Из теоремы котельникова следует что. Об одной особенности теоремы котельникова

Передача непрерывных (аналоговых) сигналов по линии связи предполагает передачу бесконечного множества их мгновенных значений на протяжении конечного промежутка времени. При этом спектр финитного, т.е. ограниченного во времени, непрерывного сигнала бесконечен. Однако, на практике различные радиотехнические устройства (фильтры, усилители и другие) имеют ограниченную полосу пропускания, что приводит к ограничению спектра сигнала некоторой граничной частотой (или ), которая определяется свойствами получателя сообщений. Так например, общепринятой нормой в системах передачи речевых сигналов является ограничение спектра сигнала в пределах , в системах телевидения – . Как преодолеть противоречие между ограничением спектра сигнала и конечным временем его существования? Ответ на этот вопрос даёт теорема, сформулированная и доказанная академиком В.А. Котельниковым и получившая название теоремы Котельникова или теоремы отсчётов.

Теорема Котельникова формулируется следующим образом. Непрерывный сигнал , ограниченный по спектру частотой (или ), полностью определяется совокупностью мгновенных значений (отсчётов) в моменты времени , отстоящие друг от друга на интервал времени .

Математически теорема Котельникова определяется выражением

или с учётом (2.12)

которое представляет собой разложение сигнала в особого рода ряд по системе базисных функций

,

являющихся ортогональными на интервале времени (сравните с разложением сигнала в ряд Фурье).

Доказательство теоремы Котельникова приведено в литературе . Мы же остановимся на вопросах физического толкования и практического применения результатов теоремы.

Выделим одно из слагаемых ряда (3.1)

. 3.3)

Это слагаемое представляет собой отклик идеального фильтра нижних частот (ФНЧ), т.е. фильтра с постоянным коэффициентом передачи в пределах полосы частот от нуля до , на очень короткий импульс с амплитудой . (рис. 3.1).

Отметим, что в моменты времени , и т.д. значения отклика равны нулю. Это определяет механизм восстановления непрерывного сигнала по его отсчётам.

Формирование последовательности отсчётов непрерывного сигнала, которая представляет собой дискретный сигнал , т.к. значение любого отсчёта сохраняется неизменным в течение интервала времени (см. классификацию сигналов), осуществляется при помощи импульсного модулятора.

Простейший вариант импульсного модулятора представляет со­бой перемножитель (рис. 3.2), на один вход которого подаётся непре­рывный сигнал , а на второй – последовательность

коротких единичных импульсов вида (1.13), следующих друг за другом с периодом (рис. 3.2, а). Тогда на выходе перемножителя будет иметь место последовательность коротких импульсов

,

амплитуды которых равны , т.е. соответствуют мгновенным значениям сигнала , отсчитанным в момент времени . (рис 3.3, в).

Процесс формирований последовательности отсчётов называется дискретизацией непрерывного сигнала.

Восстановление непрерывного сигнала осуществляется путём подачи дискретного сигнала на идеальный фильтр нижних частот. Отклик фильтра на каждый отсчёт определяется выражением (3.2). При этом, в момент времени , значение отклика определяется только k -тым отсчётом дискретного сигнала; отклик на остальные отсчёты равны нулю (Рис. 3.3, г). Суммируясь, эти отклики дают на выходе ФНЧ исходный сигнал .

Отметим два важных обстоятельства.

Во-первых, точное восстановление сигнала имеет место только при . Введя в рассмотрение частоту дискретизации , получим так называемую частоту Найквиста , т.е. минимальное значение частоты дискретизации, при котором возможно точное восстановление непрерывного сигнала. Обычно, на практике частоту дискретизации выбирают выше предела Найквиста. Так, например, частота Найквиста для речевого сигнала при составляет . В реальных РТИС эта частота составляет .

Во-вторых, точное восстановление сигнала возможно при суммировании бесконечного числа откликов, что соответствует сигналу , неограниченному во времени. Но в действительности, сигналы являются ограниченными и по спектру и по времени. Однако, при определённых допущениях теорема Котельникова справедлива и для этого случая.

Если сигнал, длительностью ограничивается радиотехническим устройством с граничной частотой , то для его представления в дискретной форме требуется конечное число отсчетов, где

. (3.4)

Таким образом для восстановления сигнала длительностью , ограниченного по спектру частотой достаточно передать независимых отсчетов, однозначно связанных с его формой.

Но теоретически сигнал, ограниченный по времени имеет бесконечный спектр. А это означает, что при восстановлении сигнала по отсчетам будет иметь место ошибка, т.е. восстановленный сигнал ŝ(t ) будет отличаться от исходного . Казалось бы, теорема Котельникова неприменима к реальным сигналам. Тем не менее, если к точности восстановления сигнала по отсчетам предъявить определенные требования, например, допустить его восстановление с заданным уровнем ошибки, то утверждения теоремы Котельникова можно с успехом распространить на реальные сигналы, несколько изменив частоту дискретизации по сравнению с пределом Найквиста.

Теперь с учетом того, что реальный сигнал длительностью представляется отсчетами мгновенных значений, выражение (3.1) принимает вид:

Величина называется базой сигнала . Понятие базы играет важную роль при представлении непрерывного сигнала конечным числом отсчетов. Соответствующим образом выбранная база определяет информационные показатели сигналов, способность противостоять помехам при передаче по каналам связи, энергетическую скрытность и другие.

Рассмотрим теперь вопрос оценки точности восстановления непрерывного сигнала по совокупности отсчетов его мгновенных значений. Как уже неоднократно подчеркивалось выше, ограниченный во времени сигнал имеет бесконечный спектр. Согласно равенству Парсеваля (2.50) энергия такого сигнала равна

где или – энергетический спектр, представленный как функция либо круговой , либо циклической частоты.

Энергия за пределами частоты (или ) составляет величину

. (3.7)

На рис. 3.4 изображен энергетический спектр сигнала, ограниченного во времени и граничная частота .

Площадь под всей кривой характеризует полную энергию сигнала , а площадь заштрихованного участка - ту часть энергии , которая сосредоточена за пределами .

Тогда отношение

может служить оценкой точности восстановления сигнала. Задаваясь величиной можно определить частоту , а следовательно и частоту дискретиза ции .

Рассмотрим следующий пример. Пусть сигнал на интервале времени описывается экспоненциальной функцией

Воспользовавшись преобразованием Фурье, найдем спектральную функцию сигнала

.

Модуль спектральной функции

,

а энергетический спектр

.

Воспользовавшись выражением (3.5), найдем энергию сигнала

.

В соответствии с (3.6), вычислим :

.

При расчете и использован табличный интеграл

.

Найдем величину среднеквадратичной ошибки восстановления

.

Представим

.

откуда следует

.

Полагая, что для малых значений

Теперь можно найти

или переходя к циклическим частотам

.

Частота дискретизации

.

Таким образом, задаваясь величиной можно определить частоту дискретизации непрерывного сигнала. Очевидно, число отсчетов при дискретизации рассматриваемого сигнала будет равно

.

Из приведенного примера следует, что чем меньшую ошибку восстановления требуется обеспечить, тем выше должна быть частота дискретизации.

Теорема Котельникова устанавливает однозначное соответствие между аналоговым сигналом и отсчетами его мгновенных значений во временной области. Оказывается, можно сформулировать теорему отсчетов и в частотной области. При этом примем во внимание, что комплексный спектр одиночного сигнала длительностью является сплошным. Тогда имеет место следующее утверждение. Спектральная функция сигнала , ограниченного во времени величиной полностью определяется совокупностью отсчетов , отстоящих друг от друга на частотный интервал , т.е.

. (3.9)

Теорема отсчетов в частотной области основывается на свойстве симметрий преобразований Фурье относительно переменных (или ) и . Суть этого свойства состоит в том, что преобразование Фурье периодического сигнала с периодом приводит к линейчатой (дискретной) спектральной функции, где отдельные спектральные составляющие (см. подраздел 2.1) отстоят друг от друга по оси частот на величину (или ), и наоборот, преобразование Фурье периодической спектральной функции с периодом приводит к дискретной временной функции с периодом .

Исходя из этого свойства, если в (3.2) заменить на ; на , а на , то в результате получим выражение (3.9). Как и в случае разложения сигнала в ряд Котельникова, разложение его спектра ограничивается отсчетами. Тогда выражение (3.5) в частотной области принимает вид

. (3.10)

Казалось бы, для восстановления спектральной функции по совокупности отсчетов , необходимо знать отсчетов модуля и отсчетов аргумента комплексных величин . Однако, если учесть, что модуль спектра , т.е. амплитудный спектр является четной функцией, а аргумент , т.е. фазовый спектр – нечетной функцией, то число независимых отсчетов сокращается вдвое и составляет , т.е. равно базе сигнала.

Подводя итог вышеизложенному, отметим, что теорема Котельникова устанавливает принципиальную возможность представления непрерывного сигнала последовательностью его мгновенных значений. Такую операцию иногда называют импульсным преобразованием непрерывного сигнала. Такое преобразование лежит в основе импульсных методов передачи сообщений в радиотехнических системах. Более того, дискретизация непрерывных сигналов в соответствии с теоремой Котельникова является промежуточной операцией при формировании цифровых сигналов, которые в настоящее время нашли самое широкое распространение как в радиотехнических системах передачи сообщений, так и радиоэлектронных системах обработки, отображения и регистрации информации, и во многих других областях.

3.2. Спектр дискретного сигнала

Перейдем теперь к рассмотрению спектра дискретного сигнала. Очевидно, в соответствии с изложенным выше свойством симметрии преобразования Фурье следует ожидать периодического характера спектральной функции дискретного сигнала.

Итак, дискретный сигнал , как уже подчеркивалось выше, формируется на выходе перемножителя, на один вход которого, подается непрерывный сигнал , а на второй – периодическая последовательность коротких импульсов длительностью

,

с периодом .

Здесь – функция, определяющая форму импульсов периодической последовательности. Обычно в качестве периодической последовательности импульсов дискретизации выбирают импульсы прямоугольной формы вида (1.13). Периодическую последовательность импульсов дискретизации можно описать выражением

.

Тогда дискретный сигнал запишется в виде

С другой стороны, последовательность прямоугольных импульсов может быть представлена комплексным рядом Фурье

Здесь учтено, что период последовательности равен , амплитуда единичного импульса , а также .

Теперь можно представить с учетом (3.12) в виде ряда

Применим к (3.13) прямое преобразование Фурье

Изменив порядок суммирования и интегрирования, запишем

,

В свою очередь

,

.

Тогда окончательно выражение (3.14) принимает вид

. (3.15)

Спектральный анализ дискретного сигнала существенно упрощается, если предположить, что дискретизация осуществляется последовательностью прямоугольных импульсов единичной площади. В этом случае амплитуда импульса и выражение (3.15) запишется следующим образом

.

Если устремить к нулю при сохранении единичной площади импульса и перейти к последовательности бесконечно коротких импульсов ( -импульсов), т.е.

, (3.16)

,

а спектральная функция дискретного сигнала примет вид

. (3.17)

На рис. 3.5, а представлен непрерывный сигнал , а на рис. 3.5, б – условное изображения модуля его спектральной функции .

Как известно, спектр непрерывного одиночного сигнала является сплошным.

Спектр же дискретного сигнала, как это следует из (3.16), представляет собой периодическую по частоте последовательность копий спектров исходного сигнала, сдвинутых относительно друг друга на величину (или ), что составляет период последовательности. Очевидно, периодическим по частоте с тем же периодом является и модуль спектра и его аргумент, т.е. фазовый спектр.

Отметим, что (или ) – это частота дискретизации. Таким образом, период спектральной функции дискретного сигнала равен частоте дискретизации. На рис. 3.5. в, г изображены графики дискретного сигнала и модуля его спектра.

Расположение отдельных составляющих периодической функции спектра дискретного сигнала на оси частот зависит от значения частоты дискретизации . На рис. 3.5,г и на рис. 3.6, а, б изображены соответственно функции дискретного сигнала при частотах дискретизации (или ), (или ) и (или ). Из этих рисунков следует, что при частоте дискретизации, меньшей чем частота, определяемая пределом Найквиста, копии спектра исходного непрерывного сигнала перекрываются, т.е. имеет место явление наложения спектров. Это приводит к искажению исходного сигнала при его восстановлении. Таким образом, и спектральный анализ дискретного сигнала согласуется с выводами теоремы Котельникова.

3.3. Аналого-цифровое и цифро-аналоговое преобразование сигналов

Представление непрерывного сигнала в виде последовательности дискретных отсчётов предполагает, что любой отсчёт может принимать любое значение из непрерывного множества значений . Вместе с тем, цифровые технологии в радиотехнике требуют преобразований совокупности значений отсчётов в цифровую последовательность, т.е. в последовательность чисел . Процесс преобразования аналогового (непрерывного) сигнала в такую последовательность называется аналогово-цифровым преобразованием (АЦП).

Итак, на первом этапе аналогово-цифрового преобразования осуществляется дискретизация непрерывного сигнала, т.е. преобразование в в соответствии с теоремой Котельникова, которая была рассмотрена выше. В результате дискретизации непрерывный (аналоговый) сигнал преобразуется в последовательность отсчётов .

На втором этапе последовательность отсчётов подвергается процедуре квантования по уровню. Квантование по уровню значений отсчётов в простейшем случае представляет собой округление этих значений до ближайшего целого числа. Процедуру квантования осуществляет устройство с амплитудной характеристикой ступенчатого вида, которое называется квантователем . Амплитудная характеристика квантователя изображена на рис. 3.7.

При реализации квантователя диапазон изменения уровня дискретного сигнала разбивается на уровней (включая нулевой), каждый из которых отличается от соседних на величину , называемую шагом квантования .

Таким образом, максимальное и минимальное значения квантованного сигнала соответственно равны

, .

В процессе квантования значение в момент времени сравнивается со значением , где . Квантованный сигнал принимает значение

, (3.18)

. (3.19)

Отметим, что значение запоминается до момента следующего отсчёта дискретного сигнала.

Процедура квантования показана на рис. 3.8.

На этом рисунке изображены фрагмент амплитудной характеристики квантователя, дискретный сигнал , временная диаграмма которого повёрнута на для удобства пояснения процедуры квантования, и квантованный сигнал .

Поясним процедуру квантования. Рассмотрим отсчёт . Поскольку значение этого отсчёта находится в интервале , в соответствии с (3.18) значение квантованного сигнала будет равно , т.к. условие (3.19) выполняется при . Значение отсчёта , как это следует из рисунка, находится в пределах , т.е. условие (3.19) выполняется при , поэтому значение квантованного сигнала . И, наконец, значение отсчёта находится в интервале , а значение квантованного сигнала .

Ввиду того, что при квантовании осуществляется фактически округление значений , квантованный сигнал будет отличаться от дискретного. При этом искажения, вносимые квантователем

, (3.20)

принципиально неустранимы . Поэтому, при преобразовании непрерывного сигнала в цифровой необходимо оценивать степень искажений, вносимых квантователем.

Искажения, вносимые квантователем, целесообразно оценивать величиной среднеквадратичной ошибки. При исследовании процедур квантования было установлено, что величина среднеквадратичной ошибки

Все реальные непрерывные сигналы являются плавными функциями времени. Скачки значений в них практически не наблюдаются. Поэтому такие сигналы можно представить последовательностью их значений, взятых с некоторым шагом по времени. Значение сигнала в фиксированный момент называется отсчетом .

На этом рисунке показан непрерывный сигнал и его отсчеты с различным шагом по времени. При малом шаге (рис. б) последовательность отсчетов достаточно точно описывает сигнал, а при большом шаге (рис. в) по отсчетам нельзя восстановит форму сигнала, так как пропущены его характерные экстремальные точки.

Как же часто следует брать отсчеты, чтобы по ним можно было полностью восстановить сигнал?

Ответ на этот вопрос дает теорема, доказанная в 1933 г. Советским ученым академиком В.А.Котельниковым . и названная его именем.

Согласно этой теореме любой непрерывный сигнал с конечным спектром (имеющим максимальное значение ) можно представить в виде дискретных отсчетов , частота дискретизации которых должна быть выбрана не менее чем в два раза выше максимального значения спектра сигнала:, передать его по линии связи, а затем восстановить исходный аналоговый сигнал .

Теорема Котельникова является основой для дискретизации непрерывных сигналов по времени, так как, во - первых, доказывает, что непрерывный сигнал можно заменить его дискретными значениями, во - вторых, дает правило вычисления шага дискретизации - . При таком шаге дискретизации ряд Котельникова дает точное временное представление сложного сигнала.

Физический смысл теоремы Котельникова.

Теорема Котельникова утверждает, что если требуется передать непрерывный сигнал с ограниченным спектром по каналу связи, то можно не передавать все его значения: достаточно лишь передать его мгновенные значения (отсчеты) через интервал . Поскольку сигнал полностью определяется этими значениями, то по ним он может быть восстановлен на приемном конце системы связи. Для этого достаточно соединить отсчеты плавной кривой. Это можно объяснить тем, что сигнал между отсчетами может изменяться только плавно, так как частоты выше дающие быстрые изменения, в сигнале отсутствуют. Ведь отсчеты берутся достаточно часто, и тем чаще, чем выше максимальная частота .

Практическое применение теоремы Котельникова.

Дискретизация сигнала осуществляется достаточно просто: периодически на короткое время через интервал ключом замыкается цепь от источника сигнала к нагрузке - получаем отсчеты . Далее эти отсчеты, пройдя через канал связи, поступают на вход идеального фильтра нижних частот (ФНЧ) с верхней частотой пропускания . На выходе фильтра получается исходный непрерывный сигнал .


Структурная схема системы связи с использованием теоремы Котельникова.

На передающей стороне берутся отсчеты сигнала в моменты . Далее отсчеты любым способом передаются по каналу связи. Идеальный ФНЧ на приемном конце восстанавливает исходный сигнал .

Частота следования импульсов, называемая также частотой дискретизации , определяется по теореме Котельникова:

.

Например, частота дискретизации для речевого (телефонного) сигнала, имеющего максимальное значение спектра сигнала , будет равна . Согласно рекомендациям МККТТ и, соответственно, .

Теорема Котельникова в многоканальной электросвязи.

Возможность передачи вместо непрерывных сигналов последовательности импульсов (отсчетов) позволяет осуществить временное разделение каналов. Дело в том, что при импульсной передаче период следования импульсов обычно намного больше их длительности, то есть импульсы имеют большую скважность - при большой скважности между импульсами одного сигнала остается промежуток, на котором можно разместить импульсы от других сигналов. Этот способ и называется временным разделением . В настоящее время уже реализованы многоканальные системы передачи с временным разделением каналов на 12, 15, 30, 120, 480, 1920 речевых сигналов.

Теорема Котельникова


5.3. Теорема Котельникова.

5.3.1. Непрерывные сигналы описываются непрерывными функциями времени. Мгновенные значения таких сигналов изменяются во времени плавно, без резких скачков (разрывов). Пример временной диаграммы непрерывного сигнала приведен на рис.5.2а. Сигналы, временные диаграммы которых изображены на рис.5.1, не являются непрерывными, поскольку их мгновенные значения в некоторые моменты времени изменяются скачками. Многие реальные сигналы являются непрерывными. К таковым можно отнести, например, электрические сигналы при передаче речи, музыки, многих изображений.

Рис. 5.1. График реализации телеграфного сигнала.

а)

б)

в)

г)
Рис. 5.2. Дискретизация, квантование непрерывного сигнала: а – непрерывный сигнал; б – дискретный по времени (импульсный) сигнал; в – дискретный по времени и по значениям (цифровой) сигнал; г – ошибка квантования

5.3.2. Сигналы с дискретным временем.

Их можно получить из непрерывных, выполняя над последними специальное преобразование, называемое дискретизацией по времени. Смысл этих преобразований проиллюстрируем с помощью временных диаграмм, приведенных на рис.5.2. Будем считать, что можно измерить мгновенные значения сигнала u(t) в моменты времени Δt, 2Δt, 3Δt…; Δt называют интервалом дискретизации по времени. Измеряемые значения u(Δt), u(2Δt), u(3Δt) отмечены на рис.5.2 а точками. По этим значениям можно сформировать последовательность коротких прямоугольных импульсов, длительность которых одинакова и меньше интервала дискретизации Δt, а амплитуды равны измеренным значениям сигнала u(t). Последовательность таких прямоугольных импульсов изображена на рис.5.2б и часто называется импульсным сигналом или сигналом с дискретным временем. Такой сигнал будет обозначен символом uΔ(t). Отметим, что шаг дискретизации по времени здесь постоянен и равен Dt, а амплитуда каждого импульса равна мгновенному значению сигнала u(t) в соответствующий момент времени. Поскольку непрерывный сигнал u(t) в выделенные моменты времени может принимать любые значения, то и амплитуды импульсов импульсного сигнала, полученного из непрерывного путем дискретизации по времени, также могут принимать любые значения: На рис.5.2б значения амплитуд импульсов указаны с точностью лишь до одного десятичного знака после запятой. Для точного указания значения амплитуд импульсов может потребоваться неограниченное число десятичных знаков после запятой, т.е., значения амплитуд импульсов заполняют непрерывно некоторый интервал. Поэтому амплитуды импульсов сигнала uΔ(t) иногда называют непрерывными величинами.

5.3.3. Цифровые сигналы.

Как будет показано в дальнейшем, при передаче импульсных сигналов в электросвязи часто применяют специальное преобразование, состоящее в следующем. Предположим, что при передаче каждый импульс может иметь амплитуду лишь с разрешенным значением. Число разрешенных значений амплитуд импульсов конечно и задано. Например, на рис.5.2в разрешенные значения амплитуд пронумерованы цифрами 1, 2, 3, …; величина Δu равна разности между любыми двумя соседними разрешенными значениями амплитуд. Если истинное значение амплитуды импульса сигнала uΔ(t), подлежащее передаче, попадает между разрешенными значениями, то амплитуду передаваемого импульса принимают равной разрешенному значению, являющемуся ближайшим к истинному. Такое преобразование называют квантованием, совокупность разрешенных значений амплитуд передаваемых импульсов называют шкалой квантования, а интервал Δu между соседними разрешенными значениями – шагом квантования. Например, на рис. 2в разрешенные значения амплитуд импульсов приняты равными целым числам 0; 1; 2; 3 и образуют равномерную шкалу квантования, которая может быть продолжена и на область отрицательных значений сигнала u(t); при этом шаг квантования Δu=1.

Последовательность импульсов, полученная в результате квантования импульсов сигнала uΔ(t), также является импульсным сигналом, для которого введем обозначения u ц(t). Особенность этого сигнала состоит в том, что амплитуды импульсов теперь имеют только разрешенные значения и могут быть представлены десятичными цифрами с конечным числом разрядов. Такие сигналы называют дискретными или цифровыми. Квантование приводит к ошибке квантования e(t) = u ц(t) – uΔ(t). На рис.5.2г приведен пример временной диаграммы ошибки е(t). Передача цифрового сигнала u ц(t) вместо сигнала uΔ(t) фактически эквивалентна передаче импульсного сигнала uΔ(t) с предварительно наложенным на него сигналом ошибки е(t), который в этом случае может рассматриваться как помеха. Поэтому е(t) часто называют помехой квантования или шумом квантования.

5.3.4. Теорема Котельникова.

Поскольку дискретные сигналы широко используют в настоящее время при передаче сообщений, а многие реальные сигналы являются непрерывными, то важно знать: можно ли непрерывные сигналы представлять с помощью дискретных; можно ли указать условия, при которых такое представление оказывается точным. Ответы на эти вопросы дает доказанная в 1933 г. советским ученым В.А.Котельниковым теорема, являющаяся одним из фундаментальных результатов теоретической радиотехники. Эта теорема формулируется следующим образом: если непрерывный сигнал u(t) имеет ограниченный спектр и наивысшая частота в спектре меньше, чем f в герц, то сигнал u(t) полностью определяется последовательностью своих мгновенных значений в дискретные моменты времени, отстоящие друг от друга не более чем на 1/(2fв) секунд.

Смысл теоремы Котельникова поясним с помощью временных диаграмм, приведенных на рис.5.2а. Пусть это будет часть временной диаграммы сигнала u(t) с ограниченным спектром и с верхней граничной частотой f в. Если интервал дискретизации Δt<2 f в, то в теореме утверждается, что по значениям u(Δt), u(2Δt), u(3Δt),… можно определить точное значение сигнала u(t) для любого заданного момента времени t, находящегося между моментами отсчета. В соответствии с этой теоремой сигнал с ограниченным спектром и верхней частотой w в<=wΔ/2 можно представить рядом

, (2)

Где u(nΔt), n=…-1, 0, +1,… - отсчеты мгновенных значений сигнала и(t), wΔ = 2¶fΔ , fΔ=ЅΔt – частота дискретизации по времени.

Ряд 2 имеет бесконечное число слагаемых, так что для вычисления значения сигнала u(t) в момент времени t необходимо знать значения всех отсчетов и(nΔt), n=…-1, 0, +1, … как до, так и после указанного момента t. Точное равенство в (2) достигается, только когда учитываются все слагаемые; если ограничиться конечным числом слагаемых в правой части (2), то их сумма даст лишь приближенное значение сигнала u(t).

Представление сигнала u(t) рядом (2) иллюстрируется с помощью рис.5.3, на котором изображены временные диаграммы сигнала u(t) и трех слагаемых ряда (2).

Рис.5.3. Представление сигнала с ограниченным спектром рядом Котельникова.

Таким образом, теорема Котельникова указывает условия, при которых непрерывный сигнал может быть точно восстановлен по соответствующему ему сигналу с дискретным временем. Реальные непрерывные сигналы, подлежащие передаче, как правило, имеют спектры хотя и довольно быстро стремящиеся к нулю с ростом частоты, но все же неограниченные. Такие сигналы могут быть восстановлены по своим дискретным отсчетам лишь приближенно. Однако, выбирая шаг дискретизации Δt достаточно малый, можно обеспечить пренебрежимо малое значение ошибки восстановления непрерывного сигнала по его переданным отсчетам в дискретные моменты времени. Например, при передаче телефонного сигнала, спектр которого неограничен, обычно принимают, что условная верхняя граничная частота f в = 3,4 кГц. В этом случае получаем, что частота дискретизации должна удовлетворять неравенству fΔ і 6,8 кГц, т.е. в одну секунду должно передаваться 6,8 тысяч отсчетов. Качество передачи речи при этом оказывается вполне удовлетворительным. Увеличение частоты дискретизации сверх указанного значения допустимо и приводит к незначительному повышению точности восстановления телефонного сигнала. Если же принять fΔ<6,8 кГц, то точность восстановления телефонного сигнала заметно падает.


Написать данную статью меня вдохновила следующая задача:

Как известно из теоремы Котельникова, для того, чтобы аналоговый сигнал мог быть оцифрован а затем восстановлен, необходимо и достаточно, чтобы частота дискретизации была больше или равна удвоенной верхней частоте аналогого сигнала. Предположим, у нас есть синус с периодом 1 секунда. Тогда f = 1∕T = 1 герц, sin((2 ∗ π∕T) ∗ t) = sin(2 ∗ π ∗ t), частота дискретизации 2 герца, период дискретизации 0,5 секунды. Подставляем значения, кратные 0,5 секунды в формулу для синуса sin(2 ∗ π ∗ 0) = sin(2 ∗ π ∗ 0,5) = sin(2 ∗ π ∗ 1) = 0
Везде получаются нули. Как же тогда можно восстановить этот синус?

Поиск в интернете ответа на данный вопрос не дал, максимум того, что удалось найти - это различные дискуссии на форумах, где приводились довольно причудливые аргументы за и против вплодь до ссылок на эксперименты с различными фильтрами. Следует указать, что теорема Котельникова - это математическая теорема и доказывать или опровергать ее следует только математическими методами. Чем я и занялся. Оказалось, что доказательств этой теоремы в различных учебниках и монографиях достаточно много, но найти, где возникает данное противоречие мне долгое время не удавалось, поскольку доказательства приводились без многих тонкостей и деталей. Скажу также, что и сама формулировка теоремы в разных источниках была различной. Поэтому в первом разделе я приведу детальное доказательство этой теоремы, следуя оригинальной работе самого академика (В.А.Котельников "О пропускной способности «эфира»и проволоки в электросвязи." Материалы к I Всесоюзному съезду по вопросам технической реконструкции дела связи и развития слаботочной промышленности. 1933 г.)

Сформулируем теорему, как она дана в первоисточнике:
Любую функцию F(t), состоящую из частот от 0 до f1 периодов в секунду, можно представить рядом

Где k - целое число; ω = 2πf1; Dk - постоянные, зависящие от F(t).

Доказательство: Любая функция F(t), удовлетворяющая условиям Дирихле (конечное число максимумов, минимумов и точек разрыва на любом конечном отрезке) и интегрируемая в пределах от −∞ до +∞, что вседа в электротехнике имеет место, может быть представлена интегралом Фурье:

Т.е. как сумма бесконечного количества синусоидальных колебаний с частотами от 0 до +∞ и амплитудами C(ω)dω и S(ω)dω, зависящими от частоты. Причем

В нашем случае, когда F(t) состоит лишь из частот от 0 до f1, очевидно

И поэтому F(t) может быть представлена так:

Функции же C(ω) и S(ω), как и всякие другие на участке

Могут быть представлены всегда рядами Фурье, причем эти ряды могут, по нашему желанию состоять из одних косинусов или одних синусов, если мы возьмем за период двойную длину участка, т.е. 2ω1.

Примечание автора: здесь надо дать пояснение. Котельников использует возможность дополнить функции C(ω) и S(ω) таким образом, чтобы C(ω) стала четной, а S(ω) нечетной функцией на двойном участке относительно ω1. Соответственно на второй половине участка значения этих функций будут C(2∗ω1 −ω) и −S(2∗ω1 −ω). Эти функции отражаются относительно вертикальной оси с координатой ω1, а функция S(ω) еще и меняет знак

Таким образом

Введем следующие обозначения

Подставляя получаем:

Преобразуем

Еще преобразуем

Интегрируем и заменяем ω1 на 2πf1:

Неточность в теореме Котельникова

Все доказательство выглядит строгим. В чем же проблема? Для понимания этого обратимся к одному не очень широко известному свойству обратного преобразования Фурье. Оно гласит, что при обратном преобразовании из суммы синусов и косинусов в исходную функцию, значение этой функции будет равно

То есть восстановленная функция равна полусумме значений пределов. К чему это приводит? Если наша функция непрерывная, то ни к чему. Но если в нашей функции есть конечный разрыв, то значения функции после прямого и обратного преобразования Фурье будут несовпадать с исходным значением. Вспомним теперь шаг в доказательстве теоремы, где интервал удваивается. Функция S(ω) дополняется функцией −S(2 ∗ ω1 − ω). Если S(ω1) (значение в точке ω1) равно нулю, ничего плохого не происходит. Однако если значение S(ω1) не равно нулю, восстановленная функция не будет равна исходной, поскольку в этой точке возникает разрыв равный 2S(ω1).
Вернемся теперь к исходной задаче про синус. Как известно, синус - нечетная функция, образ которой после преобразования Фурье есть δ(ω − Ω0) - дельта функция. То есть в нашем случае, если синус имеет частоту ω1, получаем:

Очевидно, что в точке ω1 суммируюся две дельта-функции от S(ω) и −S(ω) образуя ноль, что мы и наблюдаем.

Заключение

Теорема Котельникова, безусловно, великая теорема. Однако она должна быть дополнена еще одним условием, а именно

В такой формулировке исключаются граничные случаи, в частности случай с синусом у которого частота равна граничной частоте ω1, поскольку для него использовать теорему Котельникова с приведенным выше условием нельзя.



Понравилась статья? Поделиться с друзьями: