Виды сигналов. Аналоговые, дискретные и цифровые сигналы

Аналоговый сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.

Различают два пространства сигналов - пространство L (непрерывные сигналы), и пространство l (L малое) - пространство последовательностей. Пространство l (L малое) есть пространство коэффициентов Фурье (счетного набора чисел, определяющих непрерывную функцию на конечном интервале области определения), пространство L - есть пространство непрерывных по области определения (аналоговых) сигналов. При некоторых условиях, пространство L однозначно отображается в пространство l (например, первые две теоремы дискретизации Котельникова).

Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом. Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые). Примеры непрерывных пространств и соответствующих физических величин:

    прямая: электрическое напряжение

    окружность: положение ротора, колеса, шестерни, стрелки аналоговых часов, или фаза несущего сигнала

    отрезок: положение поршня, рычага управления, жидкостного термометра или электрический сигнал, ограниченный по амплитуде различные многомерные пространства: цвет, квадратурно-модулированный сигнал.

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов.

Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте "количество информации" будет ограничено лишь динамическим диапазоном средства измерения.

Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Применение:

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый с термопары, несет информацию об изменении температуры, сигнал с микрофона - о быстрых изменениях давления в звуковой волне, и т.п.

2.2 Цифровой сигнал

Цифровой сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.

Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного сигнала. Цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания - это разница между максимальной и минимальной частотой, которая может быть передана по кабелю. Каждое устройство в таких сетях посылает данные в обоих направлениях, а некоторые могут одновременно принимать и передавать. Узкополосные системы (baseband) передают данные в виде цифрового сигнала одной частоты.

Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал, поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.

Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).

О природе сигналов обыватель не задумывается, а вот о разнице между аналоговым и цифровым вещанием или форматами - иногда приходится. По умолчанию считается, что аналоговые технологии уходят в прошлое, и вскоре будут полностью заменены на цифровые. Стоит знать, от чего мы отказываемся в угоду новым веяниям.

Аналоговый сигнал - сигнал данных, описываемый непрерывными функциями времени, то есть амплитуда колебаний его может принимать любые значения в пределах максимума.

Цифровой сигнал - сигнал данных, описываемый дискретными функциями времени, то есть амплитуда колебаний принимает значения только строго определенные.

На практике это позволяет говорить о том, что аналоговый сигнал сопровождается большим количеством помех, тогда как цифровой их успешно отфильтровывает. Последний же способен восстанавливать исходные данные. Кроме того, непрерывный аналоговый сигнал часто несет в себе много лишней информации, что приводит к его избыточности - несколько цифровых сигналов можно передать вместо одного аналогового.

Если говорить о телевидении, а именно эта сфера своим переходом на “цифру” волнует большинство потребителей, то можно считать аналоговый сигнал совершенно себя изжившим. Однако пока что аналоговые сигналы принимает любая предназначенная для этого техника, а цифровой требует специальной. Правда, с распространением “цифры” аналоговых телевизоров все меньше и спрос на них катастрофически уменьшается.

Еще одна важная характеристика сигнала - безопасность. В этом отношении аналоговый демонстрирует полную беззащитность перед влияниями или вторжениями извне. Цифровой же шифруется посредством присвоения ему кода из радиоимпульсов, так что любое вмешательство исключено. На большие расстояния цифровые сигналы передавать сложно, потому используется схема модуляции-демодуляции.

Выводы сайт

  1. Аналоговый сигнал непрерывен, цифровой - дискретен.
  2. При передаче аналогового сигнала выше риск забивания канала помехами.
  3. Аналоговый сигнал избыточен.
  4. Цифровой сигнал фильтрует помехи и восстанавливает исходные данные.
  5. Цифровой сигнал передается в зашифрованном виде.
  6. Несколько цифровых сигналов можно послать вместо одного аналогового.

Простому потребителю совсем необязательно знать, какова природа сигналов. Но порой необходимо знать разницу между аналоговым и цифровым форматами, чтобы с открытыми глазами подходить к выбору того или иного варианта, ведь сегодня на слуху, что время аналоговых технологий прошло, на смену им приходят цифровые. Следует понять разницу, чтобы знать от чего уходим и чего ожидать.

Сигнал аналоговый - это сигнал непрерывный, имеющий бесконечное число близких по значению данных в пределах максмальных, все параметры которого описываются временной зависимой переменной.

Сигнал цифровой - это раздельный сигнал, описываемый раздельной функцией времени, соответственно в каждый момент времени, величина амплитуды сигнала имеет строго определенное значение.

Практика показала, что при аналоговых сигналах возможны помехи, устраняемые при цифровом сигнале. Кроме того, цифровой может восстановить изначальные данные. При непрерывном аналоговом сигнале проходит много информации, зачастую излишней. Вместо одного аналогового можно передать несколько цифровых.

На сегодняшний день потребителя интересует вопрос телевидения, так как именно в этом контексте чаще и произносится фраза "переход на цифровой сигнал". В этом случае аналоговый можно считать пережитком прошлого, но ведь именно его принимает существующая техника, а для приема цифрового необходима специальная. Конечно, в связи с появлением и расширением использования "цифры", теряют былую популярность.

Преимущества и недостатки видов сигналов

Немаловажную роль в оценке параметров того или иного сигнала имеет безопасность. Различного характера влияния, посторонние вторжения делают аналоговый сигнал беззащитным. При цифровом подобное исключается, так как он кодируется из радиоимпульсов. Для больших расстояний передача цифровых сигналов усложнена, приходится использовать схемы модуляции-демодуляции.

Поводя итог, можно сказать, что отличия аналогового и цифрового сигнала состоят:

  • В непрерывности аналогового и дискретности цифрового;
  • В большей вероятности помех при передаче аналогового;
  • В избыточности аналогового сигнала;
  • В способности цифрового фильтровать помехи и восстанавливать исходую информацию;
  • В передаче цифрового сигнала в закодированной форме. Один аналоговый сигнал замещается несколькими цифровыми.

Очень часто мы слышим такие определения, как «цифровой» или «дискретный» сигнал, в чем его отличие от «аналогового»?

Суть различия в том, что аналоговый сигнал непрерывный во времени (голубая линия), в то время как цифровой сигнал состоит из ограниченного набора координат (красные точки). Если все сводить к координатам, то любой отрезок аналогового сигнала состоит из бесконечного количества координат.

У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. По вертикали точность высоты координаты соответствует разрядности цифрового сигнала, для 8 бит это 256 уровней, для 16 бит = 65536 и для 24 бит = 16777216 уровней. Чем выше разрядность (количество уровней), тем ближе координаты по вертикали к исходной волне.

Аналоговыми источниками являются: винил и аудиокассеты. Цифровыми источниками являются: CD-Audio, DVD-Audio, SA-CD (DSD) и файлы в WAVE и DSD форматах (включая производные APE, Flac, Mp3, Ogg и т.п.).

Преимущества и недостатки аналогового сигнала

Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.

Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель (лента или винил), устройства считывания, записи и передачи сигнала.

Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать.

Преимущества и недостатки цифрового сигнала

К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии.

Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.

Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости . И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.

На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение.

Как ЦАП строят волну

ЦАП – это цифро-аналоговый преобразователь, элемент, переводящий цифровой звук в аналоговый. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.

Мультибитные ЦАП

Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле.


На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока (напряжения) на соответствующий уровень до следующего изменения.

Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации – это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.


Альтернативный вариант – искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. Т.е. мы представляем путь непрерывной волны (серая пунктирная линия), плавно соединяющий исходные координаты (красные точки) и добавляем промежуточные точки на этой линии (темно фиолетовые).

При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне.


Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу.

Когда вы видите функцию повышения частоты с 44.1 до 192 кГц в плеере или внешнем ЦАП, то это функция добавления промежуточных координат, а не восстановления или создание звука в области выше 20 кГц.

Изначально это были отдельные SRC микросхемы до ЦАП, которые потом перекочевали непосредственно в сами микросхемы ЦАП. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук (как например это сделано в Hidizs AP100).

Основной отказ в индустрии от мультибитных ЦАП произошел из-за невозможности дальнейшего технологического развития качественных показателей при текущих технологиях производства и более высокой стоимости против «импульсных» ЦАП-ов с сопоставимыми характеристиками. Тем не менее, в Hi-End продуктах предпочтение отдают зачастую старым мультибитным ЦАП-ам, нежели новым решениям с технически более хорошими характеристиками.

Импульсные ЦАП

В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.


Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).

Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.

Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).

Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.


На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.


В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.

Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.

Являются ли идеальными импульсные ЦАП?

Но на практике не все безоблачно, и существует ряд проблем и ограничений.

Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.

Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.

Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.

Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.

Формат DSD

После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Этот формат получил название DSD (Direct Stream Digital).

Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.

В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).

Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.

Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.

На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.

Общий вывод

Аналоговый звук – это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал.

Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит.

Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу. Однако при этом разный уровень технологий записи и воспроизведения цифрового сигнала и хранения на носителях для аналогового сигнала дают больше преимуществ цифровому представлению сигнала, аналогично цифровой фотокамере против пленочного фотоаппарата.

Сигналами называют информационные коды, которые применяются людьми для того, чтобы передавать сообщения в информационной системе. Сигнал может подаваться, но его получение не обязательно. Тогда как сообщением можно считать только такой сигнал (или совокупность сигналов), который был принят и декодирован получателем (аналоговый и цифровой сигнал).

Одними из первых методов передачи информации без участия людей или других живых существ были сигнальные костры. При возникновении опасности последовательно разводились костры от одного поста к другому. Далее мы будем рассматривать способ передачи информации при помощи электромагнитных сигналов и подробно остановимся на рассмотрении темы аналоговый и цифровой сигнал .

Любой сигнал может быть представлен в виде функции, которая описывает изменения его характеристик. Такое представление удобно для изучения устройств и систем радиотехники. Помимо сигнала в радиотехнике есть еще шум, который является его альтернативой. Шум не несет полезной информации и искажает сигнал, взаимодействуя с ним.

Само понятие дает возможность отвлечься от конкретных физических величин при рассмотрении явлений, связанных с кодированием и декодированием информации. Математическая модель сигнала в исследованиях позволяет опираться на параметры функции времени.

Типы сигналов

Сигналы по физической среде носителя информации делятся на электрические, оптические, акустические и электромагнитные.

По методу задания сигнал может быть регулярным и нерегулярным. Регулярный сигнал представляется детерминированной функцией времени. Нерегулярный сигнал в радиотехнике представлен хаотической функцией времени и анализируется вероятностным подходом.

Сигналы в зависимости от функции, которая описывает их параметры могут быть аналоговыми и дискретными. Дискретный сигнал, который был подвергнут квантованию называется цифровым сигналом.

Обработка сигнала

Аналоговый и цифровой сигнал обрабатывается и направлен на то, чтобы передать и получить информацию, закодированную в сигнале. После извлечения информации ее можно применять в разных целях. В частных случаях информация подвергается форматированию.

Аналоговые сигналы подвергаются усилению, фильтрации, модуляции и демодуляции. Цифровые же помимо этого еще могут подвергаться сжатию, обнаружению и др.

Аналоговый сигнал

Наши органы чувств воспринимают всю поступающую в них информацию в аналоговом виде. К примеру, если мы видим проезжающий мимо автомобиль, мы видим его движение непрерывно. Если бы наш мозг мог получать информацию о его положении раз в 10 секунд, люди бы постоянно попадали под колеса. Но мы можем оценивать расстояние куда быстрее и это расстояние в каждый момент времени четко определено.

Абсолютно то же самое происходит и с другой информацией, мы можем оценивать громкость в любой момент, чувствовать какое давление наши пальцы оказывают на предметы и т.п. Иными словами, практически вся информация, которая может возникать в природе имеет аналоговый вид. Передавать подобную информацию проще всего аналоговыми сигналами, которые являются непрерывными и определены в любой момент времени.

Чтобы понять, как выглядит аналоговый электрический сигнал, можно представить себе график, на котором будет отображена амплитуда по вертикальной оси и время по горизонтальной оси. Если мы, к примеру, замеряем изменение температуры, то на графике появится непрерывная линия, отображающая ее значение в каждый момент времени. Чтобы передать такой сигнал с помощью электрического тока, нам надо сопоставить значение температуры со значением напряжения. Так, например, 35.342 градуса по Цельсию могут быть закодированы как напряжение 3.5342 В.

Аналоговые сигналы раньше использовались во всех видах связи. Чтобы избежать помех такой сигнал нужно усиливать. Чем выше уровень шума, то есть помех, тем сильнее надо усиливать сигнал, чтобы его можно было принять без искажения. Такой метод обработки сигнала затрачивает много энергии на выделение тепла. При этом усиленный сигнал может сам стать причиной помех для других каналов связи.

Сейчас аналоговые сигналы еще применяются в телевидении и радио, для преобразования входного сигнала в микрофонах. Но, в целом, этот тип сигнала повсеместно вытеснен или вытесняется цифровыми сигналами.

Цифровой сигнал

Цифровой сигнал представлен последовательностью цифровых значений. Чаще всего сейчас применяются двоичные цифровые сигналы, так как они используются в двоичной электронике и легче кодируются.

В отличие от предыдущего типа сигнала цифровой сигнал имеет два значения «1» и «0». Если мы вспомним наш пример с измерением температуры, то тут сигнал будет сформирован иначе. Если напряжение, которое подается аналоговым сигналом соответствует значению измеряемой температуры, то в цифровом сигнале для каждого значения температуры будет подаваться определенное количество импульсов напряжения. Сам импульс напряжения тут будет равен «1», а отсутствие напряжения – «0». Приемная аппаратура будет декодировать импульсы и восстановит исходные данные.

Представив, как будет выглядеть цифровой сигнал на графике, мы увидим, что переход от нулевого значения к максимальному производится резко. Именно эта особенность позволяет принимающей аппаратуре более четко «видеть» сигнал. Если возникают какие-либо помехи, приемнику проще декодировать сигнал, нежели чем при аналоговой передаче.

Однако цифровой сигнал с очень большим уровнем шума восстановить невозможно, тогда как из аналогового типа при большом искажении еще есть возможность «выудить» информацию. Это связано с эффектом обрыва. Суть эффекта в том, что цифровые сигналы могут передаваться на определенные расстояния, а затем просто обрываются. Этот эффект возникает повсеместно и решается простой регенерацией сигнала. Там, где сигнал обрывается, нужно вставить повторитель или уменьшить длину линии связи. Повторитель не усиливает сигнал, а распознает его изначальный вид и выдает его точную копию и может использоваться сколь угодно в цепи. Такие способы повторения сигнала активно применяются в сетевых технологиях.

Помимо всего прочего аналоговый и цифровой сигнал различается и возможность кодирования и шифрования информации. Это является одной из причин перехода мобильной связи на «цифру».

Аналоговый и цифровой сигнал и цифро-аналоговое преобразования

Следует еще немного рассказать о том, как аналоговая информация передается по цифровым каналам связи. Вновь прибегнем к примерам. Как уже говорилось звук – это аналоговый сигнал.

Что происходит в мобильных телефонах, которые передают информацию по цифровым каналам

Звук, попадая в микрофон подвергается аналого-цифровому преобразованию (АЦП). Этот процесс состоит из 3 ступеней. Берутся отдельные значения сигнала через одинаковые отрезки времени, этот процесс называется дискретизация. По теореме Котельникова о пропускной способности каналов, частота взятия этих значений должна быть вдвое выше, чем самая высокая частота сигнала. То есть, если в нашем канале стоит ограничение на частоту в 4 кГц, то частота дискретизации будет составлять 8 кГц. Далее все выбранные значения сигнала округляются или, иначе говоря, квантуются. Чем больше уровней при этом будет создано, тем выше будет точность восстановленного сигнала на приемнике. Затем все значения преобразуются в двоичный код, который передается на базовую станцию и затем доходит до другого абонента, являющегося приемником. В телефоне приемника происходит процедура цифро-аналогового преобразования (ЦАП). Это обратная процедура, цель которой на выходе получить сигнал как можно более идентичный исходному. Далее уже аналоговый сигнал выходит в виде звука из динамика телефона.

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.

Любой сигнал, будь-то аналоговый или цифровой, представляет собой электромагнитные колебания, распространяющиеся с определенной частотой. В зависимости от того, какой сигнал распространяется устройство, принимающее данный сигнал определяет, какое изображение выводить на экран, соответственно, со звуковым сопровождением.

К примеру, телевизионная вышка или радиостанция может передавать и аналоговый и цифровой сигналы. Звук передается в аналоговой форме, и уже через приемное устройство преобразуется в электромагнитные колебания. Как уже говорилось, колебания распространяются с определенной частотой. Чем выше частота звука, тем выше колебания, в результате, получаем на выходе более громкое звучание голоса.

Общими словами, аналоговый сигнал распространяется непрерывно, а цифровой сигнал - дискретно (прерывисто), т.е. амплитуда колебаний принимает определенные значения в единицу времени.

Если продолжить пример звукового аналогового сигнала, то получим процесс, при котором электромагнитные волны распространяются с помощью передатчика (антенны). Т.к. распространение аналогового сигнала происходит постоянно, то колебания суммируются, и на выходе возникает несущая частота, которая является основной, т.е. на неё происходит настройка приемника.

В самом приемнике происходит отделение данной частоты от других колебаний, которые преобразуются в звук.

Недостатками передачи информации с помощью аналогового сигнала очевидны:

  • Возникает большое количество помех;
  • Передается больше лишней информации;
  • Безопасность передачи сигнала

Если в радиовещании передача информации с помощью аналогового сигнала происходит менее заметно, то в телевидении, вопрос перехода на цифровую передачу крайне важен.

Основными преимуществами цифрового сигнала перед аналоговым являются:

  • Более высокий уровень защиты. Безопасность передачи цифрового сигнала основана на том, что «цифра» передается в зашифрованном виде;
  • Легкость приема сигнала. Цифровой сигнал можно принимать, находясь на любом расстоянии от местожительства;
  • Цифровое вещание способно обеспечить огромное количество каналов. Именно эта возможность обеспечивает поклонников цифрового телевидения большим количеством телеканалов для просмотра фильмов и передач;
  • Качество передачи находится на несколько порядков выше, чем при аналоговом вещании. Цифровой сигнал обеспечивает фильтрацию принимаемых данных, а также имеется возможность восстанавливать исходную информацию.

Соответственно, для преобразования аналогового сигнала в цифровой, и наоборот используются специальные устройства.

  • Устройство, которое преобразует аналоговый сигнал в цифровой сигнал, называется аналого-цифровым преобразователем (АЦП);
  • Устройство, преобразующее цифровой сигнал в аналоговый называется цифро-аналоговым преобразователем (ЦАП).

Соответственно, АЦП установлен в передатчике, а ЦАП установлен в приемнике и преобразет дискретный сигнал в аналоговый, соответствующий голосу.

Почему цифровой сигнал является более защищенным?

Передача цифрового сигнала осуществляется в зашифрованном виде и цифро-аналоговое устройство должно иметь код для расшифровки. АЦП может передавать и цифровой адрес приемника. Если даже сигнал будет перехвачен, то полностью расшифровать его будет невозможно из-за отсутствия части кода. Данный свойство цифровой передачи широко используется в мобильной связи.

Таким образом, основное различие между аналоговым и цифровым сигналом заключается в различной структуре передаваемого сигнала. Аналоговые сигналы - непрерывный поток колебаний с изменяющимися амплитудой и частотой.

Цифровой сигнал - дискретные (прерывистые) колебания, значения которых зависят от передающей среды.

Иногда у потребителей возникает вопрос, как передается сигнал в телевидении.

В телевидении перед передачей сигнала в цифровом виде, аналоговый сигнал подлежит оцифровке. После этого, необходимо выбрать, в какой среде будет происходить передача: медный кабель, эфир, оптоволоконный кабель.

Например, многие пользователи уверены, что кабельное телевидение - это только цифровая передача данных. Это не так. Кабельное телевидение - это и аналоговый и цифровой вид передачи сигнала.



Понравилась статья? Поделиться с друзьями: