRAM скорость чтения/ записи ячеек памяти MRAM ощутимо выше.

Модули памяти FRAM требуют повторной перезаписи данных в ячейки после считывания. Этот эффект связан с деградацией битовых ячеек памяти FRAM при операции чтения. Как следствие, это может привести к потере данных, если произойдет случайное отключение питания во время операции чтения, что для энергонезависимой памяти является очень существенным недостатком.

Структура и функционирование битовых ячеек MRAM

Первый коммерческий продукт, использующий технологию MRAM, микросхема MR2A16A состоит из массива ячеек памяти, каждая из которых содержит один транзистор и один магнитный туннельный переход (1T1MTJ). Магнитный туннельный переход (MTJ) является основой битовой ячейки MRAM. Он состоит из очень тонкого диэлектрического слоя оксида алюминия (AlOx), помещенного между двумя магнитными слоями. Каждый из магнитных слоев имеет свой вектор магнитного поля. Верхний магнитный слой называют свободным слоем, он может изменять вектор своего поля. Магнитный слой основания называют фиксированным слоем, вектор его магнитного поля заблокирован и не изменяется.

Направление вектора магнитного поля свободного слоя определяет состояние бита как логического нуля или единицы. Если векторы намагниченности свободного слоя и фиксированного слоя сориентированы в одном направлении, сопротивление структуры MTJ низкое (см. рисунок 1). Если векторы намагниченности свободного и фиксированного слоев развернуты на 180° относительно друг друга (противоположны), сопротивление структуры MTJ высокое. Величина сопротивления перехода MTJ определяет, будет ли прочитано содержимое ячейки как «0» или «1» при прохождении через ячейку тока чтения.

Рис. 1. Магнитные слои битовой ячейки 1Т1MTJ памяти MRAM для значений «0» и «1»

Во время операции установки бита магнитный вектор свободного слоя принимает одно из двух возможных состояний. Направление вектора поля задается с помощью внутренних медных проводников, расположенных в перпендикулярных направлениях относительно друг друга на вершине и в основании структуры MTJ. Импульсы тока, протекающего через перпендикулярно расположенные медные проводники, создают магнитное поле, которое изменяет намагниченность свободного слоя той битовой ячейки, которая находится в области перекрещивания проводников (см. рис. 2).


Рис. 2. Битовая ячейка 1T1MTJ: упрощенная структура, режимы чтения и записи

Такая трехслойная структура повышает скорость и стабильность операций стирания/записи, однако требует более высокого тока для выполнения этих операций, чем ячейки традиционной памяти. Однако на практике среднее потребление остается на том же уровне, так как при записи байта данных не все биты требуют изменения, если только мы не меняем значение байта с «FF» на «00» и обратно. Кроме того, процесс стирания/записи занимает крайне малое время порядка 25 нс. В результате по показателю потребления микросхема памяти типа MRAM выигрывает по сравнению с другими типами ПЗУ, которые, к тому же, существенно медленнее.

Микросхема памяти MR2A16A

Микросхема MR2A16A является первым продуктом от компании Freescale в линейке микросхем памяти MRAM. Модуль памяти MR2A16A изготовлен по технологии 0,18 мкм и является уже вторым поколением устройств на базе данной технологии. Емкость микросхемы составляет 4 Мбит с организацией 256К х 16 бит. Управление осуществляется по стандартным входам: chip enable, write enable, output enable и upper/lower byte select, обеспечивающим гибкость системы и предотвращающим конфликтные ситуации при обращении к шине (см. табл. 2). В зависимости от состояния управляющих входов данные могут быть записаны/считаны как в 8-битном, так и в 16-битном формате. Устройство также поддерживает полностью статические операции. Внутренняя структура микросхемы памяти представлена на рисунке 3.


Рис. 3. Блок-схема микросхемы MR2A16A

Таблица 2. Функции выводов MR2A16A

Времена циклов чтения/записи/стирания малы, симметричны по длительности и составляют 35 нс. Диапазон рабочих напряжений микросхемы - 3-3,6 В, встроенная схема мониторинга питания предотвращает запись ячеек памяти при снижении уровня питающего напряжения более чем на 0,5 В относительно рабочего. Рабочий температурный диапазон микросхем MRAM образца 2006 г. составляет 0-70°С. Во втором квартале 2007 г. компания Freescale начнет серийный выпуск микросхем MR2A16A с рабочим диапазоном – 40-105°С. В третьем квартале 2007 г. компания планирует анонсировать новые продукты на базе технологии MRAM. Ожидается, что следующими в линейке микросхем будут модули памяти объемом 1 Мбит и 16 Мбит.

Микросхемы MR2A16A выпускаются в корпусе 44-TSOP (type-II) в соответствии с техническими условиями RoHS. В корпус микросхемы встроено защитное экранирование от внешних электромагнитных помех. Конфигурация выводов MR2A16A полностью соответствует микросхемам памяти типа SRAM, по принципу работы с памятью MRAM также схожа с SRAM. Поэтому чипы памяти MR2A16A могут применяться в существующих устройствах и системах, использующих память SRAM, без каких-либо изменений в схеме.

Данные сохраняются в ячейках за счет намагниченности, а не за счет заряда, что позволяет сохранять информацию без регенерации и без питающего напряжения 10 лет и более. Переключение состояния битов осуществляется без перемещения атомов и электронов внутри материалов, поэтому отсутствует эффект постепенной деградации внутренней структуры битовой ячейки и обеспечивается стабильность характеристик памяти во время всего срока службы микросхемы. Благодаря этому число циклов перезаписи памяти MRAM практически бесконечно (более 10 16), а структура ячеек памяти и рабочие характеристики не деградируют в процессе эксплуатации во всем диапазоне рабочих температур и напряжений. Эксперименты показали, что ячейки памяти MR2A16A выдерживают более 58 трлн. циклов записи и стирания, работая в наихудших эксплуатационных условиях.

До настоящего времени не было зарегистрировано ни одного сбоя в работе ячеек памяти, и эксперимент по тестированию количества циклов записи/стирания ячеек памяти MRAM продолжается. В ходе испытаний микросхемы MR2A16A работали на частоте 4 МГц при температуре окружающей среды 90°С и на частоте 28,5 МГц при температуре окружающей среды 70°С.

Области применения энергонезависимой памяти MRAM

На сегодняшний день основными факторами, сдерживающими начало массового применения памяти MRAM, являются стоимость микросхем, скудость линейки продуктов с различным объемом памяти, а также новизна технологии. Пока разработчикам доступна только одна микросхема объемом 4 Мбит. По мере удешевления технологии производства и появления новых продуктов MRAM от различных производителей стоимость элементов памяти будет стремительно снижаться. Однако уже сейчас можно говорить о многочисленных областях электронной промышленности, в которых использование магниторезистивной памяти будет экономически оправдано.

Наиболее высока потребность в памяти MRAM в коммерческих системах, где требуется сохранение данных при различных нештатных ситуациях, например аварийном отключении питающего напряжения. Эта память является также идеальным решением для различных регистраторов и устройств типа «черного ящика». Данные могут сохраняться на скоростях, сравнимых с памятью типа SRAM, при этом они не будут утеряны вследствие отключения электроэнергии.

Другим ключевым рынком применения памяти MRAM являются приложения, в которых используется память SRAM с батарейным резервным питанием либо NVSRAM (см. рис. 4). По экономической эффективности, техническим и потребительским параметрам замена памяти на MRAM в подобного рода приложениях оправдана более чем в 80% случаев.


Рис. 4. MRAM в качестве альтернативы памяти Battery Backed SRAM

Рынок устройств автомобильной электроники будет в числе первых и основных потребителей магниторезистивной памяти. Осталось дождаться появления микросхем MRAM с автомобильным либо промышленным температурным диапазоном, тем более что уже давно назрела потребность в более надежной, долговечной, быстрой и эффективной памяти, нежели распространенные ЭСППЗУ и флэш-память. В одних электронных системах автомобиля уже сейчас процесс записи не успевает за потоком исходных данных, в других данные необходимо сохранять достаточно часто - все это заставляет разработчиков систем идти на различные ухищрения.

Используя MRAM, автомобильные аварийные регистраторы также будут в состоянии собрать и хранить значительное количество данных непосредственно перед и во время аварии, что может быть крайне полезно, например, для страховых компаний.

К другим областям применения памяти MRAM можно отнести следующие:

  • персональные компьютеры, офисная техника (мобильные и стационарные ПК, принтеры, факсы, сканеры и т.п.);
  • мобильные, носимые устройства (сотовые телефоны, MP3-плееры, фото- и видеокамеры, КПК и т.п.);
  • замена ОЗУ с резервным батарейным питанием;
  • хранение первоначальных установок и программ загрузчиков в разнообразных устройствах;
  • энергонезависимые буферы хранения оперативной информации в серверах и RAID-массивах;
  • счетчики и расходомеры (электричество, тепло, вода и прочее);
  • авиационная техника, военные приложения;
  • охранно-пожарные системы (журналы событий и т.п.);
  • хранение данных в различном медицинском оборудовании;
  • расширение оперативной памяти в коммуникационных приложениях и приложениях, требующих частого обращения к обрабатываемым данным.

Перспективы развития

Компания Freescale планирует развивать продукты MRAM в двух направлениях: выпуск отдельных чипов памяти и интеграция в собственные 8-, 16- и 32-разрядные микроконтроллеры и микропроцессоры.

По мере совершенствования технологии магниторезистивной памяти архитектура встраиваемых систем подвергнется радикальной перемене. В настоящее время MRAM имеет наилучший потенциал для замены комбинаций различных типов памяти, например SRAM + флэш + ПЗУ, применяемых сейчас в большинстве микроконтроллеров и систем на кристалле, так как обладает достоинствами всех перечисленных типов. Таким образом, станет возможна архитектура микроконтроллеров с единственной универсальной памятью (singlememory architecture).

Через 3-5 лет возможно появление персональных компьютеров с магниторезистивной памятью. На первоначальной стадии начнется производство ПК, в которых флэшпамять для хранения базовой системы ввода/вывода (т.н. BIOS) будет заменена на память MRAM. В дальнейшем по мере увеличения объемов и скоростей работы MRAM начнется постепенная замена оперативной и кэш-памяти в ПК.

Уже сейчас появляются портативные ПК, в которых накопители на жестких дисках заменяются памятью типа флэш. Если в процессе развития технологии MRAM не возникнет ограничений на создание памяти объемом десятки и сотни гигабит в компактном форм-факторе, следует ожидать появления быстродействующих накопителей для хранения прикладного программного обеспечения и данных. Это даст возможность создавать персональные компьютеры и другие системы и устройства, которые будут загружаться практически мгновенно по сравнению, например, с нынешними ПК, в которых процесс загрузки занимает от десятков секунд до нескольких минут. Кроме того, появится возможность возобновлять выполнение программ после включения устройства с того момента, на котором оно было прервано при выключении напряжения питания.

В результате через несколько лет технология MRAM постепенно начнет не только осваивать новые области применения электронной памяти, но и сможет взять на себя значительную часть уже имеющегося рынка полупроводниковой памяти, заменяя распространенные сегодня энергонезависимые ЭСППЗУ, флэш, FRAM, а также наиболее популярные быстродействующие типы памяти, как статическая SRAM, динамическая DRAM и другие.



План:

    Введение
  • 1 Описание
  • 2 Сравнение с другими типами памяти
    • 2.1 Плотность размещения элементов в микросхеме
    • 2.2 Энергопотребление
    • 2.3 Быстродействие
    • 2.4 Общее сравнение
  • 3 История
    • 3.1 Текущий статус
  • 4 Применение

Введение

Магниторезистивная оперативная память (MRAM - англ. magnetoresistive random-access memory ) - это запоминающее устройство c произвольным доступом, которое хранит информацию при помощи магнитных моментов, а не электрических зарядов.

Важнейшее преимущество этого типа памяти - энергонезависимость, то есть способность сохранять записанную информацию при отсутствии внешнего питания.

Технология магниторезистивной памяти разрабатывается с 1990-х годов. В сравнении с растущим объемом производства других типов компьютерной памяти, особенно флэш-памятью и памятью типа DRAM, она пока широко не представлена на рынке. Однако её сторонники верят, что благодаря ряду преимуществ, она в конечном счёте заменит все типы компьютерной памяти, и станет по-настоящему «универсальной» компьютерной памятью.

Упрощенная структура ячейки MRAM памяти


1. Описание

В отличие от других типов запоминающих устройств, информация в магниторезистивной памяти хранится не в виде электрических зарядов или токов, а в магнитных элементах памяти. Магнитные элементы сформированы из двух ферромагнитных слоёв, разделенных тонким слоем диэлектрика. Один из слоёв представляет собой постоянный магнит, намагниченный в определённом направлении, а намагниченность другого слоя изменяется под действием внешнего поля. Устройство памяти организовано по принципу сетки, состоящей из отдельных «ячеек», содержащих элемент памяти и транзистор.

Считывание информации осуществляется измерением электрического сопротивления ячейки. Отдельная ячейка (обычно) выбирается подачей питания на соответствующий ей транзистор, который подаёт ток от источника питания через ячейку памяти на общую землю микросхемы. Вследствие эффекта туннельного магнитосопротивления, электрическое сопротивление ячейки изменяется в зависимости от взаимной ориентации намагниченностей в слоях. По величине протекающего тока, можно определить сопротивление данной ячейки, и как следствие, полярность перезаписываемого слоя. Обычно одинаковая ориентация намагниченности в слоях элемента интерпретируется как «0», в то время как противоположное направление намагниченности слоёв, характеризующееся более высоким сопротивлением - как «1».

Информацию можно записывать в ячейки, используя множество способов. В простейшем случае, каждая ячейка лежит между двумя линиями записи, размещёнными под прямым углом друг к другу, одна над, а другая под ячейкой. Когда ток проходит через них, в точке пересечения линий записи наводится магнитное поле, которое воздействует на перезаписываемый слой. Такой же способ записи использовался в памяти на магнитных сердечниках, которая использовалась в 1960х годах. Этот способ требует достаточно большого тока, необходимого для создания поля, и это делает их не очень подходящими для применения в портативных устройствах для которых важна малое потребление энергии, это один из основных недостатков MRAM. Кроме того, с уменьшением размера микросхем, придёт время, когда индуцированное поле перекроет соседние ячейки на маленькой площади, что приведёт к возможным ошибкам записи. Из-за этого в памяти MRAM данного типа необходимо использовать ячейки достаточно большого размера. Одним из экспериментальных решений этой проблемы было использование круглых доменов, читаемых и записываемых с помощью эффекта гигантского магнитного сопротивления, но исследования в этом направлении более не проводятся.

Другой подход, переключения режимов, использует многошаговую запись с модифицированной многослойной ячейкой. Ячейка модифицирована содержит в себе искусственный антиферромагнетик, где магнитная ориентация чередуется назад и вперёд через поверхность, с обоими прикреплённым и свободным слоями, составленными из многослойных стеков изолированных тонким «соединяющим слоем». Результирующие слои имеют только два стабильных состояния, которые могут быть переключены из одного в другое выбором времени тока записи в двух линиях так одна немного задерживается, таким образом «поворачивая» поле. Любое напряжение меньшее, чем полный уровень записи фактически увеличивает его сопротивление для переключения. Это значит, что ячейки расположенные вдоль одной из линий записи не будут подвержены эффекту непреднамеренного перемагничивания, позволяя использовать меньшие размеры ячеек.

Новая технология, переноса спинового момента (spin-torque-transfer-STT) или переключение с помощью переноса спина, использует электроны с заданным состоянием спина («поляризованные»), прямо вращая области. Особенно, если электроны текут внутрь слоя, должно измениться их вращение, это будет способствовать вращению, будет перенесено на ближайший слой. Это уменьшает величину тока, необходимую для записи информации в ячейку памяти, и потребление только при чтении и записи становится примерно одинаковым. Технология STT должна решить проблемы с которыми «классическая» технология MRAM будет сталкиваться при увеличении плотности размещения ячеек памяти и соответствующего увеличения тока необходимого для записи. Поэтому технология STT будет актуальна при использовании технологического процесса 65 нм и менее. Нижняя сторона такая, в настоящее время, STT необходимо переключать больше тока через управляющий транзистор, чем обычной MRAM, требующей больший транзистор, и необходимо поддерживать когерентность вращения. В целом, несмотря на это, STT требует намного меньшего тока записи, чем обычная или переключательная MRAM.

Другими возможными путями развития технологии магниторезистивной памяти являются технология термического переключения (TAS-Thermal Assisted Switching) при которой во время процесса записи магнитный туннельный переход быстро нагревается (подобно PRAM) и в остальное время остается стабильным при более низкой температуре, а также технология вертикального транспорта (VMRAM-vertical transport MRAM) в которой ток проходящий через вертикальный столбцы меняет магнитную ориентацию, и такое геометрическое расположение ячеек памяти уменьшает проблему случайного перемагничивания и соответственно может увеличить возможную плотность размещения ячеек.


2. Сравнение с другими типами памяти

2.1. Плотность размещения элементов в микросхеме

Главным фактором, от которого зависит себестоимость производства микросхем памяти, это плотность размещения в ней отдельных ячеек. Чем меньше размер одной ячейки, тем большее их количество может быть размещено на одной микросхеме, и соответственно большее число микросхем может быть произведено за один раз из одной кремниевой пластины. Это улучшает выход годных изделий, и снижает стоимость производства микросхем.

В памяти типа DRAM в качестве элементов памяти используются конденсаторы, проводники переносят ток к ним и от них, и управляющий транзистор - так называемая ячейка «1T/1C». Конденсатор представляет собой две маленькие металлические пластинки, разделённые тонким слоем диэлектрика, он может быть изготовлен таким маленьким, как это позволяет сделать текущее развитие технологического процесса. Память DRAM имеет наивысшую плотность ячеек из всех доступных на сегодняшний день типов памяти. Это делает её наиболее дешёвой, и она используется в качестве основной оперативной памяти компьютеров.

Своей конструкцией ячейка памяти MRAM похожа на ячейку DRAM, хотя иногда в ней не используется транзистор для записи информации. Однако как упоминалось выше, память MRAM испытывает проблему полувыбора, из-за которой размер ячейки при использовании обычной технологии MRAM ограничен размером 180 нм и более. Используя технологию MRAM с переключением режимов можно достичь гораздо меньшего размера ячейки до того как эффект полувыбора станет проблемой - по видимому около 90 нм. Большинство современных микросхем DRAM памяти имеют такой же размер ячейки. Хотя это достаточно хорошие характеристики для внедрения в производство, есть перспективы в достижении магниторезистивной памятью размеров 65 нм, аналогично самым передовым устройствам памяти, для этого требуются использовать технологию STT.


2.2. Энергопотребление

Так как конденсаторы, используемые в микросхемах DRAM, со временем теряют свой заряд, микросхемы памяти, использующие их, должны периодически обновлять содержимое всех ячеек, считывая каждую ячейку и перезаписывая её содержимое. Это требует наличия постоянного источника питания, поэтому, как только питание компьютера отключается, память типа DRAM теряет всю хранящуюся информацию. Чем меньше становятся размеры ячейки памяти, тем чаще необходимы циклы обновления, и в связи с этим потребление энергии увеличивается.

В отличие от DRAM, память MRAM не требует постоянного обновления. Это значит не только то, что память сохраняет записанную в нее информацию при отключенном питании, но и то что при отсутствии операций чтения или записи, энергия вообще не потребляется. Хотя теоретически при чтении информации память MRAM должна потреблять больше энергии, чем DRAM, на практике энергоёмкость чтения у них почти одинаковая. Тем не менее, процесс записи требует от трех до восьми раз больше энергии чем при чтении, эта энергия расходуется на изменение магнитного поля. Хотя точное количество энергии сберегаемой зависит от характера работы - более частая запись потребует больше энергии - в целом ожидается более низкое энергопотребление (до 99 % меньше) в сравнении с DRAM. При применении технологии STT MRAM потребление энергии при записи и чтении примерно одинаковое, и общее потребление энергии еще меньше.

Можно сравнить магниторезистивную память с еще одним конкурирующим типом памяти, с флэш-памятью. Как и магнито-резистивная память, флэш-память является энергонезависимой, она не теряет информацию при отключении питания, что делает её очень удобной для замены жёстких дисков в портативных устройствах, таких как MP3-плееры или цифровые камеры. При чтении информации, флэш-память и MRAM имеют схожее энергопотреблении. Однако для записи информации в микросхемах флэш-памяти, необходим мощный импульс напряжения (около 10 В), который накапливается определенное время в накачке заряда, для этого требуется много энергии и времени. Кроме этого импульс тока физически разрушает ячейки памяти, и информация в флэш-память может быть записана ограниченное число раз, прежде чем ячейка памяти выйдет из строя.

В отличие от флэш-памяти, микросхемам MRAM требуется энергии для записи ненамного больше, чем для чтения. Не надо увеличивать напряжение, не требуется накачка заряда. Это ведёт к более быстрым операциям, меньшему энергопотреблению, и к отсутствию ограниченого срока службы. Предполагается что, флэш-память будет первым типом микросхем памяти, который будет со временем заменён MRAM.


2.3. Быстродействие

Быстродействие памяти типа DRAM ограничено скоростью, с которой заряд, хранящийся в ячейках, может быть слит (для чтения) или накоплен (для записи). Работа MRAM основана на измерении напряжений, что предпочтительнее, чем работа с токами, так как требуется меньше времени на переходные процессы. Исследователи IBM продемонстрировали устройства MRAM с временем доступа порядка 2 нс, заметно лучше чем даже самые продвинутые DRAM построенные на самых новых технологических процессах. Преимущества по сравнению с Flash памятью более значительные, время чтения у них похожее, но время записи в тысячи раз меньше.

Только одна современная технология памяти может конкурировать в быстродействии с магниторезистивной памятью. Это статическая память или SRAM. Ячейками SRAM памяти являются триггеры, которые хранят одно из двух состояний так долго, как долго поступает энергия. Каждый триггер состоит из нескольких транзисторов. Так как транзисторы имеют очень низкое потребление энергии, их время переключения очень мало. Но поскольку ячейка памяти SRAM состоит из нескольких транзисторов, обычно четырёх или шести, её площадь больше, чем у ячейки памяти типа DRAM. Это делает память SRAM более дорогой, поэтому она используется только в малых объемах, в качестве особо быстродействующей памяти, например как кэш-память и регистры в большинстве современных моделей центральных процессоров.

Хотя магниторезистивная память не такая быстрая, как память типа SRAM, она достаточно интересна и в этом качестве. Она обладает более высокой плотностью, и разработчики центральных процессоров могли бы в будущем выбирать для использования в качестве кэш-памяти между большим объемом менее быстрой памяти MRAM и меньшим объемом более быстрой памяти типа SRAM. Остаётся увидеть, как она продаётся, как сыграет в будущем.


2.4. Общее сравнение

Магниторезистивная память имеет быстродействие, сравнимое с памятью типа SRAM, такую же плотность ячеек, но меньшее энергопотребление, чем у памяти типа DRAM, она более быстрая и не страдает деградацией по прошествии времени в сравнении с флэш-памятью. Это та комбинация свойств, которая может сделать её «универсальной памятью», способной заменить SRAM, DRAM и EEPROM и Flash. Этим объясняется большое количество направленных на её разработку исследований.

Конечно, на данный момент MRAM ещё не готова для широкого применения. Огромный спрос на рынке флэш-памяти вынуждает производителей к агрессивному внедрению новых технологических процессов. Самые последние фабрики, на которых например изготавливает микросхемы флэш-памяти ёмкостью 16 Гбайт фирма Samsung, используют 50 нм технологический процесс. На более старых технологических линиях изготавливаются микросхемы памяти DDR2 DRAM, для которых используется 90 нм технологический процесс предыдущего поколения.

Магниторезистивная память всё ещё в значительной степени находится «в разработке», и производится с помощью устарелых технологических процессов. Так как спрос на флэш-память в настоящее время превышает предложение, то еще не скоро появится компания, которая решится перевести одну из своих фабрик, с новейшим технологическим процессом на изготовление микросхем магниторезистивной памяти. Но и в этом случае, конструкция магниторезистивной памяти на сегодняшний момент проигрывает флэш-памяти по размерам ячейки, даже при использовании одинаковых технологических процессов.


3. История

  • 1955 - изобретение памяти на магнитных сердечниках, использующей сходный с MRAM, способ чтения и записи информации.
  • 1989 - учёные IBM сделали ряд ключевых открытий о «гигантском магниторезистивном эффекте» в тонкоплёночных структурах.
  • 1995 - Motorola (в дальнейшем Freescale) начинает разработку MRAM.
  • 2000 - IBM и Infeneon установили общую программу развития MRAM.
  • 2002 - NVE объявляет о технологическом обмене с Cypress Semiconductor.
  • 2003 - 128 кбит чип MRAM был представлен, изготовленный по 0,18 мкм технологии.
  • Июнь - Infineon анонсирует 16-Мбит опытный образец, основанный на 0,18 мкм технологии.
  • Сентябрь - MRAM становится стандартным продуктом в Freescale, которая начала испытывать MRAM.
  • Октябрь - Тайваньские разработчики MRAM печатают 1 Мбит элементы на TSMC.
  • Октябрь - Micron бросает MRAM, обдумывает другие памяти.
  • Декабрь - TSMC, NEC, Toshiba описывают новые ячейки MRAM.
  • Декабрь - Renesas Technology разрабатывают высокоскоростную, высоконадёжную технологию MRAM.
  • Январь - Cypress испытывает MRAM, использует NVE IP.
  • Март - Cypress продаёт дочернюю компанию MRAM.
  • Июнь - Honeywell сообщает таблицу данных для 1-Мбит радиационно-устойчивой MRAM, используя 0,15 микрометров технологию.
  • Август - рекорд MRAM: Ячейка памяти работает на 2 ГГц.
  • Ноябрь - Renesas Technology и Grandis сотрудничают в Разработке 65 нм MRAM, применяя вращательно-крутящее перемещение.
  • Декабрь - Sony представляет первую лабораторию производящую вращательно-крутящее-перемещение MRAM, которая использует вращательно-поляризованный ток через туннельный магниторезистивный слой, чтобы записать данные. Этот метод более энергоэффективен и более расширяем, чем обыкновенная MRAM. C дальнейшими преимуществами в материалах, этот процесс должен позволить плотности, большие, чем те, что возможны в DRAM.
  • Декабрь - Freescale Semiconductor Inc. анонсирует MRAM, в которой вместо оксида алюминия используется оксид магния, позволяющий делать более тонкий изолирующий туннельный барьер и улучшенное битовое сопротивление в течение цикла записи, таким образом, уменьшая требуемый ток записи.

3.1. Текущий статус

  • Февраль - Toshiba и NEC анонсировали 16 Мбит чип MRAM с новой «энерго-разветвляющейся» конструкцией. Они добились частоты перемещения в 200 МБ/с, с временем цикла 34 нс - лучшая производительность любого чипа MRAM. Они также гордятся наименьшим физическим размером в своём классе - 78,5 квадратных миллиметров - и низким требованием энергии 1,8 вольт.
  • Июль - 10 Июля, Austin Texas - Freescale Semiconductor выводит на рынок 4-Mbit чипы MRAM, по цене приблизительно $25.00 за микросхему.
  • Ноябрь - компания NEC разработала самую быструю в мире магниторезистивную SRAM-совместимую память, с рабочей частотой 250 МГц.
  • В японском искусственном спутнике SpriteSat, была применена магниторезистивная память производства Freescale Semiconductor для замены компонентов SRAM и FLASH.
  • Март - концерн Siemens выбрал в качестве энергонезависимой памяти для новых промышленных панелей оператора, микросхемы MRAM памяти емкостью 4 Mb, производства Everspin technologies.
  • Июнь - Samsung и Hynix становятся партнерами по разработке STT-MRAM.
  • Июнь - Freescale Semiconductor выделяет весь свой бизнес, связанный с магниторезистивной памятью, в отдельную компанию Everspin.
  • Февраль - компании NEC и NEC Electronics заявили об успешной демонстрации работающей памяти магниторезисторного типа емкостью 32 Мбит.
  • Апрель - компания Everspin представила первые в мире коммерчески доступные микросхемы MRAM ёмкостью 16 Mb.

4. Применение

Предполагается использовать память MRAM в таких устройствах как:

  • Аэрокосмические и военные системы
  • Цифровые фотоаппараты
  • Ноутбуки
  • Смарт карты
  • Мобильные телефоны
  • Сотовые базовые станции
  • Персональные компьютеры
  • Для замены SRAM с питанием от аккумуляторной батареи
  • Специальные устройства для регистрации данных (чёрные ящики)
скачать
Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 16.07.11 21:08:39 .

Понравилась статья? Поделиться с друзьями: