Что такое конденсатор и для чего он нужен. Зачем нужны конденсаторы? Подключение конденсатора

Конденсатор представляет собой пассивный электронный компонент, который имеет два полюса с определенным или переменным значением емкости. Еще он обладает малой проводимостью. Важно разобраться, для чего нужно конденсатор в электродвигателе и , поскольку согласно информации, представленной на форумах, у многих людей неправильное представление по этому поводу, и они просто недооценивают значимость этого устройства.

Для чего нужен конденсатор?

Устройство используется во всех электрических и радиотехнических схемах. Для каких целей в схему включают конденсатор:

  1. Выступает в роли сопротивления, что позволяет использовать его в качестве фильтра, чтобы подавлять ВЧ и НЧ помехи.
  2. Применяют для фотовспышек и лазеров, а все благодаря способности устройства накапливать заряд и быстро разряжаться, создавая импульс.
  3. Помогает компенсировать реактивную энергию, что позволяет использовать его в промышленности.
  4. Благодаря умению накапливать и долгое время сохранять заряд конденсатор можно использовать для сохранения информации и для питания маломощных устройств.

Для чего нужен автомобильный конденсатор?

Это устройство может выполнять несколько функций в автомобиле. Например, их используют, чтобы создать высокие показатели напряженности во всей электрической системе в авто. Чаще всего конденсатор применяют для автомобильной акустики. Говоря о том, зачем нужен конденсатов в автозвуке, заметим, что его основное предназначение заключается в помощи усилителю быстро отдавать имеющуюся мощность на пиках низких частот.

Если в акустической системе конденсатор не используется, тогда звук баса не будет таким четким, а также может возникать просадка в питании всей электрической сети автомобиля. Подобные скачки напряжения в итоге могут привести к тому, что сабвуфер попросту сломается.

При выборе конденсатора для автомобиля руководствуйтесь таким правилом, что на 1 кВт мощности должно приходиться 1 Ф. Выбирайте качественный конденсаторы и лучше всего, если у них будет смеха управления зарядом.

Стоит также выяснить, как правильно установить конденсатор. Лучше всего делать это максимально близко к сабвуферному усилителю, поскольку именно на него приходится самая большая нагрузка. Расстояние не должно быть больше 60 см. Тип подключения – параллельное.

Зачем нужен конденсатор в электродвигателе?

Для правильной работы некоторых двигателей необходимо использовать пусковой и рабочий конденсаторы. Основное предназначение пускового конденсатора заключается в повышении пусковых характеристик двигателя. Это устройство помогает уменьшить время входа двигателя в его рабочий режим, одновременно увеличить крутящийся момент и облегчить процесс запуска двигателя.

Что касается рабочего конденсатора, то он вовлечен в работу на протяжении всего времени работы двигателя. Это устройство обеспечивает допустимый нормами нагрев обмоток, оптимальную нагрузочную способность и экономичность электрического двигателя. Еще он способствует максимальному крутящему моменту и увеличению срока службы двигателя.

Теперь следует выяснить, какой конденсатор нужен для двигателя. Емкость этого устройства обычно выбирается из расчета, что на 100 Вт должно приходиться 6,6 мФ. Порой данное значение является некорректным, поэтому лучше всего подбирать емкость путем экспериментов. Есть несколько способ подбора, но наиболее точные значения можно получить благодаря подключению двигателя через амперметр. Важно проконтролировать потребляемый ток при разных емкостях. Задача заключается в том, чтобы найти, при какой емкости значение тока на амперметре будет минимальным.

Конденсатор – элемент, способный накапливать электрическую энергию. Название происходит от латинского слова «condensare» — «сгущать», «уплотнять».

Первый конденсатор был создан в 1745 году Питером ванн Мушенбруком. В честь города Лейдена, в котором его создали, изобретение впоследствии назвали «Лейденской банкой».

Конденсатор состоит из металлических электродов – обкладок, между которыми находится диэлектрик. По сравнению с обкладками, диэлектрик имеет небольшую толщину. Это и определяет свойство конденсатора накапливать заряд: положительные и отрицательные заряды на его обкладках удерживают друг друга, взаимодействуя через тонкий непроводящий слой.

Емкость конденсатора зависит от:

  • площади обкладок (S);
  • расстояния между ними (d);
  • диэлектрической проницаемости материала диэлектрика между обкладками (ԑ).

Связаны они между собой формулой (формула емкости конденсатора):


Для увеличения площади обкладок пластины некоторых конденсаторов изготавливают из полосок фольги, разделенных полоской диэлектрика и скрученных в рулон. Увеличить емкость также можно уменьшением толщины диэлектрика между обкладками и применением материалов с большей диэлектрической проницаемостью. Между обкладками конденсаторов располагают твердые, жидкие вещества и газы, в том числе и воздух.

Конденсаторы небольшой емкости получают на печатных платах, располагая две дорожки напротив друг друга.

Каким бы качественным не был диэлектрик в конденсаторе, он все равно имеет сопротивление. Его величина велика, но в заряженном состоянии конденсатора ток между обкладками все равно есть. Это приводит к явлению «саморазряда »: заряженный конденсатор со временем теряет свой заряд.

Принцип работы конденсатора: его заряд и разряд

Заряд конденсатора. В момент подключения к источнику постоянного тока через конденсатор начинает протекать ток заряда. Он убывает по мере зарядки конденсатора и в итоге падает до величины тока саморазряда, определяющегося проводимостью материала диэлектрика.

Напряжение на конденсаторе плавно нарастает от нуля до напряжения источника питания.

При заряде конденсатора ток и напряжение изменяются по экспоненциальному закону. Время заряда можно определить по формуле:

Если сопротивление в формулу подставить в Омах, в емкость – в Фарадах, то получим время в секундах, за которое напряжение на конденсаторе изменится в е ≈ 2,72 раз. Конденсатор большей емкости будет разряжаться дольше, и быстрее разрядится на меньшую величину сопротивления.

Разряд конденсатора. Если к заряженному конденсатору подключить сопротивление нагрузки, то ток через нее вначале будет максимальным, затем плавно упадет до нуля. Напряжение на его обкладках тоже будет изменяться по экспоненциальному закону.

Применение конденсаторов

Наряду с резисторами конденсаторы являются самыми распространенными компонентами. Ни одно электронное изделие не может без него обойтись. Вот краткий перечень направлений использования конденсаторов.

Блоки питания : в качестве сглаживающих фильтров при преобразовании пульсирующего тока в постоянный.

Звуковоспроизводящая техника : создание при помощи RC-цепочек элементов схем, пропускающих звуковые сигналы одних частот и задерживая остальные. За счет этого удается регулировать тембр и формировать амплитудно-частотные характеристики устройств.

Радио- и телевизионная техника : совместно с катушками индуктивности конденсаторы используются в составе устройств настройки на передающую станцию, выделения полезного сигнала, фильтрации помех.

Электротехника . Для создания фазовых сдвигов в обмотках однофазных электродвигателей или в схемах подключения трехфазных двигателей в однофазную сеть. Используются в установках, компенсирующих реактивную мощность.

При помощи конденсаторов можно накопить заряд, превышающий по мощности источник питания. Это используется для работы фотовспышек , а также в установках для отыскания повреждений в кабельных линиях, выдающих мощный высоковольтный импульс в место повреждения.

Конденсатор в цепи постоянного и переменного тока ведет себя абсолютно по разному.

Итак, берем постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт. Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:

Не-а, не горит.

А вот если напрямую сделать, то горит:


Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот генератор частоты вполне сойдет:


Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой на 100 Ом. Также возьмем и конденсатор емкостью в 1 микрофарад:


Спаиваем как-то вот так и подаем сигнал с генератора частоты:


Далее за дело берется Цифровой осциллограф OWON SDS6062 . Что такое осциллограф и с чем его едят, читаем здесь . Будем использовать сразу два канала. На одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.


Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.

Все это будет выглядеть примерно вот так:


Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц?

На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда: F — это частота, Ma — амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал — желтым, для удобства восприятия.


Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида — это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта. На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 милливольт. Да еще и сигнал получился какой-то «лохматый». Это связано с так называемыми « «. Шум — это сигнал с маленькой амплитудой и беспорядочным изменением напряжения. Он может быть вызван самими радиоэлементами, а также это могут быть помехи, которые ловятся из окружающего пространства. Например очень хорошо «шумит» резистор. Значит «лохматость» сигнала — это сумма синусоиды и шума.

Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз . Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени:-), что конечно же, невозможно.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Давайте увеличим частоту на генераторе до 500 Герц


На резисторе уже получили 560 милливольта. Сдвиг фаз уменьшается.

Увеличиваем частоту до 1 КилоГерца


На выходе у нас уже 1 Вольт.

Ставим частоту 5 Килогерц


Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше

Увеличиваем до 10 Килогерц


Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 Килогерц:


Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2 .

Если построить обрезок графика, то получится типа что-то этого:


По вертикали я отложил напряжение, по горизонтали — частоту.

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.

Смотрим и анализируем значения:







Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Герц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт(в реальности еще меньше из за помех). На частоте 500 Герц — 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц — 1 Вольт и 136 милливольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, Х С — это сопротивление конденсатора, Ом

П — постоянная и равняется приблизительно 3,14

F — частота, измеряется в Герцах

С — емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц — это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Заключение

Забегая вперед, могу сказать, что в данном опыте мы получили (ФВЧ). С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик, в динамике мы будет слышать только писклявые высокие тона. А вот частоту баса как раз и заглушит такой фильтр. Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.

В мощных автомобильных аудиосистемах нередко можно встретить такой элемент как буферный конденсатор. Зачем он нужен и что собой представляет? Давайте разбираться.

А ОНО ВООБЩЕ НАДО?
Для начала давайте вспомним, что такое конденсатор вообще. Конденсатор - это устройство, которое может накапливать электрический заряд, держать его в себе, и при необходимости отдавать. Емкость конденсаторов измеряется в Фарадах. 1 Фарад - это, кстати, весьма приличная величина. Чтобы конденсатор работал, его необходимо подключить параллельно аккумулятору (плюс к плюсу и минус к минусу). Про такое подключение обычно говорят "включен в буфер с аккумулятором", отсюда и название - буферный конденсатор. Ставят их, как правило, поближе к усилителям.
Итак, зачем он нужен? Он не является дополнительным источником питания, а просто держит в себе электрический заряд, поэтому на первый взгляд вроде бы абсолютно бесполезен. Но, тем не менее, польза от него есть, и немалая.
В каждый момент времени усилитель потребляет разный ток. Например, когда лабух по бас-бочке шарахает или в клубной музыке сочные басовые удары отбивают ритм, то это сопровождается скачками потребления тока. Поскольку питающие кабели имеют определенное сопротивление (это мы подробно разжевали в прошлом номере), то из-за него в эти моменты напряжение на клеммах усилителя неизбежно подсаживается. Такая нестабильность питания - причина искажений звукового сигнала и всех остальных сопутствующих неприятностей.
Что же изменится, если мы подключим параллельно клеммам усилителя конденсатор? А изменится следующее - конденсатор будет накапливать от аккумулятора заряд в те моменты, когда усилитель потребляет маленький ток, и будет быстро отдавать его, когда усилителю понадобится большой ток, компенсируя этим самым просадку напряжения на кабеле. В итоге усилитель получает более стабильное питание, а, значит, и искажений становится меньше, бас сочнее, все счастливы.
Впрочем, тут, наверняка, последуют возражения, мол, если провод будет достаточно толстый, то и потерь на нем будет мало, и зачем тогда конденсатор? Но конденсатор и в этом случае окажется нелишним. Токопотребление усилителя обычно изменяется очень резко, а любой обычный аккумулятор относительно инертен. Он, несомненно, способен отдать большой заряд, но он не может делать это мгновенно, так, как это бывает нужно усилителю. Следствие этой тормознутости - опять же нехватка питания в самые начальные моменты резких пиков токопотребления. Конденсатор же способен отдавать заряд очень быстро, гораздо быстрее, чем аккумулятор. Он компенсирует эту аккумуляторную медлительность, и усилитель снова получает полноценное питание.

Конденсатор компенсирует негативное влияние сопротивления питающего кабеля, но для этого он должен быть установлен как можно ближе к самому усилителю, в идеале между ним и усилителем вообще должно быть не больше 10-20 см питающего провода. Иначе эффект от его применения сводится практически к нулю.


ИЗ ИСТОРИИ

Прародитель современных конденсаторов - лейденская банка, изобретенная в 1745 году голландским ученым Мушенбруком и его учеником Кюнеусом, живших в городе Лейден. Параллельно и независимо от них похожее устройство под названием „медицинская банка"изобрел немецкий учёный Клейст. Устройства были способны накапливать заряд, и с их помощью впервые удалось получить искусственным путем электрическую искру.

КСТАТИ
В одной из инсталляций мной было подсмотрено одно интересное решение - в непосредственной близости к усилителю установлена самодельная батарея из конденсаторов небольшой емкости. Для еще большего улучшения скорострельности они были шунтированы совсем мелкими конденсаторами, емкостью всего лишь 0,1-1 микрофарад. Система была рассчитана не на громкость, а на качество звука. Результат весьма впечатлил, конденсатор повлиял на звучание не только низких, но и даже средних частот.


Выбирая конденсатор для своей аудиосистемы, придерживайтесь правила - 1 фарад на каждые 1000 Вт RMS мощности усилителя.

Емкость конденсаторов измеряется в фарадах. 1 фарад - это очень большая емкость. Такой емкостью обладал бы шар, радиус которого был бы равен 13 (!) радиусам Солнца. Для сравнения, емкость нашей Земли (вернее шара размером с Землю, как отдельного уединенного проводника) составляет всего около 700 микрофарад.

ЛУЧШЕ МЕНЬШЕ, ДА ЛУЧШЕ
Рынок предлагает немало моделей -от относительно небольших „кондеров", емкостью 0,5 фарад, до монструозных агрегатов емкостью в десятки фарад. Какой выбрать? Всегда ли большая емкость - это хорошо?
Выбирать подходящий конденсатор нужно в соответствии с мощностью усилителей. Можно исходить из экспериментально установленного правила „1 фарад на 1000 Вт" (естественно, имеются ввиду не какие-нибудь максимальные 1000 Вт, измеренные черт знает как, а 1000 Вт RMS мощности). Скажем, питание одноканального басового усилителя мощностью 700 Вт вполне можно подпереть 1-фарадным конденсатором, а к 4-канальнику с номиналом 4x100 Вт вполне подойдет емкость 0,5 фарад.
А можно ли установить конденсатор большей емкости? Можно, но все дело в том, что большие конденсаторы обычно менее скорострельны - они больше будут похожи просто на еще один дополнительный медлительный аккумулятор, чем на быстрый конденсатор. Поэтому их есть смысл использовать, только если вы строите действительно мощную аудиосистему, рассчитанную на „колбасную" музыку с тяжелыми басами и не слишком быстрой атакой звука, например, клубной музыки. Способность конденсатора быстро отдавать заряд при этом отходит на второй план.
Правда, если вы собираетесь на соревнования по SPL (неограниченному звуковому давлению) или просто любитель громкой музыки с очень низкими и протяжными басами, то особо на поддержку конденсатора можете не рассчитывать. Ведь весь принцип его работы заключается в отдаче накопленного заряда в самый первый момент токопотребления усилителя. Дальше „пустая банка", включенная параллельно усилителю, может принести больше вреда, чем пользы.
Если же вы считаете, что большой конденсатор вам ну просто ужас как необходим, но вы не хотите терять в скорости его реакции на изменения сигнала, то нужную емкость можно набрать параллельным включением нескольких небольших конденсаторов.

КСТАТИ


В продаже можно встретить не только „чистые" конденсаторы, но и гибриды „конденсатор плюс небольшой аккумулятор". По задумке разработчиков аккумулятор должен обеспечить емкость как у больших конденсаторов, а входящий в состав устройства небольшой конденсатор должен обеспечить быстроту реакции устройства на изменяющееся токопотребление усилителя.

КАК ПРАВИЛЬНО ЗАРЯДИТЬ КОНДЕНСАТОР?
Не секрет, что ковыряться в проводке и подключать всякие девайсы нужно при скинутых с аккумулятора клеммах, это обычное правило безопасности. Но допустим, вы все установили, подключили и решили, что пора уже включать. И все бы ничего, но многие при этом забывают, что при самом первом включении конденсатор пока еще разряжен. А ведь это устройство, которое способно не только отдавать, но и накапливать заряд очень быстро. Так что как только клеммы коснутся аккумулятора, пустая „банка" сразу же начнет заряжаться, через конденсатор лотечет огромный ток, и на несколько секунд он просто станет перемычкой, закоротив „+" и „-" аккумулятора. Как минимум, пострадают клеммы, став на время подобием сварочных электродов, ну а о предохранителях, наверное, и вовсе уж говорить не стоит. Что же делать? Как правильно зарядить конденсатор, чтобы избежать этого?
Самый простой вариант- использовать любую 12-вольтовую лампочку. Перед тем, как накидывать клемму, просто на несколько секунд включите ее между аккумуляторной и накидываемой клеммами. Конденсатор начнет заряжаться, но резкого броска тока уже не произойдет. Конденсатор будет спокойно заряжаться через лампочку, по мере заряда она будет светить все тусклее и тусклее, и когда совсем погаснет, то это и будет означать, что конденсатор зарядился, и можно спокойно одевать и фиксировать клемму.


При параллельном включении конденсаторов их емкость складывается

КСТАТИ

Многие конденсаторы оснащены схемами „мягкого заряда". Они имеют неоспоримое преимущество -их не нужно заряжать через лампочку, схема исключает бросок тока при подключении „пустого" конденсатора. Удобно? Безусловно. Но такая схема - это лишнее сопротивление в силовой цепи, которое делает конденсатор, к сожалению, практически бесполезным. Однажды для журнала Car Music мы проводили сравнительный тест конденсаторов. Брали усилитель, подключали его заведомо тонким проводом, „грузили" его сложным сигналом (кому интересно - последовательности 50-герцовых импульсов с частотой 130 ударов в минуту) и следили, при каком уровне этого сигнала напряжение питания усилителя „просядет" до порога его отключения. Так вот, когда мы подключали конденсаторы с такой схемой soft charge, то разницы практически не было. Зато аскетичные „банки", у которых не было вообще ничего лишнего, позволяли повысить уровень сигнала, прежде, чем усилитель начнет вырубаться, до 2,5-3 дБ, а это почти в два раза! Так что десять раз подумайте, прежде чем купить „удобный кондер с наворотами", эти навороты могут принести больше вреда, чем пользы.

Текст и рисунки Антон Николаев, фото из разных источников.

Практически во всех электронных устройствах, от самых простых до высокотехнологичных, таких как материнские платы компьютеров, можно встретить один неизменно присутствующий элемент, являющийся пассивным компонентом. Но к сожалению, мало кто знает как устроен и для чего нужен конденсатор, и какие виды этого накопителя бывают.

Просто о сложном

Итак, это небольшое устройство для накопления электрического поля или заряда похоже на обычную банку, ту, в которой маринуют помидоры или хранят муку. Она точно так же в себе накапливает сухое вещество или жидкость, которую в неё поместят. Аналогия проста: по цепи бегут электроны, а на своей дороге встречают проводников, которые ведут их в «банку», где они и накапливаются, усиливая заряд.

Для того чтобы выяснить, много ли элекрончиков так можно собрать, и в какой момент накопление прекратится (банка лопнет), электрический процесс обычно сравнивают с водопроводом. Если представить трубу, в которой течёт вода, закачиваемая туда насосом, то где-то в центре трубопровода нужно вообразить мягкую мембрану, растягивающуюся под давлением жидкости. Очевидно, что она будет растягиваться до определённого предела, пока не разорвётся или, если попалась очень крепкая, не уравновесит силу насоса.

Такой пример показывает, как работает конденсатор, только мембрана заменяется электрическим полем, которое увеличивается по мере зарядки накопителя (работы насоса), уравновешивая напряжение источника питания. Очевидно, что этот процесс не бесконечный, и предельный заряд существует, по достижении которого «банка» выйдет из строя и перестанет выполнять свои функции.

Устройство и принцип работы

Конденсатор - устройство, состоящее из двух пластин (обкладок), имеющих между собой пустоту. Напряжение к нему подаётся через проводки, подсоединённые к пластинкам. Современные приборы, по сути, не сильно отличаются от макетов на уроках физики, они также состоят из диэлектрика и обкладок. Следует отметить, что именно вещество или его отсутствие (вакуум), плохо проводящее электричество, изменяет характеристики накопителя.

Суть принципа работы конденсатора проста: дали напряжение, и заряд начал накапливаться. Для примера следует рассмотреть как ведёт себя накопитель в двух вариантах электрической цепи:

  • Постоянный ток . Если в цепь с подключённым к ней конденсатором подать ток, то можно увидеть, что стрелка на амперметре начнёт двигаться, а потом быстро вернётся в исходное положение. Это объясняется просто: устройство быстро зарядилось, то есть источник питания был уравновешен обкладками накопителя, и тока не стало. Поэтому часто говорят, что в условиях постоянного тока конденсатор не работает. Такое утверждение неправильное, всё функционирует, но очень непродолжительное время.
  • Переменный ток - это когда электроны двигаются сначала в одну, а затем в другую сторону. Если представить такую цепь с подключённым к ней накопителем, то на обеих обкладках конденсатора будут попеременно накапливаться положительные и отрицательные заряды. Это говорит о том, что переменный ток свободно протекает через устройство.

Поскольку конденсатор задерживает постоянный ток, но пропускает переменный, отсюда формируются и сферы его назначения, например, для устройств, в которых нужно убрать постоянную составляющую в сигнале. Вполне очевидно, что накопитель обладает сопротивлением, а вот мощность на нём не выделяется, поэтому он не греется.

Основные виды

Рядовой пользователь не всегда знает о том, каким конденсатором снабжено его устройство. А ведь каждый вид имеет свои недостатки и преимущества, а также эксплуатационные особенности. Существуют две большие группы этих устройств, предназначенные для электрической цепи с переменным и постоянным током. Но всё-таки основная классификация ведётся по типу диэлектрика, который находится между облатками конденсатора. Основные виды:

Отдельно стоит отметить электролитические конденсаторы. Главное их отличие от других видов - подключения только к цепи постоянного или пульсирующего тока. Такие накопители имеют полярность - это особенность их конструкции, поэтому неправильное подключение ведёт к вздутию или взрыву устройства. Они обладают большой ёмкостью, что делает конденсатор электролитический пригодным для применения в выпрямительных цепях.

Сферы применения

Можно смело сказать, что конденсаторы используют практически во всех электронных и радиотехнических схемах. Чтобы иметь представление о том, где и зачем нужен конденсатор, следует вспомнить его способность сохранять заряд и разряжаться в нужное время, а также пропускать переменный ток и не пропускать постоянный. А это значит, что такие устройства используются во многих технических сферах, например:

Электрические накопители можно встретить как в телевизорах, так и в приборах радиолокации, где необходимо формировать импульс большой мощности, для чего и служит конденсатор. Невозможно встретить блок питания без этих устройств или сетевой фильтр.

Нужно сказать, что накопители применяют и в сферах, не связанных с электрикой, например, в производстве металла и добыче угля, где используют конденсаторные электровозы.



Понравилась статья? Поделиться с друзьями: