Расчет концентрации газа лазерный газоанализатор. Лазерный газоанализатор. Знак утверждения типа


Владельцы патента RU 2613200:

Изобретение относится к области измерительной техники и может быть использовано для проведения качественного и количественного анализа газовых сред.

Среди разнообразных методов газоанализа особое место занимает метод, основанный на спектроскопии комбинационного рассеяния (КР) света. Спектры КР объясняются рассеянием возбуждающего лазерного излучения молекулами на частотах, соответствующих их внутреннему строению, а интенсивность данных спектров линейно зависит от количества молекул. Таким образом, суть данного метода заключается в регистрации спектров КР и проведении по ним качественного и количественного анализа газовых сред. В первую очередь, данный подход отличает отсутствие расходных материалов и сложной пробоподготовки, высокое быстродействие, а также возможность одновременного контроля всех молекулярных соединений анализируемой газовой среды, содержание которых превышает порог чувствительности аппаратуры. Благодаря этим преимуществам данный тип газоанализаторов является одним из наиболее перспективных на сегодняшний день.

Необходимо отметить, что основным недостатком газоанализа с помощью спектроскопии КР является низкая интенсивность информативных сигналов, что напрямую отражается на величинах пороговых пределов обнаружения газовых компонентов и относительно невысокой достоверности проводимого газоанализа.

Известен лазерный анализатор, основанный на методе спектроскопии комбинационного рассеяния света [свидетельство на полезную модель №10462, 1999 г., G01N21/25]. Несмотря на то, что данное устройство предназначено для газоанализа природного газа, оно способно осуществлять диагностику и других газовых сред. Данный анализатор содержит лазер, фокусирующую линзу, газовую кювету, конденсорный объектив, деполяризующий клин, голографический фильтр, полихроматор, содержащий вогнутую дифракционную решетку, приемный блок, содержащий распределительный элемент и фотодиодные линейки, а также блок управления и ЭВМ. Суть его работы заключается в регистрации спектра комбинационного рассеяния света исследуемой газовой среды и проведении по нему качественного и количественного анализа. Основным недостатком данного устройства является низкая достоверность анализа, обусловленная низкой интенсивностью регистрируемых спектров КР. Данное обстоятельство, в свою очередь, обуславливается использованием объектива для сбора рассеянного света с малой светосилой (1:6) и спецификой полихроматора, использующего вогнутую дифракционную решетку и, соответственно, обладающего также малой светосилой.

Наиболее близким по принципу действия (прототипом) является анализатор состава природного газа [Патент РФ № 126136, 2013 г., G01N 21/00]. Данный анализатор также основан на спектроскопии комбинационного рассеяния света и имеет потенциал анализа любых молекулярных соединений. Данный анализатор частично лишен недостатка устройства, описанного выше, в части использования компонентов с малой светосилой. Указанное устройство имеет в своем составе лазер, фокусирующую линзу, газовую кювету, фотообъектив со светосилой 1:1.8, голографический фильтр, блок управления, а также светосильный спектральный прибор с плоской дифракционной решеткой, сопряженный с ПЗС-матрицей.

Тем не менее основным недостатком данного анализатора газа является низкая достоверность анализа, обусловленная относительно низкой интенсивностью регистрируемых спектров КР.

Задачей, на решение которой направлено изобретение, является повышение интенсивности регистрируемых спектров КР за счет увеличения плотности молекул в области взаимодействия лазерного луча и анализируемого газа.

Технический результат – повышение достоверности газоанализа.

Указанный результат достигается тем, что в системе, содержащей непрерывный лазер, фокусирующую линзу, газовую кювету с входным окном для ввода лазерного излучения и окном для вывода рассеянного излучения под углом 90°, фотообъектив, голографический фильтр, обеспечивающий ослабление рассеянного излучения на длине волны лазера, спектральный прибор, сопряженный с ПЗС-матрицей, и блок управления, в отличие от прототипа, внутренние грани газовой кюветы выполнены таким образом, что они образуют прямоугольный параллелепипед, причем на грани, не имеющей окна и параллельной другой грани, также не имеющей окна, установлен акустический излучатель с частотой, создающий внутри кюветы стоячую звуковую волну, перпендикулярную лазерному лучу и обеспечивающую в области фокусировки область сжатия газа.

Известно, что акустическая волна представляет собой чередующиеся области сжатия и разрежения среды, в которой она распространяется. Выполнение внутренних граней кюветы таким образом, что образуется прямоугольный параллелепипед, а также обеспечение условий для образования внутри нее стоячей волны (см. соотношение 1) позволяет зафиксировать в пространстве данные области, причем за счет резонанса разница давлений в них увеличится.

где l – длина распространения акустической волны, λ – длина волны, n – целое нечетное число (1, 3, 5, …), ввиду того, что лазерный луч проходит через центр кюветы.

Таким образом, в области фокусировки лазерного луча внутри кюветы обеспечивается область сжатия газа, характеризующаяся повышением плотности молекул и, соответственно, их концентрацией, что обеспечивает повышение интенсивности сигналов КР в силу соотношения 2.

I=I 0 NΩσ, (2)

где I – интенсивность сигналов КР, I 0 – интенсивность возбуждающего лазерного излучения, Ω – угол сбора рассеянного излучения, N – концентрация молекул данного сорта, σ – сечение рассеяния.

В свою очередь повышение интенсивности информативных сигналов КР гарантированно ведет к повышению достоверности проводимого газоанализа.

На фиг. 1 приведена блок-схема предлагаемого лазерного газоанализатора (вид сбоку).

На фиг. 2 приведена блок-схема газоанализатора (вид сверху).

Лазерный газоанализатор содержит лазер (1), работающий в непрерывном режиме, фокусирующую линзу (2), газовую кювету (3), оснащенную окном для ввода лазерного излучения (4) и окном для вывода рассеянного света (5), акустический излучатель (6), фотообъектив (7) для сбора рассеянного излучения, голографический фильтр (8), спектральный прибор (9), ПЗС-матрицу (10) и блок управления (11).

Предлагаемый лазерный газоанализатор работает следующим образом. Возбуждающее излучение от лазера 1 фокусируется линзой 2 в центре газовой кюветы 3, проходя сквозь входное окно 4. Внутри кюветы 3 установлен акустический излучатель 6, генерирующий акустические волны. В силу его расположения от противоположной грани кюветы на расстоянии, кратном половине длины акустической волны, внутри кюветы образуется стоячая акустическая волна с областью сжатия в области фокусировки лазерного луча. Лазерное излучение, в свою очередь, рассеивается на молекулах анализируемого газа, находящегося внутри кюветы. Данное рассеянное излучение, наибольшая плотность мощности которого находится в центре кюветы, выходит через окно 5 и собирается фотообъективом 7. Данный объектив направляет собранное излучение на входную щель спектрального прибора 9, сквозь голографический фильтр 8, роль которого ослабить интенсивность упругого рассеяния света на частоте возбуждающего излучения. Спектральный прибор 9 разлагает попавший в него свет в спектр, который далее регистрируется ПЗС-матрицей 10. Последняя передает электрические сигналы в блок управления 11, где возможны их обработка и хранение.

Непосредственно вычисление качественного и количественного состава анализируемой газовой среды по зарегистрированному спектру КР может быть осуществлено либо в блоке управления, либо передано из него на компьютер.

Предлагаемое изобретение характеризуется более высокой достоверностью анализа, обусловленной регистрацией спектров КР газов с более высокой интенсивностью и, соответственно, более высоким соотношением сигнал/шум.

Лазерный газоанализатор, содержащий непрерывный лазер, фокусирующую линзу, газовую кювету с входным окном для ввода лазерного излучения и окном для вывода рассеянного излучения под углом 90°, фотообъектив, голографический фильтр, обеспечивающий ослабление рассеянного излучения на длине волны лазера, спектральный прибор, сопряженный с ПЗС-матрицей, и блок управления, отличающийся тем, что внутренние грани газовой кюветы выполнены таким образом, что они образуют прямоугольный параллелепипед, причем на грани, не имеющей окна и параллельной другой грани, также не имеющей окна, установлен акустический излучатель с частотой, создающий внутри кюветы стоячую звуковую волну, перпендикулярную лазерному лучу и обеспечивающую в области фокусировки область сжатия газа.

Похожие патенты:

Изобретение относится к медицине, а именно к терапии и кардиологии, и может быть использовано для диагностики ишемической болезни сердца. Ткань ногтевых пластин с пятых пальцев кистей правой и левой рук возбуждают линейно поляризованным лазерным излучением длиной волны 532 нм.

Изобретение относится к способу определения компонента в сепарационном блоке, расположенном ниже по потоку относительно реактора получения уксусной кислоты, включающему (i) подачу сырьевого потока в ректификационную колонну для перегонки низкокипящих фракций, где сырьевой поток содержит следующие компоненты: йодистый метил, воду, метанол, метилацетат, ацетальдегид, уксусную кислоту, алканы и пропионовую кислоту, (ii) разделение с помощью ректификационной колонны для перегонки низкокипящих фракций сырьевого потока на первый погон выходящего потока и выходящий поток кубового остатка, где первый погон выходящего потока содержит следующие компоненты: от 30% мас.

Изобретение относится к переносным устройствам для экспресс-оценки оптических характеристик растений на определенных волновых числах, закономерное изменение амплитуды которых является признаком влияния водорода, и может применяться для выявления зон эманации водорода за счет использования растений в качестве биоиндикаторов.

Изобретение относится к способу получения винилацетата, где указанный способ включает: (а) взаимодействие в реакторе (i) от 65 до 80 мол.% этилена, (ii) от 10 до 25 мол.% уксусной кислоты и (iii) от 5 до 15 мол.% кислородсодержащего газа в присутствии палладиево-золотого катализатора с получением винилацетата; (b) выведение из реактора газового потока, содержащего этилен, уксусную кислоту, винилацетат, воду и диоксид углерода; (c) разделение газового потока на поток этилена, включающий этилен и диоксид углерода, и первичный поток винилацетата, включающий винилацетат, воду и уксусную кислоту; (d) разделение потока этилена на поток регенерированного этилена и поток диоксида углерода; (e) разделение первичного потока винилацетата на поток винилацетата и поток регенерированной уксусной кислоты; (f) повторную подачу в реактор на стадию (а) потока регенерированного этилена со стадии (d) и потока регенерированной уксусной кислоты со стадии (е); (g) измерение концентрации компонентов, принимающих участие или связанных с одной или несколькими из перечисленных выше стадий, с помощью спектроскопии комбинационного рассеяния, где данная стадия измерения включает стадию идентификации сдвигов комбинационного рассеяния и интенсивностей сигналов компонентов, принимающих участие или связанных с одной или несколькими из перечисленных выше стадий; и (h) регулирование условий в реакторе или в любой из последующих стадий в соответствии с измеренными концентрациями компонентов для осуществления надлежащего управления реакцией или любой из последующих стадий.

Изобретение относится к области исследования свойств вещества оптическими средствами и касается анализатора комбинационного рассеяния. Анализатор включает в себя расщепитель оптического пучка, фильтр на атомных парах, прерыватель и фотодетектор.

Изобретение относится к области аналитического приборостроения и предназначено для качественного и количественного анализа природного газа (ПГ). Способ включает облучение газа линейно поляризованным монохроматическим лазерным излучением и одновременную регистрацию m спектров спонтанного комбинационного рассеяния (СКР) эталонных газовых компонентов, входящих в состав ПГ, причем для них дополнительно регистрируется интегральная интенсивность облучающего лазерного излучения Ii, i=1..m, а величины относительных концентраций компонентов анализируемого ПГ из его спектра СКР определяются по формуле, в которую входят вклады спектров СКР эталонных газовых компонентов в зарегистрированный спектр СКР ПГ, вычисленные с помощью метода наименьших квадратов.

Изобретение относится к области оптических сенсоров, регистрирующих молекулярные группы и работающих в видимом диапазоне частот. Возобновляемая подложка для детектирования поверхностно-усиленного рамановского рассеяния состоит из наноструктурированной SERS-подложки и пассивирующего диэлектрического слоя.

Изобретение относится к измерительной технике и может быть использовано для проведения качественного и количественного анализа газовых сред. Лазерный газоанализатор содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным окном для ввода лазерного излучения и окном для вывода рассеянного излучения под углом 90°, фотообъектив, голографический фильтр, спектральный прибор, сопряженный с ПЗС-матрицей, и блок управления. Внутренние грани газовой кюветы образуют прямоугольный параллелепипед, причем на грани, не имеющей окна и параллельной другой грани, также не имеющей окна, установлен акустический излучатель, создающий внутри кюветы стоячую звуковую волну, перпендикулярную лазерному лучу и обеспечивающую в области фокусировки область сжатия газа. Техническим результатом изобретения является повышение достоверности газоанализа. 2 ил.

Лазерный газоанализатор «ЛГАУ-02» предназначен для измерения концентрации газообразных углеводородов в воздухе, прокачиваемом через газовую кювету прибора. Газоанализатор может использоваться как в автономном варианте, так и в составе мобильных авто- и авиалабораторий. В состав комплекса входят:

  • лазерный газоанализатор «ЛГАУ-02»;
  • выносной блок управления с источниками звуковых сигналов;
  • дополнительно: персональный компьютер с установленным программным обеспечением.


Рис. 1

Схема организации автолаборатории представлена для поиска утечек из подземных газопроводов представлена на Рис. 1 В авиалаборатории, можно обойтись без побудителя расхода, обеспечив эффективный воздухозабор напором забортного воздуха, а на ручной тележке можно вместо приземного пробоотборного устройство использовать выносное.

Достоинства газоанализатора «ЛГАУ-02» проявляются при решении задач:

  • обнаружения утечек из подземных газопроводов городских газовых сетей, а также из магистральных и распределительных трубопроводов с помощью автолаборатории, осуществляющей измерения на ходу;
  • обнаружения утечек из подземных, наземных и воздушных газопроводов с помощью ручной тележки, осуществляющей измерения на ходу;
  • обнаружения утечек из магистральных газопроводов с помощью авиалаборатории;
  • измерения вариаций метанового (углеводородного) фона на больших площадях (углеводородная съемка) помощью авиалаборатории с целью поиска месторождений нефти и газа и экологического контроля состояния атмосферы.


Рис. 2

  • Программное обеспечение позволяет вести архивы. Также ведется журнал событий.

Функциональные возможности комплекса

  • Газоанализатор выполнен в виде оптико-электронного измерительного блока в пыле- и брызгозащищенном корпусе по IP54 и комплектуется выносным пультом управления, снабженным аналоговым индикатором, единственной кнопкой установки нуля и двухступенчатой звуковой и световой сигнализацией повышенных концентраций с регулируемыми порогами срабатывания. Простота монтажа и обслуживания прибора, высокая надежность, небольшие габариты и энергопотребление позволяют использовать его в автономном режиме, на ручных тележках, автомобилях и на борту практически любых авианосителей, включая дельтапланы и минисамолеты. Газоанализатор может работать полностью автономно, а вместо выносного пульта может подключаться любое измерительное устройство напряжения постоянного тока от 0 до 5 В. Документирование данных измерений и построение графика в режиме реального времени может осуществляться на обычном персональном компьютере с интерфейсом RS 232C, в том числе переносном. При подключении к системе газоанализатор-компьютер спутниковой навигации возможно картографирование поля загазованности. Побудитель расхода может подключаться через специальную кнопку коммутации напряжения питания на лицевой панели прибор.

Опыт эксплуатации

  • Опыт эксплуатации. С 1998 г. Санкт-Петербургское городское газовое хозяйство «Ленгаз» и с 2004 г. Московское ГУП «Мосгаз» эксплуатируют автолаборатории для поиска утечек природного газа из городских подземных газопроводов на базе «ЛГАУ-02». Опытные образцы прибора эксплуатировались в составе авиалабораторий при проведении атмогеохимической съемки в комплексе газонефтепоисковых работ в Татарстане, Чувашии и на севере Красноярского края и при экологическом обследовании атмосферы городов Тулы и Москвы. Кроме того, приборы использовались в составе автолабораторий при геоэкологическом обследовании территорий распространения техногенных грунтов в ряде районов массовой застройки г. Москвы, а также автономно — при проведении наземной геохимической съемки в Корее. На основе газоанализатора был создан бортовой компьютеризованный комплекс для авиационной углеводородной газовой съемки. В полевом сезоне 2001 г. налет комплекса на борту самолета Ан 2 без единого отказа прибора превысил 600 часов, а общий объем покрытой площади составил около 30 тыс. кв. км.

Перспективы развития комплекса

  • Реализация дополнительных интерфейсов USB;
  • Подключение прибора спутниковой навигации GPS с интерактивной картой местности;
  • Реализация дополнительных возможностей по заказу пользователя.
Публикации

Журнал «Приборы и техника эксперимента», 1999, №5

Лазерный газоанализатор для поиска утечек газа из подземных газопроводов

Журнал «Приборы и системы управления», 1998, №9

Бортовой лазерный абсорбционный газоанализатор углеводородов

Copyright 1998-2005 Инженерный Центр МИФИ

Характеристика

Прибор предназначен для проведения оперативного газоанализа атмосферного воздуха методом оптико-акустической лазерной спектроскопии

Принцип действия газоанализатора основан на генерации акустических волн в воздухе при взаимодействии модулированного лазерного луча с молекулами газовой примеси, поглощающей лазерное излучение на заданной длине волны. Акустические волны преобразуются микрофоном в электрические сигналы, пропорциональные концентрации поглощающего газа. Перестраивая длину волны лазера и используя известные спектральные данные о коэффициентах поглощения различных газов, можно определить состав детектируемой газовой примеси.

Отличительной особенностью данного газоанализатора является совмещение в единой конструкции перестраиваемого волноводного СО2-лазера и прокачного оптико-акустического детектора (ОАД) дифференциального типа. ОАД располагается внутри лазерного резонатора и образует единую конструкцию с лазером. Благодаря этому уменьшаются потери на оптических элементах, повышается мощность внутри рабочего канала ОАД и жесткость всей конструкции. В газоанализаторе используется автоматически перестраиваемый по линиям волноводный СО2-лазер с высокочастотным (ВЧ) возбуждением, в котором импульсно-периодический режим генерации задается модуляцией мощности ВЧ-генератора, что дает возможность оптимизировать энергопотребление путем регулировки скважности импульсов возбуждения. В конструкции используемого ОАД дифференциального типа имеется два резонансных акустических канала, в

которых формируются противофазные акустические волны, что позволяет при введении соответствующей обработки свести к минимуму шумыпри протекании воздуха через каналы.

Данные особенности прибора являются уникальными и в совокупности обеспечивают предельно высокую для оптико-акустических устройств чувствительность детектирования, низкий уровень аппаратурных шумов и относительно малое общее энергопотребление.

Газоанализатор способен регистрировать минимальные коэффициенты поглощения газовых примесей в атмосфере в потоке газа на уровне ~ 5 × 10-10 см-1 с высоким быстродействием, присущим оптическим методам газоанализа. Благодаря этим качествам, а также возможности перестройки длины волны лазерного излучения в области 9,3÷10,9 мкм газоанализатор позволяет проводить в реальном времени измерения малых концентраций атмосферных и антропогенных газов (на уровне 1 ppb и менее), таких как С2

Н4, NH3, O3, C6, SO2, SF6, N2

O, CH3, CH3и т.д.,

включая парыряда взрывчатых и отравляющих веществ (всего около 100 веществ).

Указанные свойства позволяют применять прибор для контроля концентраций химических молекулярных соединений в атмосферном воздухе и технологических процессах, проводить анализ выдыхаемого воздуха с целью выявления различных заболеваний и т.д.

Применение эффекта

Очевидные преимущества ОА-метода в сочетании с использованием достаточно мощных непрерывных перестраиваемых по частоте лазеров делают его особенно привлекательным для решения задач, требующих измерения слабого поглощения излучения молекулярными газами. В первую очередь это касается задач газового анализа при малых и сверхмалых концентрациях молекул в среде.

Статья в тему

Сигнальные средства связи и современные средства связи в экспедициях
связь сигнализация экспедиция арктический В любой экспедиции, морской или сухопутной, в любом походе или полете может возникнуть чрезвычайная ситуация, в результате которой их участники лишатся всего снаряжения, запасов воды, пищи или значительной их части. Средства радиосвязи - важнейший элемент а...

Использование: контроль вредных веществ, содержащихся в воздухе. Сущность изобретения: устройство содержит лазерную газоразрядную трубку, блок формирования луча, выполненный в виде дифракционной решетки на пьезокорректоре, которые расположены в тангенциальном узле, связанном с шаговым двигателем, оптико-акустическую ячейку, реперную кювету, измерительный и фоновый микрофон, и два пироэлектрических датчика, подключенных через аналого-цифровой преобразователь и блок сопряжения ко входу персональной ЭВМ. 1 ил.

Предлагаемое изобретение относится к измерительной технике и предназначено для контроля вредных веществ, содержащихся в воздухе. Перечни вредных веществ в воздухе рабочей или жилой зоны насчитывают сотни веществ, оказывающих воздействие на организм человека. Известно множество приборов, например служащий для контроля состава воздуха с помощью различных методов измерений: химикоаналитического, хроматографического, кулонометрического и т.д. Одним из наиболее пригодных для выполнения оперативных измерений с возможностью контроля большого числа вредных веществ является метод с использованием поглощения ИК-излучения. Известны газоанализаторы типа ГИАМ предназначенные для регистрации одного из следующих газов: CO, CO 2 , CH 4 , SO 2 , NO. В качестве источников ИК-излучения в них используются нити накаливания (лампы), имеющие сплошной спектр излучения. Для выделения спектрального диапазона, отвечающего спектру поглощения исследуемого вещества, используются светофильтры. Измерения ведутся с использованием сравнительной кюветы с эталонным газом. Прерывистый световой поток поочередно направляется на рабочую и сравнительную кюветы, проходя через которые он (световой поток) регистрируется оптикоакустическим детектором, наполненным измеряемым газом. По разнице сигналов с детекторов определяется концентрация исследуемого вещества в воздухе. Приборы подобного типа, обладая хорошей оперативностью (время установления показаний примерно 10 с), не позволяют вести одновременную (в одной пробе) регистрацию больше одного компонента загрязняющих веществ. Известен универсальный газовый монитор 1302 фирмы Брюль и Къер позволяющий вести одновременную регистрацию до пяти примесей в одной пробе воздуха. В качестве источника ИК-излучения в приборе используется нить накаливания. Изменение спектра ИК-излучения, попадающего в чувствительный объем оптико-акустической ячейки, приводится автоматически в процессе измерений с помощью набора узкополосных светофильтров, установленных на вращающемся диске. Проба воздуха заполняет объем оптико-акустической ячейки. На время проведения замера, вход и выход ячейки перекрывается от наружного воздуха. С помощью микрофонов измеряют амплитуду колебаний давления, возникающего в ячейке при поглощении прерывистого светового потока исследуемой пробой. Измерения выполняются для каждого светофильтра. Полное время измерения одной пробы составляет примерно 2 мин. По результатам измерений определяется концентрация до пяти примесей в одной пробе. Управление работой прибора и обработка результатов измерений приводится с помощью встроенного процессора. Поставляемой отдельно набор из двух 2-х сменных узкополосных светофильтров позволяет проводить регистрацию большого числа примесей, поглощающих ИК-излучение. Однако прибор позволяет выполнять измерения лишь при априорно известном составе загрязнителей. В противном случае перекрытие полос поглощения различных веществ не позволяет получить адекватную информацию о составе вредных веществ в воздухе. Наиболее близким к предлагаемому решению является лазерный газоанализатор, описанный в и содержащий лазерную газоразрядную трубку, к которой подключен источник высоковольтного напряжения и блок охлаждения, расположенные на одной оптической оси, блок формирования луча и оптико-акустическую ячейку, к которой подключены блок забора воздуха, измерительный микрофон и пироэлектрический датчик, аналого-цифровой преобразователь, подключенный через блок сопряжения и блок ввода и вывода данных с входом персональной электронно-вычислительной машины. Выход которой через блок сопряжения соединен со входом блока управления. Использование лазерного источника ИК-излучения позволяет реализовать в приборе высокое спектральное разрешение примерно (10-20 нм). Регистрация поглощения в исследуемом газе осуществляется при помощи оптико-акустической ячейки. Газоанализатор состоит из трех основных частей: источника перестраиваемого ИК-излучения, оптико-акустической ячейки (ОАЯ), системы регистрации и обработки информации. В устройстве блок формирования луча выполнен в виде оптически связанных модулятора, формирователя, зеркала, фокусирующей линзы и дифракционной решетки. Выбранной в приборе способ перестройки длины волны лазерного излучения с использованием дифракционной решетки и поворотного зеркала позволяет реализовать выделение 36 линий излучения. Идентификация линий излучения проводится только при настройке прибора. При поглощении излучения в исследуемом газе, заполняющем ОАЯ, в ней формируется акустическая волна, регистрируемая конденсаторным микрофоном. Сигналы с микрофона и пироэлектрического приемника излучения, регистрирующего мощность лазерного излучения, подаются на вход двухканальной системы регистрации, состоящей из двух синхронных детекторов. Аналоговая запись регистрируемых сигналов ведется с помощью самописца. Информация может быть считана при помощи цифрового вольтметра и ЭВМ. Недостатками прототипа являются ограниченное число линий излучения, что влияет на многокомпонентность в одной пробе воздуха, и отсутствие контроля за длиной волны излучения. Задачей изобретения является обеспечение экспрессного многокомпонентного анализа состава воздуха по вредным веществам с высокой точностью. Эта задача в устройстве, содержащем лазерный газоанализатор, содержащем лазерную газоразрядную трубку, к которой подключен источник высоковольтного напряжения и блок охлаждения, расположенные на одной оптической оси блок формирования луча, выполненный в виде дифракционной решетки на пьезокорректоре, и оптико-акустическую ячейку, к которой подсоединены блок забора воздуха и измерительный микрофон, пироэлектрический датчик, подключенный через последовательно соединенные аналого-цифровой преобразователь и блок сопряжения ко входе ПЭВМ, решается за счет того, что газоанализатор дополнительно содержит фоновый микрофон, расположенные на одной оптической оси реперную кювету и дополнительный пироэлектрический датчик, подключенный аналогично основному пироэлектрическому датчику, а также дифференциальный усилитель, в блоке формирования луча дифракционная решетка и пьезокорректор расположены в тангенциальном узле, связанном с шаговым двигателем, причем выходы измерительного и фонового микрофонов подключены через дифференциальный усилитель к АЦП, выхода блока управления соединены с соответствующими входами пьезокорректора и шагового двигателя блока формирования луча, выход персональной ЭВМ через блок сопряжения соединен с блоком управления. Сущность изобретения заключается в том, что предлагаемое выполнение блока формирования луча позволяет иметь большой (до 70 линий ИК-излучения) набор длин волн с фиксированной и контролируемой длиной волны (многокомпонентность и точность); программное обеспечение и банк данных, используемые в ПЭВМ и связь его через блок сопряжения и блок управления со всеми датчиками газоанализатора, обеспечивает оперативность коррекции ухода параметров и обработки информации. На чертеже представлена структурная схема газоанализатора. Он содержит лазерную газоразрядную трубку ЛГРТ 1 (CO 2 -лазер), высоковольтный блок питания 2 ЛГРТ, блок охлаждения 3 служит для охлаждения ЛГРТ, диафрагма 4 регулирует мощность излучения, дифракционная решетка 5, поворот которой меняет длины волны излучения, пьезокорректор 6 компенсирует температурную нестабильность, тангенциальный блок 7, продольное перемещение которого на 20 мм приводит к повороту дифракционной решетки 5 на 14 o , шаговый двигатель 8 осуществляет перемещение тангенциального блока 7, зеркала 9, направляющие ИК-излучение на входное окно АОЯ, элементы 4, 5, 6, 7, 8 и 9 составляют блок формирования луча 26, пироэлектрический датчик 10, на который попадает ИК-излучение, частично отраженное от входного окна ОАЯ, пироэлектрический датчик 11, регистрирующий ИК-излучение, прошедшее через ОАЯ через реперную кювету, микрофон фоновый 12, не "видящий" чувствительного объема ОАЯ, микрофон измерительный 13, регистрирующий периодическое изменение давления в ОАЯ за счет поглощения прерывистого светового потока, оптико-акустическая ячейка ОАЯ 14 чувствительный элемент газоанализатора, реперная кювета 15 с известным наполнением, используемая для контроля длины волны излучения, нагнетатель 16, подающий исследуемый воздух в ОАЯ, электромагнитные клапаны 17, 18 и 19, регулирующие поток исследуемого воздуха, воздухозаборник (трубка) 20, обтюратор 21, служащий для периодического прерывания потока излучения, фильтр 22, датчик температуры 23 в системе охлаждения, датчик давления 24 в системе охлаждения, датчик 25 давления в цепи воздухозабора, ПЭВМ 27 осуществляет управление работой и сбор результатов измерений, блок сопряжения 28 связан магистралью с ПЭВМ 27, с блоком управления 29, аналого-цифровым преобразователем АЦП 30, ПЭВМ 27 типа IBM PC обеспечена программным обеспечением 31 и банком данных 32 (показаны условно). Сигналы с 13 и 12 вычитаются один из другого, разность нормируется на показания пироэлектрического датчика 10. Измерения проводятся при длинах волн, задаваемых от ПЭВМ 27 (каждая длина волны отвечает определенному шагу шагового двигателя 8). Блок сопряжения 28 служит для сопряжения ПЭВМ 27 и исполнительно-регистрирующей части газоанализатора с АЦП 30, который преобразует сигналы с пироэлектрических датчиков 10, 11 и с дифференциального усилителя 33 в цифровой код. Блок управления 29 осуществляет работу исполнительных механизмов нагнетателя 16, пьезокорректора 6, шагового двигателя 8, электромагнитных клапанов 17, 18 и 19. Блок управления 29 осуществляет также контроль давления и температуры в цепи охлаждения ЛГРТ 1 и контроль давления в системе воздухозабора. Забор пробы в ОАЯ 14 проводится через воздухозаборную трубку 20, фильтра 22. Воздух по трубке 20 движется под действием нагнетателя 16. Регулировка направлением потока ведется клапанами 17, 18, 19. Датчик давления 25 служит для проверки исправности системы воздухозабора. В режиме измерения часть излучения поглощается исследуемым газом в ОАЯ 14, вызывая периодические колебания давления с частотой, равной частоте прерывания пучка излучения обтюратором 21, которые регистрируются микрофон 13. Часть излучения, пройдя через выходное окно ОАЯ 14, попадает в реперную кювету 15, а затем на пироэлектрический датчик 11. При обработке используются сигналы с дифференциального усилителя 33 (входы которого соединены с микрофонами 12 и 13) и пироэлектрического датчика 11, нормированные на показания датчика 10. Управление работой газоанализатора, сбор и обработка результатов осуществляется с помощью ПЭВМ 27 типа IBMHC с использованием специально разработанного программного обеспечения 31 и банка данных 32. Работа газоанализатора, оператора и функциональное назначение программ описано ниже. Работа с газоанализатором начинается с включения ПЭВМ 27 в сеть и загрузки программного обеспечения SCO 2 , содержащего следующие программы: 1. CONTROL; 2. TEST 3. TEST LINE; 4. SPECTRA; 5. CALCULATION; 6. RESULT; 7. BANK. После загрузки SCO 2 на экран дисплея ПЭВМ 27 выводится сообщение "ВКЛЮЧИ ГАЗОАНАЛИЗАТОР", включается программа "CONTROL", обеспечивая проверку функционирования газоанализатора перед началом измерений. Осуществляется проверка обтюратора 21, нагнетателя 16, клапанов 17, 18 и 19. Далее в соответствии с программой "CONTROL" на экране дисплея выводится запрос "ПРОВОДИМ ТЕСТОВЫЙ ЗАМЕР". В случае необходимости тестового замера, подтверждаемого нажатием клавиши Д, работу оператор проводит по программе "TEST". На экране дисплея появляется сообщение "ЗАПОЛНИТЕ ОАЯ НУЛЕВЫМ ГАЗОМ". "ГОТОВ", по заполнению клавишей Д запускается программа измерений: проводятся измерения сигналов микрофонов 12 и 13, пироэлектрического датчика мощности 10 при различных значениях линий излучения (т.е. при различных значениях номера шага шагового двигателя 8. Результаты заносятся в память ПЭВМ 27 для использования в программе "CALCULATION"). После этого на экране появляется сообщение "ПРОВЕСТИ НУЛЕВОЙ ЗАМЕР". Если по программе "TEST" не проводятся измерения, то сразу появляется это сообщение. Измерения выполняются по программе "TEST LINE" по нажатии клавиши Д. Через ОАЯ 14 нагнетателем 16 прокачивается воздух, клапаны 18 и 19 закрываются, клапан 17 открывается, после чего отключается нагнетатель 16 и проводятся измерения сигналов с микрофонов 12 и 13, подключенных к дифференциальному усилителю 33, и пироэлектрических датчиков 10 и 11 при различных номерах шагов шагового двигателя 8. Результаты измерений после АЦП 30 нормируются на показания пироэлектрического датчика мощности 10. Если не проводились измерения по программе "TEST", то сигналы микрофонов 12 и 13 записываются в файл для обработки в программе "CALCULATION", в противном случае они далее не используются; сигнал с датчика 11 вводится в файл для программы основных измерений "SPECTRA". По окончании программы на экране дисплея появляется запрос "РЕЖИМ РАБОТЫ СКАНИРОВАНИЯ". При нажатии клавиши Д работа будет проводиться по программе "SPECTRA" с измерением сигналов микрофонов 12 и 13 и пироэлектрического датчика 10 во всем диапазоне излучения, на каждой группе шагов, отвечающей наличию излучения. При этом для контроля спектра излучения сравниваются результаты измерений с измерениями с датчика 11 и данные по спектру поглощения газа в реперной кювете 15, занесенные в банк данных при градуировке газоанализатора. При необходимости вводится поправка в нумерацию шагов, заданной программой "SPECTRA", Результаты измерений заносятся в файл для программы "CALCULATION". При отказе от работы в режиме сканирования (нажатие клавиши "H") появляется сообщение "ВВЕДИТЕ НАЗВАНИЯ ЗАГРЯЗНИТЕЛЕЙ ИЗ НАЗВАННОГО СПИСКА", работа продолжается по программе "SPECTRA". На экране появляется список загрязнителей. После выбора загрязнителей появляется сообщение "РЕЖИМ РАБОТЫ ОДНОКРАТНЫЙ". При нажатии клавиши D проводится однократное измерение: набирается проба воздуха ОАЯ 14, измеряются сигналы с микрофонов 12 и 13 и датчика 10 на линиях поглощения искомых веществ, определяемых номером шага шагового двигателя 8 с учетом нулевого замера. Результаты измерений заносят в файл для обработки по программе "CALCULATION". В случае отказа от однократного измерения (нажатие клавиши H) появляется сообщение "ЗАДАЙТЕ ВРЕМЯ ИЗМЕРЕНИЯ В ЧАСАХ", после чего ведутся непрерывные измерения по программе "SPECTRA", в течение заданного времени. Интервал между отдельными измерениями при этом 5 мин. Результаты измерений заносятся в файл для обработки по программе "CALCULATION". Обработка результатов измерений ведется по программе "CALCULATION" по окончании измерений (однократный режим), между отдельными измерениями (непрерывный режим). Обработка ведется с использованием банка данных (программа BANK), в который занесены аппаратурные спектры поглощения газов, чувствительность к каждому отдельному газу, минимальные детектируемые количества, спектр поглощения газа реперной кюветы, предельно допустимые концентрации ДНК газов для воздуха рабочей и жилой зоны. Результаты выводятся на экран в виде таблицы (однократные измерения) или графика (непрерывные измерения) в сравнении с ПДК. В случае неопределенности в результатах обработки (например, совпадающие спектры поглощения) выводится сообщение о неадекватности измерений. Таким образом, в предлагаемом газоанализаторе обеспечены технические средства для экспрессного определения по пикам поглощения различных примесей воздуха (до 60 компонент в одной пробе), по величине пика поглощения определяется концентрация примеси, что выгодно отличает его от аналогов и прототипа.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Лазерный газоанализатор, содержащий лазерную газоразрядную трубку, к которой подключены источник высоковольтного напряжения и блок охлаждения, расположенный на одной оптической оси с лазерной газоразрядной трубкой блок формирования луча, выполненный в виде дифракционной решетки на пьезокорректоре, и оптикоакустическую ячейку (ОАЯ), к которой подсоединены блок забора воздуха и измерительный микрофон, пироэлектрический датчик, подключенный через последовательно соединенные аналого-цифровой преобразователь (АЦП) и блок сопряжения к входу персональной ЭВМ, отличающийся тем, что газоанализатор дополнительно содержит фоновый микрофон, расположенные на одной оптической оси с оптико-акустической ячейкой реперную коювету и дополнительный пироэлектрический датчик, подключенный аналогично основному пироэлектрическому датчику, а также дифференциальный усилитель, в блоке формирования луча дифракционная решетка и пьезокорректор расположены в тангенциальном узле, связанном с шаговым двигателем, за тангенциальным узлом установлено поворотное зеркало, направляющее излучение на входное окно ОАЯ, причем выходы измерительного и фонового микрофонов через дифференциальный усилитель подключены к АЦП, выходы блока управления соединены с соответствующими входами пьезокорректора и шагового двигателя блока формирования луча, выход персональной ЭВМ через блок сопряжения соединен с блоком управления.

Высокочувствительный лазерный газоанализатор предназначен для анализа содержания примесных газов в воздушных пробах. Основные элементы газоанализатора: волноводный СО 2 -лазер, резонансная оптико-акустическая ячейка, а также компьютер, в библиотеке которого содержатся сведения о линиях поглощения 37 газов. Представлены сведения о пределах обнаружения газов разработанным газоанализатором. Предел обнаружения по аммиаку с погрешностью 15% составляет 0.015 ppb.

Необходимость постоянного контроля за содержанием в воздухе большого числа загрязнений на значительных территориях при разумных затратах средств и труда ставит задачу оснащения службы экологического контроля газоанализаторами, удовлетворяющими следующим требованиям: 1) порог обнаружения на уровне предельно допустимых концентраций анализируемых веществ; 2) высокая избирательность по отношению к посторонним веществам; 3) многокомпанентность анализа; 4) высокое быстродействие (малое время цикла измерений при заборе одной пробы), обеспечивающее возможность работы в движении и сравнительно быструю реакцию на превышение заданного уровня концентрации; 5) непрерывность измерений в течение 2-4 ч для определения размеров загрязненной области.

Существующие методы детектирования газов можно условно разделить на традиционные (неспектроскопические) и оптические (спектроскопические). В работе перечислены достоинства и недостатки основных традиционных методов с точки зрения их применения для анализа газовых примесей сложного состава в воздухе.

Спектроскопические методы, быстрое развитие которых определяется уникальными характеристиками лазеров, позволяют устранить основные недостатки традиционных приборов и обеспечить необходимое быстродействие, чувствительность, селективность и непрерывность анализа. В большинстве случаев для детектирования загрязнения воздуха спектроскопическими методами используется средняя и.к.-область спектра, где сосредоточены основные колебательные полосы подавляющего большинства молекул. Видимая и у.ф.-области в этом отношении менее информативны.

Особое место в семействе и.к.-лазерных газоанализаторов занимают приборы с СО 2 -лазера-ми. Эти лазеры долговечны, надежны и просты в эксплуатации и позволяют детектировать более 100 газов.

Ниже описан газоанализатор (макетный образец), удовлетворяющий вышеперечисленным требованиям. В качестве источника излучения используется волноводный СО 2 -лазер, чувствительным элементом является резонансная оптико-акустическая ячейка (р.о.а.я.). В основе оптико-акустического метода лежит регистрация звуковой волны, возбуждаемой в газе при поглощении модулированного по амплитуде лазерного излучения в р.о.а.я. Давление звуковой волны, пропорциональное удельной поглощенной мощности, регистрируется микрофоном. Структурная схема газоанализатора приведена на рис. 3,1. Модулированное излучение СО 2 -ла-зера попадает на узел перестройки длины волны. Этот узел представляет собой дифракционную решетку, позволяющую перестраивать длину волны излучения в диапазоне 9.22-10.76 мкм и получать 84 лазерные линии. Далее излучение через систему зеркал направляется в чувствительный объем р.о.а.я., где регистрируются те газы, которые поглощают поступающее в нее излучение. Энергия поглощенного излучения увеличивает температуру газа. Выделившееся на оси ячейки тепло путем, главным образом, конвекции передается стенкам ячейки. Модулированное излучение вызывает соответствующее изменение температуры и давления газа. Изменение давления воспринимается мембраной емкостного микрофона, что приводит к появлению периодического электрического сигнала, частота которого равна частоте модуляции излучения.

Рисунок3,1. Структурная схема газоанализатора

На рис.3, 2 представлен эскиз внутренней полости р.о.а.я. Он образован тремя цилиндрическими активными объемами: симметрично расположенными объемами 1 и 2 диаметром 20 мм и внутренним объемом 3 диаметром 10 мм. Входное 4 и выходное 5 окна изготовлены из материала BaF 2 . Микрофон установлен в нижней части ячейки и соединен с активным объемом отверстием 6 диаметром 24 мм.


Рисунок 3,2 Внутренняя полость резонансной оптико-акустической ячейки. 1, 2 - внешние объемы, 3 - внутренний объем. 4, 5 - входное и выходное окна, 6 - отверстие микрофона

Оптический резонанс" обусловленный поглощением лазерного излучения газом, при нормальных условиях возникает при частоте модуляции излучения 3.4 кГц, а фоновый сигнал, обусловленный поглощением излучения окнами р.о.а.я., максимален при частоте 3.0 кГц. Добротность в обоих случаях составляет >20. Такая конструкция р.о.а.я. обеспечивает высокую чувствительность газоанализатора и позволяет подавить вклад фонового сигнала с помощью частотно- и фазово-селективного усилителя. В то же время р.о.а.я. нечувствительна к внешним акустическим шумам. Амплитуда электрического сигнала при измерении концентрации определяется формулой

где K -- постоянная ячейки, -- мощность излучения лазера, б - коэффициент поглощения излучения газом, С - концентрация газа.

Перед измерениями проводится калибровка газоанализатора с использованием поверочного газа (СО2) c известной концентрацией.

Измерение амплитуды осуществляется с помощью платы а.ц.п., входящей в состав компьютера фирмы Advantech. Этот же компьютер используется для управления узлом перестройки длины волны и расчета концентраций измеряемых газов.

Разработанная программа обработки информации предназначена для качественного и количественного анализа смеси газов по спектру поглощения лазерного излучения СО 2 лазера. Исходной информацией для программы является измеренный спектр поглощения анализируемой газовой смеси. Пример спектра поглощения азота, построенный в единицах оптической толщины, приведенной рис3,3а, а на рис.3,3б представлен пример спектра поглощении с малой добавкой аммиака.

Рисунок 3,3 Спектры поглощения: а - азота при нормальном атмосферном давлении, б - смеси азот-аммиак.

Оптическая толщина, где

См -1 атм -1 - коэффицент поглощения j-го газа на i-ой лазерной линии, С i , атм - концентрация j-го газа, i

Библиотека возможных компонент содержит значения коэффициентов поглощения и представляет собой матрицу размерностью {N x m}. Число представленных в библиотеке газов т = 37, максимальное число анализируемых лазерных линий N - 84 (по 21 линии в каждой ветви СO 2 -лазера).

В процессе анализа спектра газовой смеси, образованного перекрывающимися линиями поглощения входящих в состав смеси газов, программа отбирает из библиотеки те компоненты, которые позволяют наилучшим образом описать спектр смеси. Одним из основных критериев поиска наилучшего набора компонент служит величина среднеквадратичного отклонения между экспериментальным и найденным в результате итераций спектром поглощения:

Алгоритм решения обратной задачи - поиска концентраций по известному спектру поглощения - построен с помощью метода исключения Гаусса и метода регуляризации по Тихонову, и основные трудности его реализации связаны с оценкой устойчивости решения (элементы матрицы коэффициентов поглощения, так же как и свободные члены, известны лишь приближенно), выбором параметра регуляризации и нахождением критериев прекращения итерационного процесса.

В таблице представлены расчетные сведения о пределах обнаружения некоторых газов описываемым газоанализатором:

Предел обнаружения, ppb

Предел обнаружения, ppb

Акролеин

Монометил гидразин

Перхлорэтилен

t-бутанол

Пропанол

Винил хлорид

Гексафторид серы

Трихлорэтилен

Гексахлорбутадиен

Гидразин

Диметилгидразин

1.1 -дифторэтилен

Изопропан

Метилхлороформ

Этилацетат

Метил этил кетон

Основные рабочие характеристики газоанализатора: количество одновременно измеряемых газов - до 6; время измерений 2 мин; предел обнаружения по углекислому газу 0,3 ррт: предел обнаружения по аммиаку 0.015 ppb: диапазон измерений по углекислому газу 1 ррт -10%; диапазон измерений по аммиаку 0.05 ppb-5 ррт; погрешность измерений 15%; напряжение питания 220В ±10%. [ 1]



Понравилась статья? Поделиться с друзьями: