Создание зоны обратного просмотра dns. Создание и настройка зон DNS

Основы

Что такое запись обратной зоны DNS?

Обычные DNS-запросы определяют неизвестный IP-адрес для известного имени хоста. Это необходимо когда, например, браузеру нужно установить TCP-соединение с сервером по введённому в адресном поле URL.

Forum.hetzner.de --> 213.133.106.33

Обратный DNS работает в другом направлении - запрос определяет имя хоста, принадлежащее IP-адресу.

213.133.106.33 --> dedi33.your-server.de

Как вы видите, именам хоста при прямом и обратном запросах необязательно совпадать!

Каково предназначение записи обратной зоны DNS?

  • traceroute показывает не только IP-адреса, но и человекочитаемые имена узлов. Это значительно облегчает диагностику ошибок.
  • Большое количество почтовых серверов принимает письма только если у IP-адреса отправителя есть обратная DNS-запись.
  • Обратные DNS-записи могут использоваться в SPF-записях (Sender Policy Framework ; технология, предотвращающая рассылку спама и вирусов с поддельных email-адресов).

Как технически работает обратное преобразование на DNS-серверах?

Практика

Как я могу назначить несколько имён на мой IP-адрес, если различные домены размещены на моём сервере?

Это невозможно. Только одно имя назначается на каждый IP-адрес.

Более того, неважно какие обратные зоны прописаны для сервера. Для обращения к сайту браузеру достаточно провести лишь прямое преобразование (Имя --> IP). Здесь, конечно, может быть несколько имён, например несколько записей типа A или несколько записей типа CNAME, которые указывают на A-запись.

Для работы почтовых серверов необязательно иметь несколько имён хоста на один IP-адрес. Обратная DNS-запись должна соответствовать имени хоста SMTP-сервера (обратитесь к настройками соответствующего SMTP-сервера).

Если несколько доменов управляются через IP-адрес (достаточно частый случай), можно использовать нейтральное имя, не связанное с доменами пользователей. Спам-фильтры всего-лишь проверяют соответствует ли обратная DNS-запись имени в ответе на команду HELO. Это никак не влияет на доменные имена и почтовые адреса в передаваемых письмах.

  • Обратная DNS-запись должна соответствовать имени почтового сервера или строиться на основании IP-адреса.
  • Обратная DNS-запись должна также резолвиться "вперёд" - на тот-же IP-адрес.
  • Обратная DNS-запись не должна быть похожа на автоматические-сгенерированную, например "162-105-133-213-static.hetzner.de", так так часто такие имена отрицательно оцениваются спам-фильтрами.
  • Даваемое имя должно существовать. Пожалуйста, не используйте несуществующие доменные имена.

Пример хорошей записи:

Srv01.grossefirma.de --> 213.133.105.162 213.133.105.162 --> srv01.grossefirma.de > telnet 213.133.105.162 25 220 srv01.grossefirma.de ESMTP ready

Я задаю PTR на моём DNS-сервере. Почему это не работает?

Ваш DNS-сервер отвечает лишь за прямое преобразование.

Владелец блока IP-адресов (например, Hetzner Online GmbH) является ответственным за поддержание авторитативных DNS-серверов для обратных записей.

Обратные DNS-записи можно создавать только при помощи соответствующей функции панели Robot (левое меню -> "Servers" -> щелчок по серверу -> "IPs" -> щелчок по текстовому полю рядом с IP-адресом).

Обратная запись для моего сервера отличается от HELO моего почтового сервер. Является ли это проблемой?

Пример: обратная DNS-запись для IP-адреса сервера "www.grossefirma.de". В ответ на команду HELO почтовый сервер отвечает "mail.grossefirma.de".

Некоторые спам-фильтры расценивают письма от таких отправителей как "спам". Подобные несоответствия должны быть исправлены. Обратная DNS-запись и имя почтового сервера должны быть одинаковыми. В примере выше они могут быть, например, "srv01.grossefirma.de". Имя "www.grossefirma.de" может быть безо всяких последствий перенаправлено на srv01.grossefirma.de" при помощи CNAME-записи.

Подробное тестирование DNS-записей можно провести воспользовавшись

Историческая справка : Систему доменных имен разработал в 1983 году Пол Мокапетрис. Тогда же было проведено первое успешное тестирование DNS, ставшей позже одним из базовых компонентов сети Internet. С помощью DNS стало возможным реализовать масштабируемый распределенный механизм, устанавливающий соответствие между иерархическими именами сайтов и числовыми IP-адресами.

В 1983 году Пол Мокапетрис работал научным сотрудником института информатики (Information Sciences Institute, ISI ), входящего в состав инженерной школы университета Южной Калифорнии (USC ). Его руководитель, Джон Постел, предложил Полу придумать новый механизм, устанавливающий связи между именами компьютеров и адресами Internet, - взамен использовавшемуся тогда централизованному каталогу имен и адресов хостов, который поддерживала калифорнийская компания SRI International.

"Все понимали, что старая схема не сможет работать вечно, - вспоминает Мокапетрис. - Рост Internet становился лавинообразным. К сети, возникшей на основе проекта ARPANET, инициированного Пентагоном, присоединялись все новые и новые компании и исследовательские институты".

Предложенное Мокапетрисом решение - DNS - представляло собой распределенную базу данных, которая позволяла организациям, присоединившимся к Internet, получить свой домен.

"Как только организация подключалась к сети, она могла использовать сколь угодно много компьютеров и сама назначать им имена", - подчеркнул Мокапетрис. Названия доменов компаний получили суффикс.com, университетов - .edu и так далее.

Первоначально DNS была рассчитана на поддержку 50 млн. записей и допускала безопасное расширение до нескольких сотен миллионов записей. По оценкам Мокапетриса, сейчас насчитывается около 1 млрд. имен DNS, в том числе почти 20 млн. общедоступных имен. Остальные принадлежат системам, расположенным за межсетевыми экранами. Их имена неизвестны обычным Internet-пользователям.

Новая система внедрялась постепенно, в течение нескольких лет. В это время ряд исследователей экспериментировали с ее возможностями, а Мокапетрис занимался в ISI обслуживанием и поддержанием стабильной работы "корневого сервера", построенного на мэйнфреймах компании Digital Equipment. Копии таблиц хостов хранились на каждом компьютере, подключенном к Internet, еще примерно до 1986 года. Затем начался массовый переход на использование DNS.

Необходимость отображения имен сетевых узлов в IP-адреса

Компьютеры и другие сетевые устройства, отправляя друг другу пакеты по сети, используют IP-адреса. Однако пользователю (человеку) гораздо проще и удобнее запомнить некоторое символические имена сетевых узлов, чем четыре бессодержательных для него числа. Однако, если люди в своих операциях с сетевыми ресурсами будут использовать имена узлов, а не IP-адреса, тогда должен существовать механизм, сопоставляющий именам узлов их IP-адреса.

Есть два таких механизма - локальный для каждого компьютера файл hosts и централизованная иерархическая служба имен DNS.

Использование локального файла hosts и системы доменных имен DNS для разрешения имен сетевых узлов

На начальном этапе развития сетей, когда количество узлов в каждой сети было небольшое, достаточно было на каждом компьютере хранить и поддерживать актуальное состояние простого текстового файла, в котором содержался список сетевых узлов данной сети. Список устроен очень просто - в каждой строке текстового файла содержится пара "IP-адрес - имя сетевого узла". В системах семейства Windows данный файл расположен в папке %system root%\system32\drivers\etc (где %system root% обозначает папку, в которой установлена операционная система). Сразу после установки системы Windows создается файл hosts с одной записью 127.0.0.1 localhost.

С ростом сетей поддерживать актуальность и точность информации в файле hosts становится все труднее. Для этого надо постоянно обновлять содержимое этого файла на всех узлах сети. Кроме того, такая простая технология не позволяет организовать пространство имен в какую-либо структуру. Поэтому появилась необходимость в централизованной базе данных имен, позволяющей производить преобразование имен в IP-адреса без хранения списка соответствия на каждом компьютере. Такой базой стала DNS (Domain Name System) - система именования доменов, которая начала массовую работу в 1987 году.

Заметим, что с появлением службы DNS актуальность использования файла host совсем не исчезла, в ряде случаев использование этого файла оказывается очень эффективным.

Служба DNS: пространство имен, домены

DNS - это иерархическая база данных , сопоставляющая имена сетевых узлов и их сетевых служб IP-адресам узлов. Содержимое этой базы, с одной стороны, распределено по большому количеству серверов службы DNS, а с другой стороны, является централизованно управляемым. В основе иерархической структуры базы данных DNS лежит доменное пространство имен (domain namespace), основной структурной единицей которого является домен, объединяющий сетевые узлы (хосты), а также поддомены. Процесс поиска в БД службы DNS имени некоего сетевого узла и сопоставления этому имени IP-адреса называется "разрешением имени узла в пространстве имен DNS".

Служба DNS состоит из трех основных компонент:

    Пространство имен DNS и соответствующие ресурсные записи (RR, resource record) - это сама распределенная база данных DNS;

    Серверы имен DNS - компьютеры, хранящие базу данных DNS и отвечающие на запросы DNS-клиентов;

    DNS-клиенты (DNS-clients, DNS-resolvers) -компьютеры, посылающие запросы серверам DNS для получения ресурсных записей.

Пространство имен.

Пространство имен DNS - иерархическая древовидная структура, начинающаяся с корня, не имеющего имени и обозначаемого точкой ".". Схему построения пространства имен DNS лучше всего проиллюстрировать на примере сети Интернет (рис. 4.8 ).

Рис. 4.8.

Для доменов 1-го уровня различают 3 категории имен:

    ARPA - специальное имя, используемое для обратного разрешения DNS (из IP-адреса в полное имя узла);

    Общие (generic) имена 1-го уровня - 16 (на данный момент) имен, назначение которых приведено в табл. 4.4 ;

    Двухбуквенные имена для стран - имена для доменов, зарегистрированных в соответствующих странах (например, ru - для России, ua - для Украины, uk - для Великобритании и т.д.).

Таблица 4.4.

Имя домена

Назначение

Сообщества авиаторов

Компании (без привязки к стране)

Коммерческие организации, преимущественно в США (например, домен microsoft.com для корпорации Microsoft)

Кооперативы

Образовательные учреждения в США

Правительственные учреждения США

Домен для организаций, предоставляющих любую информацию для потребителей

международные организации (например, домен nato .int для НАТО)

Военные ведомства США

Глобальный домен для частных лиц

Домен для Интернет-провайдеров и других организаций, управляющих структурой сети Интернет

Некоммерческие и неправительственные организации, преимущественно в США

Домен для профессиональных объединений (врачей, юристов, бухгалтеров и др.)

Кадровые агентства

Туроператоры

Для непосредственного отображения пространства имен в пространство IP-адресов служат т.н. ресурсные записи (RR, resource record). Каждый сервер DNS содержит ресурсные записи для той части пространства имен, за которую он несет ответственность (authoritative ). табл. 4.5 содержит описание наиболее часто используемых типов ресурсных записей.

Таблица 4.5.

Тип ресурсной записи

Функция записи

Описание использования

Host Address Адрес хоста, или узла

Отображает имя узла на IP-адрес (например, для домена microsoft.com узлу с именем www.microsoft.com сопоставляется IP-адрес с помощью такой записи: www A 207.46.199.60)

Canonical Name (alias) Каноническое имя (псевдоним)

Отображает одно имя на другое

Mail Exchanger Обмен почтой

Управляет маршрутизацией почтовых сообщений для протокола SMTP

Name Server Сервер имен

Указывает на серверы DNS, ответственные за конкретный домен и его поддомены

Pointer Указатель

Используется для обратного разрешения IP-адресов в имена узлов в домене in-addr.arpa

Start of Authority Начальная запись зоны

Используется для указания основного сервера для данной зоны и описания свойств зоны

Service Locator Указатель на службу

Используется для поиска серверов, на которых функционируют определенные службы (например, контроллеры доменов Active Directory или серверы глобального каталога )

Полное имя узла (FQDN, fully qualified domain name) состоит из нескольких имен, называемых метками (label) и разделенных точкой. Самая левая метка относится непосредственно к узлу, остальные метки - список доменов от домена первого уровня до того домена, в котором находится узел (данный список просматривается справа налево).

Серверы имен DNS.

Серверы имен DNS (или DNS-серверы) - это компьютеры, на которых хранятся те части БД пространства имен DNS, за которые данные серверы отвечают, и функционирует программное обеспечение, которое обрабатывает запросы DNS-клиентов на разрешение имен и выдает ответы на полученные запросы.

DNS-клиенты.

DNS-клиент - это любой сетевой узел, который обратился к DNS-серверу для разрешения имени узла в IP-адрес или, обратно, IP-адреса в имя узла.

Служба DNS: домены и зоны

Как уже говорилось выше, каждый DNS-сервер отвечает за обслуживание определенной части пространства имен DNS. Информация о доменах, хранящаяся в БД сервера DNS, организуется в особые единицы, называемые зонами (zones). Зона - основная единица репликации данных между серверами DNS. Каждая зона содержит определенное количество ресурсных записей для соответствующего домена и, быть может, его поддоменов.

Системы семейства Windows Server поддерживают следующие типы зон:

    Стандартная основная (standard primary) - главная копия стандартной зоны; только в данном экземпляре зоны допускается производить какие-либо изменения, которые затем реплицируются на серверы, хранящие дополнительные зоны;

    Стандартная дополнительная (standard secondary) - копия основной зоны, доступная в режиме "только-чтение", предназначена для повышения отказоустойчивости и распределения нагрузки между серверами, отвечающими за определенную зону; процесс репликации изменений в записях зон называется "передачей зоны" (zone transfer ) (информация в стандартных зонах хранится в текстовых файлах, файлы создаются в папке "%system root%\system32\dns", имя файла, как правило, образуется из имени зоны с добавлением расширения файла ".dns"; термин "стандартная" используется только в системах семейства Windows);

    Интегрированная в Active Directory (Active Directory–integrated) - вся информация о зоне хранится в виде одной записи в базе данных Active Directory (такие типы зон могут существовать только на серверах Windows, являющихся контроллерами доменов Active Directory; в интегрированных зонах можно более жестко управлять правами доступа к записям зоны; изменения в записях зоны между разными экземплярами интегрированной зоны производятся не потехнологии передачи зоны службой DNS, а механизмами репликации службы Active Directory);

    Зона-заглушка (stub ; только в Windows 2003) - особый тип зоны, которая для данной части пространства имен DNS содержит самый минимальный набор ресурсных записей (начальная запись зоны SOA, список серверов имен, отвечающих за данную зону, и несколько записей типа A для ссылок на серверы имен для данной зоны).

Рассмотрим на примере соотношение между понятиями домена и зоны. Проанализируем информацию, представленную на рис. 4.9 .

Рис. 4.9.

В данном примере пространство имен DNS начинается с домена microsoft.com , который содержит 3 поддомена: sales.microsoft.com , it.microsoft.com иedu.microsoft.com (домены на рисунке обозначены маленькими горизонтальными овалами). Домен - понятие чисто логическое, относящееся только к распределению имен. Понятие домена никак не связано с технологией хранения информации о домене. Зона - это способ представления информации о домене и его поддоменах в хранилище тех серверов DNS, которые отвечают за данный домен и поддомены. В данной ситуации, если для хранения выбрана технология стандартных зон, то размещение информации о доменах может быть реализовано следующим образом:

    записи, относящиеся к доменам microsoft.com и edu.microsoft.com , хранятся в одной зоне в файле "microsoft.com.dns" (на рисунке зона обозначена большим наклонным овалом);

    управление доменами sales.microsoft.com и it.microsoft.com делегировано другим серверам DNS, для этих доменов на других серверах созданы соответствующие файлы "sales.microsoft.com.dns" и "it.microsoft.com.dns" (данные зоны обозначены большими вертикальными овалами).

Делегирование управления - передача ответственности за часть пространства имен другим серверам DNS.

Зоны прямого и обратного просмотра

Зоны, рассмотренные в предыдущем примере, являются зонами прямого просмотра (forward lookup zones) . Данные зоны служат для разрешения имен узлов в IP-адреса. Наиболее часто используемые для этого типы записей: A, CNAME, SRV.

Для определения имени узла по его IP-адресу служат зоны обратного просмотра (reverse lookup zones), основной тип записи в "обратных" зонах - PTR. Для решения данной задачи создан специальный домен с именем in-addr.arpa. Для каждой IP-сети в таком домене создаются соответствующие поддомены, образованные из идентификатора сети, записанного в обратном порядке. Записи в такой зоне будут сопоставлять идентификатору узла полное FQDN-имя данного узла. Например, для IP-сети 192.168.0.0/24 необходимо создать зону с именем "0.168.192.in-addr.arpa". Для узла с IP-адресом 192.168.0.10 и именем host.company.ru в данной зоне должна быть создана запись "10 PTR host.company.ru".

Алгоритмы работы итеративных и рекурсивных запросов DNS

Все запросы , отправляемые DNS-клиентом DNS-серверу для разрешения имен, делятся на два типа:

    итеративные запросы (клиент посылает серверу DNS запрос , в котором требует дать наилучший ответ без обращений к другим DNS-серверам);

    рекурсивные запросы (клиент посылает серверу DNS запрос, в котором требует дать окончательный ответ даже если DNS-серверу придется отправить запросы другим DNS-серверам; посылаемые в этом случае другим DNS-серверам запросы будут итеративными).

Обычные DNS-клиенты (например, рабочие станции пользователей), как правило, посылают рекурсивные запросы.

Рассмотрим на примерах, как происходит взаимодействие DNS-клиента и DNS-сервера при обработке итеративных и рекурсивных запросов.

Допустим, что пользователь запустил программу Обозреватель Интернета и ввел в адресной строке адрес http://www.microsoft.com . Прежде чем Обозреватель установит сеанс связи с веб-сайтом по протоколу HTTP, клиентский компьютер должен определить IP-адрес веб-сервера. Для этого клиентская часть протокола TCP/IP рабочей станции пользователя (так называемый resolver ) сначала просматривает свой локальный кэш разрешенных ранее имен в попытке найти там имяwww.microsoft.com . Если имя не найдено, то клиент посылает запрос DNS-серверу, указанному в конфигурации TCP/IP данного компьютера (назовем данный DNS-сервер "локальным DNS-сервером" ), на разрешение имени www.microsoft.com в IP-адрес данного узла. Далее DNS-сервер обрабатывает запрос в зависимости от типа запроса.

Вариант 1 (итеративный запрос).

Если клиент отправил серверу итеративный запрос (напомним, что обычно клиенты посылают рекурсивные запросы), то обработка запроса происходит по следующей схеме:

    microsoft.com ;

если такая зона найдена, то в ней ищется запись для узла www ; если запись найдена, то результат поиска сразу же возвращается клиенту;

www.microsoft.com в своем кэше разрешенных ранее DNS-запросов;

если искомое имя есть в кэше, то результат поиска возвращается клиенту; если локальный DNS-сервер не нашел в своей базе данных искомую запись, то клиенту посылается IP-адрес одного из корневых серверов DNS;

    клиент получает IP-адрес корневого сервера и повторяет ему запрос на разрешение имени www.microsoft.com ;

корневой сервер не содержит в своей БД зоны "microsoft.com", но ему известны DNS-серверы, отвечающие за зону "com", и корневой сервер посылает клиенту IP-адрес одного из серверов, отвечающих за эту зону;

    клиент получает IP-адрес сервера, отвечающего за зону "com", и посылает ему запрос на разрешение имени www.microsoft.com ;

сервер, отвечающий за зону com, не содержит в своей БД зоны microsoft.com , но ему известны DNS-серверы, отвечающие за зону microsoft.com , и данный DNS-сервер посылает клиенту IP-адрес одного из серверов, отвечающих уже за зону microsoft.com ;

    клиент получает IP-адрес сервера, отвечающего за зону microsoft.com , и посылает ему запрос на разрешение имени www.microsoft.com ;

сервер, отвечающий за зону microsoft.com , получает данный запрос, находит в своей базе данных IP-адрес узла www, расположенного в зоне microsoft.com , и посылает результат клиенту;

клиент получает искомый IP-адрес, сохраняет разрешенный запрос в своем локальном кэше и передает IP-адрес веб-сайта программе Обозреватель Интернета (после чего Обозреватель устанавливает связь с веб-сайтом по протоколу HTTP).

Вариант 2 (рекурсивный запрос ).

Если клиент отправил серверу рекурсивный запрос , то обработка запроса происходит по такой схеме:

    сначала локальный DNS-сервер ищет среди зон, за которые он отвечает, зону microsoft.com ; если такая зона найдена, то в ней ищется запись для узла www ; если запись найдена, то результат поиска сразу же возвращается клиенту;

в противном случае локальный DNS-сервер ищет запрошенное имя www.microsoft.com в своем кэше разрешенных ранее DNS-запросов; если искомое имя есть в кэше, то результат поиска возвращается клиенту;

    если локальный DNS-сервер не нашел в своей базе данных искомую запись, то сам локальный DNS-сервер выполняет серию итеративных запросов на разрешение имени www.microsoft.com , и клиенту посылается либо найденный IP-адрес, либо сообщение об ошибке.

Реализация службы DNS в системах семейства Windows Server

Главная особенность службы DNS в системах семейства Windows Server заключается в том, что служба DNS разрабатывалась для поддержки службы каталогов Active Directory. Для выполнения этой функции требуются обеспечение двух условий:

    поддержка службой DNS динамической регистрации (dynamic updates);

    поддержка службой DNS записей типа SRV.

Служба DNS систем Windows Server удовлетворяет обоим условиям, и реализация служб каталогов Active Directory может быть обеспечена только серверами на базе систем Windows Server.

Рассмотрим несколько простых примеров управления службой DNS:

    установка службы DNS;

    создание основной и дополнительной зоны прямого просмотра;

    создание зоны обратного просмотра;

    выполнение динамической регистрации узлов в зоне.

    сеть состоит из двух серверов Windows 2003 Server;

    операционная система - ограниченная по времени 120-дневная русская версия Windows 2003 Server Enterprise Edition;

    первый сервер установлен на ПК с процессором Intel Pentium-4 3Ггц и оперативной памятью 512 МБ, имя сервера - DC1, IP-адрес - 192.168.0.1/24 ;

    второй сервер работает в качестве виртуальной системы с помощью Microsoft VirtualPC 2004, имя сервера -DC2, IP-адрес - 192.168.0.2/24 ;

    имя домена в пространстве DNS и соответствующее имя в службе каталогов Active Directory - world.ru (сеть полностью изолирована от других сетей, поэтому в данном примере авторы были свободны в выборе имени домена; в реальной обстановке конкретного учебного заведения преподавателю нужно скорректировать данную информацию).

Подробные рекомендации по организации сети для изучения данного курса (как под руководством преподавателя в организованной группе, так и при самостоятельном изучении) изложены в указаниях к выполнению упражнений лабораторных работ в конце пособия.

Установка службы DNS

Установка службы DNS (как и других компонент системы) производится достаточно просто с помощью мастера установки компонент Windows:

    Откройте Панель управления .

    Выберите пункт "Установка и удаление программ" .

    Нажмите кнопку "Установка компонентов Windows" .

    Выберите "Сетевые службы" - кнопка "Дополнительно" (ни в коем случае не снимайте галочку у названия "Сетевые службы" ).

    Отметьте службу DNS.

Рис. 4.10.

Если система попросит указать путь к дистрибутиву системы, введите путь к папке с дистрибутивом.

Выполним данное действие на обоих серверах.

Создание основной зоны прямого просмотра .

На сервере DC1 создадим стандартную основную зону с именем world.ru.

    Откроем консоль DNS.

    Выберем раздел "Зоны прямого просмотра" .

    Запустим мастер создания зоны (тип зоны - "Основная" , динамические обновления - разрешить, остальные параметры - по умолчанию).

    Введем имя зоны - world.ru.

    Разрешим передачу данной зоны на любой сервер DNS (Консоль DNS - зона world.ru - Свойства - Закладка "Передачи зон" - Отметьте "Разрешить передачи" и"На любой сервер" ).

Создание дополнительной зоны прямого просмотра .

На сервере DC2 создадим стандартную дополнительную зону с именем world.ru.

    Откроем консоль DNS.

    Выберем раздел "Зоны прямого просмотра"

    "Дополнительная" , IP-адрес master-сервера (с которого будет копироваться зона) - адрес сервера DC1, остальные параметры - по умолчанию)

    Введем имя зоны - world.ru.

    Проверим в консоли DNS появление зоны.

Настройка узлов для выполнения динамической регистрации на сервер DNS .

Для выполнения данной задачи нужно выполнить ряд действий как на сервере DNS, так и в настройках клиента DNS.

Сервер DNS.

    Создать соответствующую зону.

    Разрешить динамические обновления.

Это нами уже выполнено.

Клиент DNS.

    Указать в настройках протокола TCP/IP адрес предпочитаемого DNS-сервера - тот сервер, на котором разрешены динамические обновления (в нашем примере - сервер DC1).

    В полном имени компьютера указать соответствующий DNS-суффикс (в нашем примере - world.ru). Для этого - "Мой компьютер" - "Свойства" - Закладка"Имя компьютера" - Кнопка "Изменить" - Кнопка "Дополнительно" - в пустом текстовом поле впишем название домена world.ru - кнопка "ОК" (3 раза)).

Рис. 4.11.

После этого система предложит перезагрузить компьютер. После выполнения перезагрузки на сервер DNS в зоне world.ru автоматически создадутся записи типаA для наших серверов (рис. 4.12 ).

Рис. 4.12.

Создание зоны обратного просмотра .

    Откроем консоль DNS.

    Выберем раздел "Зоны обратного просмотра" .

    Запустим мастер создания зоны (выбрать: тип зоны - "Основная" , динамические обновления - разрешить, остальные параметры - по умолчанию)

    В поле "Код сети (ID)" введем параметры идентификатора сети - 192.168.0.

    Выполним команду принудительной регистрации клиента на сервере DNS - ipconfig /registerdns.

Наши серверы зарегистрируются в обратной зоне DNS (рис. 4.13 ):

Продолжая тему сайтостроения поговорим о таком важном аспекте, как работа системы доменных имен - DNS. С настройкой и расположением DNS-зоны связаны многие вопросы, касающиеся первоначального размещения, а также переноса сайтов между различными серверами и хостингами. Понимание принципов работы системы доменных имен позволяет с легкостью управлять собственными доменами и связанными с ними сайтами и прочими службами.

Что такое доменное имя? Для многих это синоним адреса сайта, например, www.сайт . Набирая этот адрес вы твердо уверены, что попадете именно на этот сайт, а не куда-нибудь еще. В тоже время доменное имя может обозначать не только сайт, но и сервер электронной почты, обмена короткими сообщениями или иной другой интернет и сетевой сервис. Доменные имена входят в доменные зоны, которые расположены внутри друг друга в иерархическом порядке.

В общем понимании домен - это символьное имя, позволяющее однозначно адресовать автономную область имен в сети интернет. И не только адресовать, но и позволить любому клиенту быстро найти необходимый узел, даже не имея ни малейшего представления о его размещении. Можно без преувеличения сказать, что система DNS - основа современной сети интернет в том виде, в которой мы все ее знаем и привыкли.

Система DNS является глобальной и имеет строгую иерархию. Рассмотрим следующую схему:

Верхним уровнем иерархии является корневой домен, обозначаемый точкой, который содержит информацию о доменах первого уровня, например, ru , сom , org и т.п. Работу корневой зоны обеспечивают 13 корневых серверов, расположенных по всему миру и постоянно реплицирующих свои данные между собой. На самом деле корневых серверов больше, но особенности протокола позволяют указать только 13 узлов верхнего уровня, поэтом масштабируемость и отказоустойчивость системы обеспечивается зеркалами каждого корневого сервера.

Домены первого уровня являются привычными нам доменными зонами и могут управляться как национальными, так и международными организациями и иметь свои условия использования. Каждая доменная зона первого уровня позволяет размещать неограниченное количество доменов второго уровня, которые знакомы каждому пользователю интернета как адреса сайтов.

В свою очередь домены второго уровня тоже являются доменными зонами и позволяют размещать в себе домены третьего уровня, в которые, как в матрешку, помещать домены четвертого, пятого и т.д. уровней. Для того, чтобы можно было однозначно определять узлы, находящиеся в разных зонах, введено понятие полностью определенное имя домена (FQDN, Fully Qualified Domain Name ), которое включает в себя все имена родительских доменов в иерархии DNS. Например, для нашего сайта FQDN будет: сайт. Именно так, с окончанием на точку, обозначающее корневую зону.

Это очень важный момент. В повседневном использовании завершающую точку принято отбрасывать, но в записях DNS отсутствие последней точки обозначает, что данное доменное имя принадлежит текущей доменной зоне, т.е. DNS-сервер прибавит к такому имени собственную доменную зону и все вышестоящие зоны вплоть до корня.

Например, на нашем сервере в зоне сайт мы добавляем запись типа CNAME, которая будет указывать на сторонний сервер, скажем, Яндекс-почты. Правильно запись должна выглядеть так:

MailIN CNAMEdomain.mail.yandex.net.

В данном случае имя mail не является FQDN и будет дополнено до mail.сайт. , если же мы забудем поставить точку в конце имени домена Яндекса, то это имя также не будет восприниматься как FQDN и должно быть дополнено до полного имени домена. Ниже показана неправильная запись:

Mail IN CNAME domain.mail.yandex.net

Неподготовленным взглядом разницу заметить сложно, но вместо веб-интерфейса почты Яндекса такая конструкция отправит нас на несуществующий адрес: domain.mail.yandex.net.сайт.

Еще один момент. Все записи для доменной зоны вносятся администраторами зон на собственных DNS-серверах, каким образом данные записи становятся известны системе DNS? Ведь мы же не оповещаем вышестоящие DNS-сервера, что изменили какую-либо запись.

Любая DNS-зона содержит записи только о входящих в нее узлах и дочерних зонах. Информация об узлах нижестоящей зоны хранится на ее собственных серверах. Это называется делегированием и позволяет снизить нагрузку на корневые сервера и предоставить необходимую автономию владельцам дочерних доменных зон.

Итак, вы купили домен, скажем, example.org , после чего вы должны его делегировать, т.е. указать сервера имен (DNS-сервера), которые будут содержать записи данной файловой зоны. Это могут быть как ваши собственные сервера, так и публичные сервисы, например, DNS Яндекса.

В этом случае в доменной зоне org будет добавлена запись:

Example IN NS dns1.yandex.net.

Которая будет указывать, что все записи этой зоны расположены на сервере dns1.yandex.net . По правилам, каждая доменная зона должна иметь не менее двух NS-серверов, расположенных в разных подсетях. На практике часто обходятся одним сервером, приобретая для него два IP-адреса из разных диапазонов.

Теперь разберем, каким образом происходит поиск необходимой нам DNS-записи и почему запись, сделанная на вашем сервере, позволяет попасть на ваш сайт посетителям из любой точки земного шара.

Допустим, пользователь хочет посетить популярный ресурс Яндекс Маркет, он набирает в адресной строке браузера соответствующее имя сайта и нажимает кнопку Enter. Для того, чтобы отобразить пользователю содержимое страницы браузер должен отправить запрос обслуживающему сайт веб-серверу, а для этого нужно знать его IP-адрес. Поэтому браузер обращается к DNS-клиенту с целью узнать, какой адрес соответствует введенному пользователем доменному имени.

В свою очередь DNS-клиент проверяет записи в файле hosts, затем в локальном кэше и, не обнаружив там нужных записей, передает запрос указанному в сетевых настройках DNS-серверу. Скорее всего это будет локальный кэширующий DNS-прокси, например, dnsmasq или локальный DNS-сервер предприятия. Данные решения обычно не являются полноценными серверами глобальной системы DNS и не входят в нее, обслуживая только локальную зону и кэшируя DNS-запросы, поэтому такой запрос, если данных не оказывается в кэше, передается вышестоящему DNS-серверу, как правило это сервер провайдера.

Получив запрос, сервер провайдера проверит собственные записи, затем собственный кэш, и, если результат будет найден, сообщит его клиенту, в противном случае сервер вынужден будет прибегнуть к рекурсии - поиску в глобальной системе DNS. Чтобы лучше понять механизм данного процесса мы подготовили следующую схему:

Итак, клиент отправляет DNS-запрос серверу провайдера с целью узнать адрес домена market.yandex.ru , сервер провайдера не располагает подобной информации, поэтому обращается к одному из корневых серверов, передавая ему запрос. Корневой сервер также не имеет нужных записей, но отвечает, что знает сервер, отвечающий за зону ru - a.dns.ripn.net . Вместе с данным именем корневой сервер может сразу сообщить его IP-адрес (и в большинстве случаев сообщит), но может и не сделать этого, если не располагает такой информацией, в таком случае, перед тем как обратиться к данному серверу, нужно будет выполнить еще один рекурсивный запрос, только уже для определения его имени.

Выяснив адрес сервера, отвечающего за зону ru, сервер провайдера передаст запрос ему, но данный сервер также не имеет нужных записей, но сообщит, что за зону yandex отвечает сервер ns1.yandex.ru и обязательно сообщит его адрес. Иначе рекурсию завершить не удастся, так как за зону yandex отвечает сервер, находящийся в зоне yandex . Для этого в вышестоящей зоне, кроме NS-записи об обслуживающих зону серверах имен, создается "связанная" А-запись , которая позволяет узнать адрес такого сервера.

Наконец, отправив запрос серверу, обслуживающему зону yandex , сервер провайдера получит адрес искомого домена и сообщит его клиенту. Также он поместит полученный результат в кэш на время, предусмотренное значением TTL в SOA-записи этого домена. На практике, так как рекурсивные запросы весьма затратны, время кэширования записей у провайдеров может игнорировать значения TTL домена и достигать значений от двух-четырех часов до нескольких дней или даже недели.

Теперь рассмотрим еще один момент. Запросы могут быть рекурсивными или нерекурсивными. Рекурсивный запрос предусматривает получение готового ответа, т.е. IP-адреса или сообщения что домен не существует, не делегирован и т.п. Нерекурсивный запрос предусматривает ответ только о той зоне, за которую отвечает данный сервер или возврат ошибки.

Так как рекурсивные запросы являются достаточно ресурсоемкими большинство серверов сети DNS обрабатывают рекурсивные запросы нерекурсивно. Либо могут делать это выборочно, например, DNS-сервера провайдера выполняют рекурсивные запросы только для своих клиентов, а остальные нерекурсивно.

В нашем случае клиент послал серверу провайдера рекурсивный запрос, который, в свою очередь, последовательно отправлял нерекурсивные запросы пока не нашел требуемый сервер, который дал необходимый ответ. При этом в кэш сервера провайдера помещаются не только результаты пользовательского запроса, но и результаты промежуточных запросов, что позволяет выполнять следующие такие запросы нерекурсивно или с минимальным количеством запросов.

Например, если пользователь после посещения Яндекс Маркета решит воспользоваться почтовым сервисом, то сервер сразу направит запрос к ns1.yandex.ru , так как уже знает, какой сервер содержит записи для зоны yandex .

От теории к практике

Когда вы приобретаете у регистратора домен, вам будет предложено его делегировать, т.е. указать DNS-сервера, на которых будет расположена доменная зона. Это могут быть сервера регистратора (обычно бесплатно), сервера хостера, публичные DNS-сервисы или собственные сервера имен, если он будет расположен в этой же доменной зоне, то вам потребуется также указать IP-адреса. Например, так выглядит окно делегирования домена у одного известного регистратора:

Что именно туда указывать? Это зависит от того, где и как вы будете размещать свой сайт. Если вы используете виртуальный хостинг, то все необходимые записи создаются хостером автоматически, при добавлении в панели управления хостингом вашего сайта, все что вам надо - это делегировать домен на NS-сервера хостера, т.е. указать их в данном окне. Этот способ хорошо подходит начинающим, благодаря своей простоте, но есть и обратная сторона, возможность управления DNS-зоной со стороны пользователя отсутствует или минимальна. Кроме того, на виртуальном хостинге IP-адрес сайта может быть изменен администраторами без уведомления пользователя, поэтому, если вы не хотите использовать NS-сервера хостера, то этот вопрос следует обязательно обсудить с техподдержкой.

Если вы переносите сайт к другому хостеру, то вам потребуется перенести сайт и поменять у регистратора сервера имен старого хостера на сервера нового. Но учтите, что информация в кэше DNS-серверов обновляется не мгновенно, а, как минимум, по истечении значения TTL-домена, поэтому в течении некоторого времени ваш сайт может быть доступен еще по старому адресу. Если вам надо срочно с ним работать, то можете, не дожидаясь обновления DNS-кэша вашего провайдера, добавить в файл hosts запись следующего содержания:

1.2.3.4 example.com

Где 1.2.3.4 и example.com соответственно новый IP-адрес и имя вашего домена.

Если у вас свой VPS или вы хотите полностью контролировать доменную зону, то следует воспользоваться серверами регистратора или публичными сервисами. Создание собственного сервера имен, на наш взгляд, не оправдывающая себя затея, если только вы не делаете собственный хостинг.

В этом случае вам нужно создать, как минимум, две А-записи, которые будут указывать на веб-сервер обслуживающий сайт в данном домене:

@ IN A 1.2.3.4
www IN A 1.2.3.4

Символ "собачки" в DNS-записях обозначает сам домен, кроме того обязательно следует создать запись для поддомена www, чтобы пользователи, набравшие адрес сайта с www, также могли получить к нему доступ.

Мы не будем рассматривать добавление записей для электронной почты, об этом можно прочесть в нашей статье:

При переносе сайта вам потребуется изменить только IP-адреса в A-записях и дождаться обновления DNS информации. Обычно, это самый неприятный момент - вроде бы все сделано, но ничего изменить вы не можете, остается только ждать. Но если выполнить некоторые рекомендации, то данный процесс можно провести максимально безболезненно и незаметно для посетителей.

Прежде всего измените значение TTL в SOA-записи. По-умолчанию оно равно нескольким часам и именно столько вам придется ждать обновления вашей записи в кэше DNS-серверов. Чтобы узнать текущее значение TTL можно выполнить команду, указав нужное доменное имя:

Nslookup -typr=soa сайт

В нашем случае это 4 часа:

Поэтому заранее, не менее 4 часов (старое значение TTL) до планируемого переноса, измените значение TTL на более низкое, например, 900 (15 минут). Затем переведите свой сайт в режим "только чтение" и перенесите его на новый сервер. Выключать или переводить на техобслуживание сайт не следует, он может и должен оставаться доступным. Но вы должны исключить изменение и добавление информации пользователями, т.е. запретить регистрацию, комментирование, размещение заказов и т.п. Также не забудьте разместить на видном месте сообщение о технических работах и примерный срок их завершения.

Для того, чтобы работать с новым сервером, не изменяя DNS-записи, добавьте нужную строку в файл hosts. Разместив сайт на новой площадке и убедившись в его нормальной работе измените DNS-записи, теперь уже через 15 минут первые пользователи начнут посещать ваш сайт на новом сервере. Работоспособность старого сервера требуется поддерживать еще некоторое время, в идеале до недели, так как не все провайдеры используют значение TTL из SOA-записи для обновления кэша, для уменьшения нагрузки на оборудование могут быть использованы собственные настройки.

После успешного переноса значение TTL следует увеличить до прежних значений, чтобы не создавать лишней нагрузки на сервера имен.

Мы рассмотрели самую простую схему, но на практике, кроме сайта, обычно есть еще офисная сеть, многие ресурсы которой должны быть также доступны извне. Рассмотрим следующую схему:

У нас имеются публичные сервера для сайта и электронной почты и офисная сеть, для которой мы выделили поддомен office . Если с почтой и веб-сервером особых вопросов нет, то с офисной зоной есть варианты. Обычно локальная зона обслуживается собственным DNS и никак не связана с материнской зоной. Для глобальной системы DNS зона office.example.com не существует, но существует одноименный хост. Это оправдано, если сеть предприятия находится за NAT и ее узлы имеют только серые адреса, а доступ извне осуществляется только к шлюзу, на который проброшены соответствующие порты от внутренних узлов.

В этом случае DNS записи зоны example.com могут выглядеть следующим образом:

@ IN A 1.2.3.4
www IN A 1.2.3.4
mail IN A 1.2.3.5
office IN A 5.6.7.8

Но возникает некоторая сложность, внутри сети клиенты обращаются к сетевым сервисам по внутренним именам: corp.office.example.com или rdp.office.example.com , которые указывают на внутренние "серые" адреса". Однако за пределами локальной сети разрешить IP-адрес для таких имен не представляется возможным, так как содержащей их зоны для глобальной системы DNS не существует. Выйти из положения позволяет механизм, называемый Split-DNS, который позволяет отдавать различные результаты в зависимости от положения клиента.

В локальной сети DNS-запросы клиентов обслуживает локальный сервер, которые имеет соответствующие записи, за ее пределами запросы будут направлены серверу, обслуживающему зону example.com . При этом все корпоративные ресурсы, которые в локальной сети представлены различными серверами, извне доступны по единственному адресу: office.example.com . Поэтому самое время вспомнить о записи псевдонима или CNAME. Данная запись позволяет связывать с реальным именем хоста дополнительные мнемонические имена или псевдонимы. При этом учтите, что использовать в других записях псевдонимов недопустимо. В нашем случае следует добавить записи:

Corp.office IN CNAME office.example.com.
rdp.office IN CNAME office.example.com.

Теперь клиент, вне зависимости от своего местоположения, может использовать для доступа к ресурсам одно и тоже имя, но результат получать при этом будет разный. В локальной сети он получит реальный адрес сервера и подключится напрямую, а за ее пределами будет направлен на шлюз сети.

Также записи типа CNAME можно использовать для перенаправления за пределы обслуживаемой доменной зоны. Главное условие - CNAME запись должна указывать на реальное имя в формате FQDN.

Еще одно применение псевдонимов - это сокращение адреса. Допустим, в качестве почтового сервера для всего домена example.com мы хотим использовать сервер, который расположен в московском офисе и имеет адрес mail.office.msk.example.com , согласитесь, выглядит не слишком привлекательно. Гораздо удобнее был бы адрес вида mail.example.com , нет ничего проще, добавим следующую запись:

Mail IN CNAME mail.office.msk.example.com.

Но помните, что в остальных ресурсных записях следует использовать только реальные имена, поэтому такая запись будет неверной:

Example.com. IN MX 10 mail

Правильно будет так:

Example.com. IN MX 10 mail.office.msk

Напоследок поговорим о делегировании доменных зон. В примере выше мы рассмотрели ситуацию, когда внутри домена различным подразделениям выделены свои поддомены, так как у каждого подразделения имеется своя инфраструктура, то есть смысл делегировать им управление собственными доменными зонами. Для этого в зоне example.com следует разместить NS и связанную с ней A-запись для каждой зоны. Например:

Msk IN NS ns1.msk.example.com.
msk IN NS ns2.msk.example.com.

ns1.msk IN A 1.2.3.4
ns2.msk IN A 5.6.7.8

Теперь при обращении по адресу, скажем mail.office.msk.example.com сервера имен зоны example.com будут выдавать имя и адрес сервера, обслуживающего зону msk.example.com . Это позволяет администраторам зоны самостоятельно вносить необходимые изменения, не затрагивая при этом функционирования вышестоящей зоны и не обращаясь к ее администраторам по любому вопросу, требующему изменения записей.

  • Теги:

Please enable JavaScript to view the

Добрый день, уважаемые читатели и постоянные подписчики, IT блога сайт. В прошлый раз мы разобрали, что такое DNS-сервер , его принципы работы, основные записи и много другое. Кто пропустил заметку, советую ознакомиться. В сегодняшней публикации я хочу рассмотреть вопрос, о обратных зонах и их применении.

Обратный запрос DNS - особая доменная зона, предназначенная для определения имени узла по его IPv4-адресу c помощью PTR-записи. Адрес узла AAA.BBB.CCC.DDD переводится в обратной нотации и превращается в DDD.CCC.BBB.AAA.in-addr.arpa. Благодаря иерархической модели управления именами появляется возможность делегировать управление зоной владельцу диапазона IP-адресов . Для этого в записях авторитетного DNS-сервера указывают, что за зону CCC.BBB.AAA.in-addr.arpa (то есть за сеть AAA.BBB.CCC.000/24) отвечает отдельный сервер.

PTR-запись (от англ. pointer – указатель) связывает IP хоста с его каноническим именем. Запрос в домене in-addr.arpa на IP хоста в обратной форме вернёт имя данного хоста. Например, (на момент написания), для IP адреса 192.0.34.164: запрос записи PTR 164.34.0.192.in-addr.arpa вернет его каноническое имя referrals.icann.org.in-addr.arpa

in-addr.arpa - специальная доменная зона, предназначенная для определения имени хоста по его IPv4-адресу, используя PTR-запись. Адрес хоста AAA.BBB.CCC.DDD транслируется в обратной нотации и превращается в DDD.CCC.BBB.AAA.in-addr.arpa. Благодаря иерархической модели управления именами появляется возможность делегировать управление зоной владельцу диапазона IP адресов. Для этого в записях авторитативного DNS-сервера указывают, что за зону CCC.BBB.AAA.in-addr.arpa (то есть за сеть AAA.BBB.CCC/24) отвечает отдельный сервер.

Использование

В целях уменьшения объёма нежелательной почтовой корреспонденции (спама) многие серверы-получатели электронной почты могут проверять наличие PTR записи для хоста, с которого происходит отправка. В этом случае PTR запись для IP адреса должна соответствовать имени отправляющего почтового сервера, которым он представляется в процессе SMTP сессии.

Система доменных имён - основа современного интернета. Люди не желают затруднять себя запоминанием набора цифр 63.245.217.105, а хотят чтобы по имени mozilla.org компьютер соединил их с указанным узлом. Этим и занимаются DNS-серверы: переводят запросы людей в понятный им цифровой формат. Однако в некоторых случаях может потребоваться обратное (reverse) преобразование IP-адрес → DNS-имя. О таких именах и пойдёт речь ниже.

Для чего нужно?

Наличие корректно настроенного rDNS адреса совершенно необходимо, чтобы отправлять сообщения с вашего собственного сервера корпоративной почты . Практически все почтовые серверы отвергнут приём сообщения ещё на стадии начала сессии, если у IP-адреса вашего сервера отсутствует запись в обратной зоне DNS. Причина отказа удалённым почтовым сервером будет, скорее всего, указана такой:
550-"IP address has no PTR (address to name) record in the DNS, or when the PTR record does not have a matching A (name to address) record. Pls check and correct your DNS record."

или
550-There"s no corresponding PTR for your IP address (IP-address), which is 550 required. Sorry, bye.

или просто
550 Your IP has no PTR Record

Число 550 во всех трёх случаях является стандартным кодом почтового SMTP сервера, сообщающего о критической ошибке, которая непреодолимо препятствует дальнейшей работе в рамках данной почтовой сессии. Надо сказать, что вообще все ошибки серии 500 являются критическими и продолжение передачи почты после их появления невозможно. Текст же поясняет причину отказа более подробно и сообщает, что администратор почтового сервера-получателя настроил его на проверку наличия у почтового сервера-отправителя записи в обратной зоне DNS (rDNS) и в случае её отсутствия сервер-получатель обязан отказывать отправителю в соединении (SMTP-ошибки серии 5XX).

Как настроить и использовать?

Правами на настройку обратной зоны DNS (reverse DNS) обладает лишь владелец соответствующего блока IP-адресов, которой эта зона соответствует. Как правило этим владельцем оказывается провайдер, владеющий собственной автономной системой. Подробнее о регистрации своей автономной системы (AS) и блока IP-адресов можно прочитать в этой статье . Если кратко, то оператору блока IP-адресов для регистрации обратной зоны DNS необходимо зарегистрировать в своём личном кабинете на сайте RIPE объект типа «domain», указать адрес DNS-серверов, которые будут поддерживать зону rDNS и настроить поддержку зоны вида 3.2.1.in-addr.arpa на них. За ресурсы в обратной зоне отвечает указатель (pointer) - запись типа PTR. К ней-то и идут запросы о разрешении IP-адреса в имя хоста.

Если же вы не являетесь счастливым обладателем автономной системы, то настройка rDNS для IP-адреса или адресов почтового сервера для вас начинается и заканчивается запросом в службу поддержки провайдера или хостера. В обоих случаях имя IP-адресу почтового сервера, а особенно корпоративного почтового сервера, следует давать осмысленно.

Примеры хороших имён для сервера почты:

mail.domain.ru
mta.domain.ru
mx.domain.ru

Примеры плохих имён:

host-192-168-0-1.domain.ru
customer192-168-0-1.domain.ru
vpn-dailup-xdsl-clients.domain.ru

и подобные. Такие имена с высокой вероятностью попадут под фильтр как назначенные клиентским компьютерам, на которых не может быть установлен почтовый сервер, следовательно с них рассылается спам.

С успехом использовать запросы к обратным зонам DNS можно и нужно сразу после запуска почтового сервера. Для этого необходимо произвести лишь небольшую настройку ПО. В разных почтовых серверах настройка проверки rDNS делается по-разному:

  • так для почтового сервера Postfix необходимо включить опцию
    reject_unknown_client
  • в другом популярном почтовом сервере Exim
    verify = reverse_host_lookup
  • MS Exchange Server
    В оснастке Exgange Server перейти в раздел Servers далее выбрать сервер в развернутом списке, выбрать Protocols, далее протокол SMTP, в правом окне выделить SMTP сервер и по клику правой клавишей мыши выбрать из списка Properties. Далее закладка Delivery → Perform reverse DNS lookup on incoming messages
  • Теперь все сообщения с IP-адресов не имеющих обратной записи в DNS (записей типа PTR) будут отвергаться, поток спама, значительно сократится. Пожалуй, это самый простой, действенный и наименее ресурсоёмкий из всех методов фильтрации спама: проверкой reverse DNS отсекается подавляющее большинство спама, рассылаемого с заражённых компьютеров обычных пользователей, составляющих ботнеты спамеров.


    При перепубликации статьи установка активной индексируемой гиперссылки на источник - сайт сайт обязательна!

    Понравилась статья? Поделиться с друзьями: