Электронная лампа с управляющей сеткой. Анализ методов решения. Компьютеры на электронных лампах

Электронные лампы применяются для генерации, усиления, или преобразования электрических колебаний в самых разных областях науки и техники.

1.1.1.1. Принцип работы электронных ламп

Принцип действия всех радиоламп основан на явлении термоэлектронной эмиссии – это увеличение скоростей электронов до таких, что они вылетают из металла с отрицательным зарядом и могут направленно двигаться между электродами, создавая электрический ток. Для этого также необходимо, чтобы им не встречались на пути препятствия, такие как молекулы воздуха – именно поэтому в лампах создается высокий вакуум. Для получения термоэлектронной эмиссии металл надо нагреть примерно до 2000 о К. Удобнее всего нагревать металлическуюнить накала электрическим током (ток накала ), как и в осветительных лампах. Такую высокую температуру выдерживает не каждый металл, большинство плавится, из-за этого в первых образцах электронных ламп применялись чисто вольфрамовые нити накала, которые накаливались до белого свечения, откуда и произошло название «лампа». Но такая яркость обходится очень дорого – нужен сильный ток (в пол-ампера для приёмной лампы). Но скоро был найден путь уменьшения тока накала. Исследования показали, что если покрыть вольфрам некоторыми другими металлами или их окислами (бария, стронция и кальция), то выход электронов облегчается (снижается так называемая ”работа выхода”). Для выхода требуются меньшие энергии, а значит и меньшая температура. Современные оксидированные нити накала работают при температуре около 700-900 о С, в связи с этим удается снизить ток накала примерно в 10-20 раз.

Надо заметить, что управление всеми потоками электронов в лампе осуществляется посредством электрических полей, образующихся вокруг электродов с разными зарядами.

1.1.1.2. Виды электронных ламп

Диод – вакуумный прибор, пропускающий электрический ток только в одном направлении (Рис.1а) и имеющий два вывода для включения в электрическую цепь (плюс вывод накала, конечно), двухэлектродная лампа была изобретена в 1904 г. физиком Дж. Флемингом. Такая электронная лампа представляет собой стеклянный или металлический баллон, из которого выкачан воздух, и двух металлических электродов: накаливаемого катода (-) и холодного анода(+). Катод бывает двух типов:прямого накала икосвенного накала . В первом случае катод представляет собой вольфрамовую нить (чаще покрытую оксидом), по которой проходит накаливающий её ток, а во втором – покрытый слоем металла с малой работой выхода цилиндр, внутри которого находится нить накала, электрически изолированная от катода. Действие катода как источника электронов основано натермоэлектронной эмиссии . На рисунке 1а показано устройство вакуумного диода с катодом прямого накала. Недостатком катодов прямого накала является то, что они не пригодны для питания их переменным током, так как при изменениях тока температура нити успевает измениться, и поток излучаемых электронов пульсирует с частотой питающего тока, поэтому сейчас применяются катоды косвенного накала.

Вольт-амперная характеристика диода (рис. 1е) имеет нелинейный характер – это объясняется накоплением электронов у катода в “облачко”. При отсутствии анодного напряжения электроны к нему не притягиваются, и анодный ток равен нулю. Анодный ток возникает при подаче положительного напряжения на анод, по мере увеличения напряжения анодный ток будет возрастать (на кривой А-Б – быстрее). При большом напряжении (в точке В) сила тока достигает наибольшей величины – это ток насыщения. У диода с активированным (оксидным) катодом не наблюдается замедления роста анодного тока, но при анодном токе выше некоторой предельной величины катод разрушается. Свойства диода оцениваются крутизной характеристики и внутренним сопротивлением лампы.

Если вывод сетки присоединить к катоду, то между сеткой и катодом не будет электрического поля, и витки сетки окажут очень слабое действие на летящие к аноду электроны – в анодной цепи установится ток покоя . Если включить между катодом и сеткой батарею так, что сетка зарядится отрицательно, то последняя начнёт отталкивать электроны обратно к катоду, а анодный ток уменьшится. При значительном отрицательном потенциале сетки даже самые быстрые электроны не смогут преодолеть её отталкивающее действие, и анодный ток прекратится, т.е. лампа будет заперта. Если сеточную батарею присоединить так, чтобы сетка была положительно заряжена относительно катода, то возникшее электрическое поле станет ускорять движение электронов. В этом случае измерительный прибор в цепи анода покажет увеличение тока.

Чем выше потенциал сетки, тем больше становится анодный ток. При этом некоторая часть электронов притягивается и к сетке, создавая сеточный ток , но при правильной конструкции лампы количество этих электронов невелико. Только те электроны, которые окажутся в непосредственной близости от витков сетки, будут притянуты к ней и создадут ток в сеточной цепи – он будет незначителен.

Коэффициент усиления и мощности у триодов различны. При большом анодном токе аноды подвергаются сильной электронной бомбардировке, что приводит к их значительному нагреванию и даже разрушению, поэтому аноды делают массивными, чернят, приваривают специальные охлаждающие ребра или применяют водное охлаждение, о котором рассказано ниже. Водное охлаждение применено и в импульсном генераторном триоде ГИ-11 (БМ), не так давно разработанном петербургскими учеными.

Экранированные лампы могут хорошо работать с небольшими сеточными напряжениями, но иногда при работе тетродов вторичные электроны, выбитые из анода, долетают до экранной сетки, создавая ток и сильные искажения сигнала – это явление называют динатронным эффектом . Пентоды являются решением этой проблемы.

Способ устранения неприятных последствий динатронного эффекта очевиден: надо не пускать вторичные электроны к экранирующей сетке. Это можно сделать введением в лампу еще одной сетки – третьей по счету, которая будет защитной , так получились пентоды – от греческого слова «пента» - пять (рис. 1г). Третья сетка располагается между анодом и экранирующей сеткой и соединяется с катодом, следовательно, оказывается заряженной отрицательно относительно катода. Поэтому вторичные электроны будут отталкиваться этой сеткой обратно к аноду, но в то же время, будучи достаточно редкой, эта защитная сетка не препятствует электронам основного анодного тока. У современных (на 1972 год) высокочастотных пентодов коэффициент усиления доходит до нескольких тысяч, а емкость сетка – анод измеряется тысячными долями пикофарады. Благодаря этому пентод является прекрасной лампой для усиления колебаний высокой частоты. Но пентоды с большим успехом применяются и для усиления низкой (звуковой) частоты, в частности в оконечных каскадах.

Конструктивно низкочастотные пентоды несколько отличаются от высоко- частотных. Для усиления НЧ не нужно иметь слишком большие коэффициенты усиления, но зато необходимо иметь большой прямолинейный участок характеристики, так как приходится усиливать большие напряжения, поэтому делают сравнительно редкие экранирующие сетки. При этом коэффициент усиления не получается очень большим, а вся характеристика сдвигается влево, поэтому больший её участок становится пригодным для использования. Низкочастотные пентоды должны отдавать большую мощность, следовательно, делаются массивными и их аноды нуждаются в охлаждении.

Существуют также и Лучевые тетроды – мощные низкочастотные лампы без защитных сеток, в которых витки экранирующих сеток расположены точно за витками управляющих сеток. При этом поток электронов рассекается на отдельные пучки (лучи), летящие прямо к аноду, а он отнесен несколько дальше и выбитые из него вторичные электроны не могут долететь до экранирующей сетки, а притягиваются анодом обратно, не нарушая нормальной работы лампы. Коэффициент усиления у таких ламп в несколько раз выше, чем у обычных тетродов, т.к. электроны от катода летят прямыми лучами между витками сеток и не разлетаются, а направляются к аноду полем экранирующих пластин, расположенных на путях возможной утечки около анода лампы, которые подключены к минусу источника питания через катод. У лучевых ламп удается создать очень выгодную форму характеристики, позволяющую получить большую выходную мощность при небольшом напряжении сигнала на сетке.

Первые электронные лампы, или радиолампы, как их иногда называют, были очень похожи на электрические лампы накаливания (см. Источники света). Они имели прозрачные стеклянные баллоны такой же формы, а их нити накала ярко светились.

Еще в конце прошлого века известный американский изобретатель Т. Л. Эдисон обнаружил, что раскаленная нить обычной лампы испускает, «выбрасывает» большое количество свободных электронов. Это явление, получившее название термоэлектронной эмиссии, широко используется во всех электронных лампах.

Любая электронная лампа представляет собой металлический, стеклянный или керамический баллон, внутри которого укреплены электроды (см. рис.). В баллоне создается сильное разрежение воздуха (вакуум), которое необходимо для того, чтобы газы не мешали движению электронов в лампе и чтобы электроды служили дольше. Катод - отрицательный электрод - является источником электронов. В одних лампах роль катода выполняет нить накала, в других нить служит миниатюрной электроплиткой, нагревающей трубчатый катод. Анод - положительный электрод - обычно имеет форму цилиндра или коробки без двух стенок, он окружает катод.

Все названия электронных ламп связаны с числом электродов: диод имеет два электрода, триод - три, тетрод - четыре, пентод - пять и т. д.

До наших дней остался неизменным принцип действия первой электронной лампы - диода, изобретенного англичанином Флемингом в 1904 г. Основные элементы этой простейшей лампы - катод и анод. Из раскаленного катода вылетают электроны и образуют вокруг него электронное «облако». Если катод соединить с «минусом» источника питания, а на анод подать «плюс», внутри диода возникает ток (анод начнет притягивать к себе электроны из «облака»). Если же на анод подать «минус», а на катод - «плюс», ток в цепи диода прекратится. Таким образом, в двухэлектродной лампе - диоде ток может идти только в одном направлении - от катода к аноду, т. е. диод обладает односторонней проводимостью тока.

Диод использовали для выпрямления переменного тока (см. Электрический ток). В 1906 г. американский инженер Ли де Форест предложил ввести между анодом и катодом лампы диода еще один электрод - сетку. Появилась новая лампа - триод, неизмеримо расширившая область использования электронных ламп (см. рис.).

Работа триода, как и всякой электронной лампы, основана на существовании потока электронов между катодом и анодом. Сетка - третий электрод - имеет вид проволочной спирали. Она находится ближе к катоду, чем к аноду. Если на сетку подать небольшое отрицательное напряжение, она будет отталкивать часть электронов, летящих от катода к аноду, и сила анодного тока уменьшится. При большом отрицательном напряжении сетка становится непреодолимым барьером для электронов. Они задерживаются в пространстве между катодом и сеткой, несмотря на то что к катоду приложен «минус», а к аноду - «плюс» источника питания. При положительном напряжении на сетке она будет усиливать анодный ток. Таким образом, подавая различное напряжение на сетку, можно управлять силой анодного тока лампы. Даже незначительные изменения напряжения между сеткой и катодом приведут к значительному изменению силы анодного тока, а следовательно, и к изменению напряжения на нагрузке (например, резисторе), включенной в цепь анода. Если на сетку подать переменное напряжение, то за счет энергии источника питания лампа усилит это напряжение. Происходит это потому, что при переменном напряжении между сеткой и катодом постоянный ток в нагрузке лампы изменяется в такт с этйм напряжением, причем в значительно большей степени, чем изменяется напряжение на сетке. Если этот ток пропустить через фильтр верхних частот (см. Фильтр электрический), то на его выходе потечет переменный ток с большей амплитудой колебаний, а на нагрузке появится большее переменное напряжение.

В дальнейшем конструкции электронных ламп развивались очень быстро - появились лампы, содержащие не одну, а несколько сеток: тетроды (лампы с двумя сетками) и пентоды (лампы с тремя сетками). Они позволили получить большее усиление сигналов.

Триоды, тетроды и пентоды - универсальные электронные лампы. Их применяют для усиления напряжения переменного и постоянного токов, для работы в качестве детекторов и в качестве генераторов электрических колебаний.

Широкое распространение получили комбинированные лампы, в баллонах которых имеются по две или даже по три электронные лампы. Это, например, диод-пентод, двойной триод, триод-пентод. Они могут, в частности, работать в качестве детектора (диод) и одновременно усиливать напряжение (пентод).

Электронные лампы для аппаратуры малой мощности (радиоприемников, телевизоров и т. д.) имеют небольшие размеры. Существуют даже сверхминиатюрные лампы, диаметр которых не превышает толщины карандаша. Полную противоположность миниатюрным лампам представляют лампы, применяемые в мощных усилителях радиоузлов или радиопередатчиках. Эти электронные лампы могут генерировать высокочастотные колебания мощностью в сотни киловатт и достигать значительных размеров.

Из-за огромного количества выделяющегося тепла приходится применять воздушное или водяное охлаждение этих ламп (см. рис.).

Это вакуумный электронный прибор, функционирующий благодаря изменению потока электронов. Электроны двигаются в вакууме среди электродов.

Осветительная лампа с угольной нитью накаливания в связи с потускнением баллона постепенно уменьшала отдаваемый свет. С 1883 г. Т. Эдисон своими научными изысканиями пытался усовершенствовать лампу накаливания. Откачав из баллона лампы воздух, он ввел в него металлический электрод. К впаянному электроду и раскаленной с помощью электрического тока нити Эдисон прикрепил и соединил гальванометр и батарею. Как только полярность распределялась, минус батареи перемещался к нити, плюс - к электроду, стрелка гальванометра отклонялась. При противоположной полярности подача тока в цепь прекращалась. Этот опыт, в результате которого получилась термоэлектронная эмиссия, послужил основой для электронных ламп и всей полупроводниковой электроники.
В состав электронных ламп входят по меньшей мере два электрода - анод и катод. Если в лампе находится катод не прямого накала, то рядом с катодом располагается нить накаливания, которая его подогревает. Делает она это для того, чтобы при нагревании увеличивалась эмиссия с катода. Сетки, располагающиеся между анодом и катодом, изменяют поток электронов и устраняют вредные явления, которые возникают при движении потока электронов от положительно заряженного электрода к отрицательному электроду. На стекле электронных ламп находится блестящее напыление, которое предохраняет устройство от излишних газов и воздуха.

Кроме диодов и триодов, к электронным лампам относятся тетроды, пентоды, гексоды и гептоды.
В 1905 г. на опыты Эдисона стал опираться английский ученый Дж. Флеминг, получивший патент на прибор, который преобразовывает переменный ток в постоянный, т. е. на первую электронную лампу. Он впервые использовал диод с практической целью, диод выступал в качестве силового элемента (детектора) в радиотелеграфных приемниках. В следующем году американский инженер Л. Форест создал триод, прибавив к двум электродам управляющую сетку. Лампа, созданная Ли де Форестом, могла усиливать колебания самостоятельно. В 1913 г. на базе триода был создан первый автогенератор . Во многом благодаря триоду Фореста и началась компьютерная эра. С помощью триода он смог усилить звук в своей домашней лаборатории, активно сотрудничал на этой почве с американскими исследователями в области электроники. Первоначально триод был газонаполненной лампой, имевшей плоскую сетку. Уже позднее лампа Фореста стала вакуумной (в 1912 г.), он запатентовал ее в 1907 г. и назвал «Audion». Ученый применял триод в качестве устройства, обрабатывающего данные. Немецкие инженеры под руководством А. Мейс-нера, последователя Фореста, создали цилиндрическую сетку триода из перфорированного алюминиевого листа.

В радиотехнике изобретателем автогенератора считается Армстронг. Кроме всего прочего, Форест применял свой триод в усилителях, приемниках и передатчиках, став пионером радиосвязи. Закончив Йельский университет и защитив диссертацию, Форест начал активно воплощать свои теории на практике. В 1902 г. он создал компанию «Forest Wireless Telegraphy Company», которая уже через два года была основным наладчиком радиосвязи на американском военно-морском флоте. В 1920 г. он предложил записывать звуковую дорожку на кинопленку оптическим способом, чем немало способствовал развитию киноиндустрии.

В России первые радиолампы были созданы петербургским инженером Н. Д. Папалекси в 1914 г. Совершенной откачки не было, поэтому лампы изготавливались газонаполненными со ртутью. Благодаря работе М. А. Бонч-Бруевича в 1913-1919 гг. внедрение электронных ламп в радиотехнику стимулировалось военными интересами радиосвязи. В 1914 г., после начала Первой мировой войны, в Царском Селе и на подмосковном Ходынском поле построили мощные передающие искровые станции для связи с военными союзниками и слежения за вражескими радиостанциями . Военное положение вынудило Бонч-Бруевича изготавливать электронные лампы в России. В Твери находилась радиостанция с ламповыми усилителями. Лампы французского производства стоили около 200 руб. золотом каждая, а время их работы не превышало десяти часов. Собрав необходимое оборудование в аптеках и на заводах, Бонч-Бруевич в небольшой лаборатории стал мастерить радиоприемники и лампы, стоимость которых равнялась 32 руб.

До 1930-х гг. электронные лампы применялись исключительно в радиотехнике. В 1931 г. английский физик
В. Вильямс сконструировал тиратрон-ный счетчик электрических импульсов. В состав электронного счетчика входили несколько триггеров. Сами триггеры были изобретены параллельно М. А. Бонч-Бруевичем в 1918 г. и американскими учеными Ф. Джорданом и У. Икклзом в 1919 г. Триггеры выполнялись в виде электронного реле , состояли из двух ламп и находились в одном из двух своих устойчивых состояний. Электронное реле, как и электромеханическое, могло хранить в себе одну двоичную цифру.

В 1940-х гг. появились компьютеры, разработанные на основе электронных ламп. Электронная лампа стала применяться как основной элемент ЭВМ. Несмотря на многие.положительные характеристики, использование ламп приносило множество проблем. Высота стеклянной лампы равнялась 7 см, за счет чего ЭВМ имели огромные размеры.

В одном компьютере находилось 15-20 тыс. электронных ламп, каждая из которых через 7-8 мин работы выходила из строя. Возникала проблемная ситуация поиска и замены старой лампы, это занимало очень много времени. Такое большое количество ламп выделяло тепло, поэтому для каждого компьютера необходимо было устанавливать охладительные системы. В компьютерах не было устройств ввода, поэтому данные заносились в память благодаря соединению определенного штекера с определенным гнездом. Но все же электронные лампы, несмотря на многие недостатки, внесли неоценимый вклад в развитие мировой радиотехники и электроники.

Поколения компьютеров

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов; для отдельной же машины вопрос о ее принадлежности к тому или иному поколению решается достаточно просто.

Появление ЭВМ или компьютеров – одна из существенных примет современной научно-технической революции. Широкое распространение компьютеров привело к тому, что все большее число людей стало знакомиться с основами вычислительной техники, а программирование постепенно превратилось в элемент культуры. Первые электронные компьютеры появились в первой половине XX века. Они могли делать значительно больше механических калькуляторов, которые лишь складывали, вычитали и умножали. Это были электронные машины, способные решать сложные задачи.

Кроме того, они имели две отличительные особенности, которыми предыдущие машины не обладали:

Одна из них состояла в том, что они могли выполнять определенную последовательность операций по заранее заданной программе или последовательно решать задачи разных типов.

Способность хранить информацию в специальной памяти.

Поколение первое.

Компьютеры на электронных лампах.

Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа - вакуумный диод - была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году.

Вскоре Ли де Форрест изобретает вакуумный триод - лампу с тремя электродами, затем появляется газонаполненная электронная лампа - тиратрон, пятиэлектродная лампа - пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер, изобретенный М. А. Бонч-Бруевичем (1918) и - независимо - американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры. Подробнее об электронной лампе здесь.

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.



Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штеккера с нужным гнездом.

Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

Поколение второе.

Рассмотрены обозначение и цоколевка следующих радиоламп: триод, двойной триод, лучевой тетрод, индикатор настройки, пентод, гептод, двойной диод-триод, триод-пентод, триод-гептод, кенотрон.

Немножко истории

Появление в середине XX века транзисторов казалось приведет к полному вытеснению из радиотехники господствующих тогда электронных ламп.

Одним из основных недостатков радиоламп считалась их низкая экономичность. Нагреваемый катод потреблял значительную энергию и имел малый срок службы. В упрек электронной лампе ставилась трудоемкость ее изготовления, необходимо было выдерживать высокоточную геометрию большого числа электродов в вакуумном баллоне лампы.

Производство радиоэлектронной аппаратуры на лампах постепенно сворачивалось. В нашей стране количество выпускаемой аппаратура на радиолампах хотя и постепенно снижалось, но заводы по производству ламп продолжали работать. Как ни странно, это принесло отечественной промышленности в начале 90-х годов определенную выгоду.

В этом основную роль сыграли меломаны. В конце концов оказалось, что усилители звуковой частоты на электронных лампах передают звукозапись лучше, более естественно, чем на полупроводниковых триодах.

В настоящее время рынок Hi-Fi аппаратуры заполнен звуковоспроизводящей аппаратурой на электронных лампах , в основном, российского производства.

Из всего этого можно сделать вывод, что конструирование радиоаппаратуры на электронных лампах на пороге начала XXI века не несет регресс в радиоэлектронику, а наоборот, позволяет по-новому, более разумно взглянуть на область применения электронных ламп.

Принцип работы радиоэлектронной лампы основан на явлении термоэлектронной эмиссии. Процесс вылета электронов с поверхности твердых или жидких тел называют электронной эмиссией.

Устройство радиолампы

Устройство радиолампы до гениальности простое. В стеклянном баллоне находятся расположенные определенным образом металлические электроды, один из которых нагревается электрическим током.

Этот электрод называется катодом. Катод и предназначен для создания термоэлектронной эмиссии. В баллоне лампы под действием электрического поля электроны летят к другому электроду — аноду.

Электронный поток управляется с помощью других электродов, находящихся в лампе, называемых сетками.

Условное графическое изображение радиоламп

Простейшей усилительной лампой является триод . Его условное графическое изображение на радиоэлектронных схемах представляется в виде окружности. Внутри окружности, в верхней ее части, нарисована вертикальная прямая с перпендикулярным отрезком на конце, что символизирует анод, по диаметру окружности в виде штрихов обозначается сетка, а в нижней части, дугой с отводами на концах — нить накала.

Дужкой над нитью накала обозначают подогреватёль катода. Лампы с прямым накалом нити в своем условном графическом изображении не имеют такой дужки, например, батарейного типа 2К2П, а также некоторые другие типы ламп. В одном баллоне лампы может находиться триод в комбинации с другим типом ламп.

Это так называемые комбинированные лампы. На схемах рядом с изображением лампы ставится ее буквенное обозначение (две латинские буквы V и L) с порядковым номером по схеме (например, VL1) и возле них тип используемой лампы в конструкции (например, VL1 6Н1П). Условное графическое изображение электронных ламп различных типов с буквенным обозначением приведено на рис. 1.

На рисунке буквами с цифрами обозначены: а — анод, С1 — управляющая сетка, к — катод и н — нить накала. Для генерации, усиления и преобразования сигналов в настоящее время в конструкциях радиолюбителей используются, в основном, электронные лампы с октальным цоколем, пальчиковой серии и миниатюрной серии с гибкими выводами.

Последние два типа ламп не имеют цоколя, выводы в них вплавлены прямо в стеклянный баллон. Баллоны перечисленных серий ламп, в основном, изготовлены из стекла, но встречаются и из металла (рис. 2).

Рис. 1. Условное графическое изображение и буквенное обозначение электронных ламп различного типа на радиоэлектронных схемах: а — триод; б, в — двойной триод; г — лучевой тетрод; д — индикатор настройки; е — пентод; ж — гептод; з — двойной диод-триод; и — триод-пентод; к — триод-гептод; л — кенотрон; м — двойной диод с раздельными катодами косвенного накала.

Рис. 2. Варианты конструктивного изготовления электронных ламп: а — стеклянный баллон, октальный цоколь; б — металлический баллон, октальный цоколь; в — стеклянный баллон с жесткими выводами (пальчиковая серия); г — стеклянный баллон с гибкими выводами (безцокольная серия).

Электрические параметры ламп

В современных высококачественных усилителях звуковой частоты, в основном, отдается предпочтение трехэлектродным лампам, называемых триодами. Общими основными электрическими параметрами приемо-усилительных ламп, которые обычно приводятся в справочниках, являются следующие: коэффициент усиления ц, крутизна характеристики S и внутреннее сопротивление Rj.

Важное значение имеют так называемые статические характеристики лампы: анодно-сеточная и анодная характеристики, которые представляются в виде графика.

Имея эти две характеристики, можно графически определить три приведенных выше основных параметра ламп. Для ламп различного назначения к перечисленным характеристикам добавляются специальные, характерные для них параметры.

Лампы, используемые в усилителях звуковой частоты, характеризуются еще такими параметрами, которые зависят от того или иного режима работы выходной лампы, в частности, выходной мощностью и коэффициентом нелинейных искажений.

У высокочастотных ламп характерными параметрами являются :

  • входная емкость,
  • выходная емкость,
  • проходная емкость,
  • коэффициент широкополосности
  • эквивалентное сопротивление внутриламповых шумов.

При этом чем меньше суммарное значение входной и выходной междуэлектродных емкостей лампы и больше крутизна ее характеристики, тем больше усиление она дает на высших частотах.

Отношение крутизны характеристики лампы к ее проходной емкости служит показателем устойчивости усиления. Большее усиление от высокочастотной лампы можно получить на высоких частотах, в случае когда меньше суммарное значение входной и выходной емкостей лампы и больше крутизна ее характеристики.

При выборе лампы для первых каскадов усиления, особо следует обращать внимание на ее эквивалентное сопротивление внутриламповых шумов.

Эффективность работы частотопреобразовательных ламп оценивается крутизной преобразования. Крутизна преобразования, как правило, в 3...4 раза меньше крутизны характеристики лампы. Ее значение возрастает при увеличении напряжения гетеродина.

Для кенотронов основным параметром является амплитуда обратного напряжения. Наибольшие значения амплитуды обратного напряжения характерны для высоковольтных кенотронов.

Кенотроны и диоды

На рис. 3 приведейы основные параметры, типовой режим и цоколевка некоторых типов электронных ламп, широко используйщихся в радиоэлектронных конструкциях в настоящее время и использовавшихся в прошлом.

Рис. 3. Основные параметры, типовой режим и цоколевки некоторых типов электронных ламп широкого применения.

Кенотроны и диоды

Преобразовательные лампы и электронно-лучевые индикаторы настройки

Рис. 3. Основные параметры, типовой режим и цоколевки некоторых типов электронных ламп широкого применения (продолжение)

Триоды

  • S - крутизна анодно-сеточной характеристики;
  • m - коэффициент усиления;
  • Rс - наибольшее сопротивление в цепи сетки;
  • Свх - входная емкость лампы (сетка катод),
  • Свых - выходная емкость лампы (катод-анод),
  • Спр - проходная емкость лампы (сетка-анод);
  • Ра - наибольшая мощность, рассеиваемая анодом лампы.

Рис. 3. Основные параметры, типовой режим и цоколевки некоторых типов электронных ламп широкого применения (продолжение).

Двойные триоды

Рис. 3. Основные параметры, типовой режим и цоколевки некоторых типов электронных ламп широкого применения (продолжение).

Рис. 3. Основные параметры, типовой режим и цоколевки некоторых типов электронных ламп широкого применения (продолжение).

Выходные пентоды

Рис. 3. Основные параметры, типовой режим и цоколевки некоторых типов электронных ламп широкого применения (продолжение).

Рис. 3. Основные параметры, типовой режим и цоколевки некоторых типов электронных ламп широкого применения (окончание).

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.



Понравилась статья? Поделиться с друзьями: