Объединение корпоративных сетей различных компаний. Корпоративные сети – основной механизм информатизации. Отличная система управления следит за сетью и, найдя проблему, активизирует определенное действие, исправляет обстановку и уведомляет администратора


Возможность объединения удаленных офисов компании между собой по защищенным каналам связи - это одна из наиболее распространенных задач при построении распределенной сетевой инфраструктуры для компаний любого размера. Существует несколько решений этой задачи:

Аренда каналов у провайдера: Распространенный и надежный вариант. Провайдер предоставляет в аренду выделенные физические или логические каналы связи. Такие каналы часто называют «точка-точка»

Достоинства:

  1. Простота подключения и использования – обслуживание оборудования и каналов полностью возлагается на провайдера;
  2. Гарантированная ширина канала – скорость передачи данных всегда соответствует заявленной провайдером;

Недостатки:

  1. Безопасность и контроль – компания не может контролировать оборудование на стороне провайдера.

Построение собственных (физических) магистралей связи: Надежное и затратное решение, поскольку построение физического канала связи полностью возлагается на компанию. При таком решении компания полностью контролирует и обслуживает построенные каналы

Достоинства:

  1. Гибкость – возможность развертывания каналов, отвечающих всем необходимым требованиям;
  2. Безопасность и контроль – полный контроль канала, поскольку он принадлежит компании;

Недостатки:

  1. Развертывание – построение таких частных каналов трудоемкое и затратное решение. Прокладка километров оптики по столбам может встать в круглую сумму. Даже если не брать в расчет получение разрешений всех гос. инстанций;
  2. Обслуживание – обслуживание канала полностью возлагается на компанию, поэтому в штате должны быть высококвалифицированные специалисты для обеспечения его работоспособности;
  3. Низкая отказоустойчивость – внешние оптические линии связи часто подвергаются неумышленным повреждениям (строительная техника, коммунальные службы, итд). Время обнаружения и исправления оптической линии связи может занять несколько недель.
  4. Ограничено одной локацией – прокладывать внешние оптические линии связи актуально только в случае, если объекты расположены в пределах нескольких десятков километров. Тянуть связь в другой город на сотни и тысячи километров не представляется возможным из соображений здравого смысла.

Построение защищенного канала через Интернет (VPN): Такое решение является относительно бюджетным и гибким. Для объединения удаленных офисов достаточно подключения к Интернету и сетевого оборудования с возможностью создания VPN соединений

Достоинства:

  1. Низкая стоимость – компания платит только за доступ в Интернет;
  2. Масштабируемость – для подключения нового офиса необходимо наличие Интернета и маршрутизатора;

Недостатки:

  1. Пропускная способность канала – скорость передачи данных может варьироваться (нет гарантированной полосы пропускания);

В этой статье более подробно будет рассмотрен последний пункт, а именно - какие преимущества предоставляет бизнесу технология VPN.
Виртуальная частная сеть (VPN) – совокупность технологий обеспечивающих защищенное соединение (туннель) двух и более удаленных локальных сетей через публичную сеть (прим. Интернет).

Уникальные преимущества территориально распределенных VPN-сетей

Защита передаваемого трафика: передавать трафик по VPN туннелю безопасно при использовании криптостойких протоколов шифрования (3DES, AES). Помимо шифрования обеспечивается проверка целостности данных и подлинности отправителя, исключая возможность подмены информации и подключения злоумышленника.

Надежность соединения: ведущие производители оборудования совершенствуют технологии VPN подключений, обеспечивая автоматическое восстановление VPN туннелей в случае кратковременного выхода из строя соединения к публичной сети.
Мобильность и удобство подключения: к локальной сети компании можно подключиться из любой точки мира и практически с любого современного устройства (смартфон, планшетный компьютер, ноутбук), при этом соединение будет защищено. Большинство производителей мультимедийных устройств добавили поддержку VPN в свою продукцию.

Резервирование и балансировка нагрузки: если вы используете двух провайдеров при подключении к сети Интернет (для балансировки/отказоустойчивости), то возможна балансировка трафика VPN туннелей между провайдерами. В случае выхода из строя одного из провайдеров, туннель будет использовать резервное соединение.

Приоритезация трафика: возможность управления трафиком с помощью QoS - приоритезация голосового, видео-трафика в случае высокой нагрузки на туннель.

VPN-сети в бизнесе

Единая сеть

Объединение территориально распределенных локальных сетей компании в единую сеть (подключение филиалов к главному офису) значительно упрощает взаимодействие и обмен данными внутри компании, снижая затраты на обслуживание. Любые корпоративные системы требуют единого сетевого пространства для работы сотрудников. Это может быть IP телефония, системы бухгалтерского и финансового учета, CRM, видеоконференцсвязь, и т.д.

Мобильный доступ

Независимо от расположения сотрудника, при наличии интернета и ноутбука/смартфона/планшета, сотрудник может подключиться к внутренним ресурсам компании. Благодаря этому преимуществу у сотрудников имеется возможность выполнять работу и оперативно решать задачи, находясь за пределами офиса.

Объединение сетей разных компаний

Нередко необходимо объединить сети бизнес-партнеров, при этом такое объединение можно организовать как с ограничением, так и без ограничения доступа к внутренним ресурсам каждой из компаний. Такое объединение упрощает взаимодействие между компаниями.


Удаленное управление IT-инфраструктурой

Благодаря защищенному удаленному доступу к оборудованию IT-инфраструктуры компании, администратор способен в кратчайшие сроки решать поставленные задачи и реагировать на возникшие проблемы.

Качество обслуживания

Трафик видеоконференций, IP-телефонии и некоторых других приложений требует гарантированную ширину канала. Благодаря использованию QoS в VPN туннелях например можно объединить IP-телефонию локальной сети компании и удаленного офиса.


Сферы применения распределенных VPN-сетей и корпоративных сетей передачи данных (КСПД)

Проанализировав требования и задачи организаций различного масштаба, мы составили общую картину по решениям для каждой из них. Ниже приводится описание типичных внедрений VPN технологии в сетевую инфраструктуру компании.

Решения для малого бизнеса. Зачастую требования для такого решения – это возможность подключения удаленных пользователей (до 10) к внутренней сети и/или объединение сетей нескольких офисов. Такие решения являются простыми и быстрыми в развертывании. Для такой сети рекомендуется наличие резервного канала со скоростью ниже либо такой же как у основного. Резервный канал является пассивным и используется только в случае отключения основного (VPN туннель автоматически строится по резервному каналу). Резервирование пограничного оборудования для таких решений применяется редко и зачастую необоснованно.

Передаваемый по туннелю трафик – трафик внутренних приложений (почта, веб, документы), голосовой трафик.

Потребность в резервировании канала: средняя

Потребность в резервировании оборудования: низкая


Решения для среднего бизнеса. Наряду с подключением удаленных сотрудников (до 100), сетевая инфраструктура должна обеспечивать подключение нескольких удаленных офисов. Для таких решений резервирование Интернет канала обязательно, при этом пропускная способность резервного канала должна быть сопоставима со скоростью основного канала. Во многих случаях резервный канал активный (осуществляется балансировка нагрузки между каналами). Рекомендуется резервировать оборудование критически важных узлов сети (прим. пограничный роутер центрального офиса). Топология VPN сети – звезда или partial mesh.

Потребность в резервировании оборудования: средняя

Решения для крупного бизнеса, распределённая сеть филиалов. Такие сети достаточно больших масштабов сложны в развертывании и поддержке. Топология такой сети с точки зрения организации VPN туннелей может быть: звезда, partial mesh, full mesh (на схеме приведен вариант full mesh). Резервирование канала обязательно (можно больше 2х провайдеров), как и резервирование оборудования критических важных узлов сети. Все, либо несколько каналов активны. В сетях такого уровня нередко применяются выделенные физические каналы (leased lines) или VPN предоставляемый провайдерами. В такой сети необходимо предусмотреть максимальную надежность и отказоустойчивость с целью минимизирования простоя бизнеса. Оборудование для таких сетей – флагманская линейка энтерпрайз класса или провайдерское оборудование.

Передаваемый по туннелю трафик – трафик внутренних приложений (почта, веб, документы), голосовой трафик, трафик видеоконференций.

Потребность в резервировании канала: высокая

Потребность в резервировании оборудования: высокая

Образовательные учреждения. Для образовательных учреждений характерно подключение к центру управления сетями. Объем трафика чаще всего не высокий. Требования к резервированию выставляются в редких случаях.

Медицинские учреждения. Для медицинских учреждений стоит острый вопрос надежности и высокой отказоустойчивости каналов связи и оборудования. Во всех филиалах территориально распределённой сети используются резервируемое каналообразующее оборудование и несколько провайдеров.

Решения для ритейла (сети магазинов). Сети магазинов отличаются массовостью локаций (это могут быть тысячи магазинов), и относительно не высоким трафиком до главного офиса (ЦОД). Резервирование оборудования в магазинах чаще всего не целесообразно. Достаточно зарезервировать подключение к провайдеру (в формате «второй провайдер на подхвате»). Однако требования к оборудованию, которое стоит в ЦОД (главном офисе) высокие. Так как эта точка терминирует на себе тысячи VPN туннелей. Необходим постоянный мониторинг каналов, системы отчетности, соблюдение политик безопасности, и т.д.

Внедрение распределенных VPN-сетей и корпоративных сетей передачи данных (КСПД)

Выбор необходимого оборудования и правильное внедрение сервиса – это сложная задача, требующая высокой экспертизы от исполнителя. Компания ЛанКей много лет выполняет сложнейшие проекты и имеет огромный опыт в подобных проектах.

Примеры некоторых проектов по внедрению КСПД и VPN, реализованных компанией ЛанКей

Заказчик Описание выполненных работ

Производитель оборудования: Juniper
Решение: осуществлено подключение шести удаленных филиалов компании к главному офису по топологии звезда по защищенным каналам связи.


Решение: обеспечение подключения удаленных работников к ресурсам корпоративной сети по защищенным каналам с использованием технологии Cisco Anyconnect.


Производитель оборудования: Cisco
Решение: Объединение по защищенному туннелю корпоративной сети и облачных серверов для предоставления сотрудникам различных сервисов (почта, документооборот, телефония). Помимо этого решение позволяло подключаться к корпоративной сети и использовать облачные сервисы удаленным сотрудникам.

Производитель оборудования:Juniper
Решение: осуществлено подключение к сети интернет и построение VPN тунелей в офисах, находящихся в Москве и Женеве.

Производитель оборудования: Cisco
Решение: Удаленные офисы объединены по защищенному каналу с отказоустойчивостью по провайдерам.

ВВЕДЕНИЕ

В настоящее время ни у кого не вызывает удивления повсеместное использование компьютеров: в офисах крупных компаний, в высших и средних учебных заведениях, дома. Везде где есть электрическая розетка, можно увидеть компьютер. Но прогресс идет вперед, и несколько лет назад показалось недостаточным использовать ресурсы только того компьютера, который стоит перед Вами. Захотелось присоединить к этому компьютеру еще и ресурсы, скажем компьютера соседа. Вот так и появилась мысль об объединении нескольких компьютеров. То, что в итоге получилось, стало называться сетью в самом широком смысле этого слова, которое теперь ни у кого не вызывает удивления или непонимания.

На современном этапе развития и использования локальных вычислительных сетей (а именно о них пойдет речь в представленной работе) наиболее актуальное значение приобрели такие вопросы, как оценка производительности и качества локальных вычислительных сетей и их компонентов, оптимизация уже существующих или планируемых к созданию локальных вычислительных сетей. Сейчас, когда локальные вычислительные сети стали определяющим компонентом в информационной стратегии большинства организаций, недостаточное внимание к оценке мощности локальной вычислительной сети и ее планированию привело к тому, что сегодня для поддержки современных приложений в архитектуре клиент - сервер многие сети необходимо заново проектировать, а во многих случаях и заменять.

Производительность и пропускная способность локальной вычислительной сети определяется рядом факторов: выбором серверов и рабочих станций, каналов связи, сетевого оборудования, сетевого протокола передачи данных, сетевых операционных систем и операционных систем рабочих станций, серверов и их конфигураций, распределением файлов базы данных по серверам в сети, организацией распределенного вычислительного процесса, защиты, поддержания и восстановления работоспособности в ситуациях сбоев и отказов и т.п. Все больше появляется судов на флоте, оснащенных современной компьютерной техникой. Связь с каждым днем становится все более компьютеризированной. Не пройдет и десятка лет, как старые методы и средства связи уйдут в прошлое и уступят свое место связи на основе сетевых коммуникаций. Вот почему так важно для выпускников радио специальности иметь знания в области сетевых технологий.

За границей основной процент сетей, находящихся в эксплуатации, приходится на университеты и кампусы, прилегающие к ним. Более, чем 50% пользователей компьютерными сетями в США студенты и профессора университетов. Количество задач решаемых в сети огромно. Деятельность многих организаций и учебных заведений основана на использовании сети, как в локальном, так и в глобальном масштабе. И, конечно же, большой плюс в том, что в ДВГМА, тоже существует локальная компьютерная сеть. И хотя данная сеть, не до конца еще введена в эксплуатацию, но даже на данном этапе, она выполняет очень много задач. Основными задачами являются: обучение курсантов компьютерным технологиям; предоставление информационно-справочных материалов, как курсантам так и преподавателям по первому их требованию без утомительных поисков в библиотеке, централизованное управление учебным процессом, административное управление, бухгалтерский учет. Для расширения возможностей выполняемых компьютерной сетью Академии необходимо полное введение в эксплуатацию уже существующих компонентов сети, и объединение всех остальных подразделений и частей Академии. Особенно это можно отнести к учебным корпусам. Так, как 1 ый и 2 ой учебные корпуса уже объединены, то в первую очередь необходимо подключить к этой сети корпус радиоспециальности ДВГМА и корпуса ВМУ. Задачей данной работы является расчет подключения корпуса радиоспециальности ДВГМА и административного и учебного корпусов ВМУ к общей компьютерной сети Академии. На основании выбранного подключения рассчитать и спроектировать сеть для корпуса радио специальности с учетом существующих потребностей корпуса и с запасом на будущее развитие лабораторий и компьютерных классов. Данная компьютерная сеть является корпоративной сетью ДВГМА. В представленном дипломном проекте рассматриваются такие вопросы, как исследование существующей сети Академии, основных методов удаленного соединения подсетей, выбор сетевых архитектур построения сетей, проектирование сегмента корпоративной сети.

КОНЦЕПЦИЯ КОРПОРАТИВНОЙ СЕТИ

Любая организация - это совокупность взаимодействующих элементов (подразделений), каждый из которых может иметь свою структуру. Элементы связаны между собой функционально, т.е. они выполняют отдельные виды работ в рамках единого бизнес процесса, а также информационно, обмениваясь документами, факсами, письменными и устными распоряжениями и т.д. Кроме того, эти элементы взаимодействуют с внешними системами, причем их взаимодействие также может быть как информационным, так и функциональным. И эта ситуация справедлива практически для всех организаций, каким бы видом деятельности они не занимались - для правительственного учреждения, банка, промышленного предприятия, коммерческой фирмы и т.д.

Такой общий взгляд на организацию позволяет сформулировать некоторые общие принципы построения корпоративных информационных систем, т.е. информационных систем в масштабе всей организации.

Корпоративная сеть - система, обеспечивающая передачу информации между различными приложениями, используемыми в системе корпорации. Корпоративная сеть представляет собой сеть отдельной организации. Корпоративной сетью считается любая сеть, работающая по протоколу TCP/IP и использующая коммуникационные стандарты Интернета, а также сервисные приложения, обеспечивающие доставку данных пользователям сети. Например, предприятие может создать сервер Web для публикации объявлений, производственных графиков и других служебных документов. Служащие осуществляют доступ к необходимым документам с помощью средств просмотра Web.

Серверы Web корпоративной сети могут обеспечить пользователям услуги, аналогичные услугам Интернета, например работу с гипертекстовыми страницами (содержащими текст, гиперссылки, графические изображения и звукозаписи), предоставление необходимых ресурсов по запросам клиентов Web, а также осуществление доступа к базам данных. В этом руководстве все службы публикации называются “службами Интернета” независимо от того, где они используются (в Интернете или корпоративной сети).

Корпоративная сеть, как правило, является территориально распределенной, т.е. объединяющей офисы, подразделения и другие структуры, находящиеся на значительном удалении друг от друга. Принципы, по которым строится корпоративная сеть, достаточно сильно отличаются от тех, что используются при создании локальной сети. Это ограничение является принципиальным, и при проектировании корпоративной сети следует предпринимать все меры для минимизации объемов передаваемых данных. В остальном же корпоративная сеть не должна вносить ограничений на то, какие именно приложения и каким образом обрабатывают переносимую по ней информацию

Можно выделить основные этапы процесса создания корпоративной информационной системы:

· провести информационное обследование организации;

· по результатам обследования выбрать архитектуру системы и аппаратно-программные средства ее реализации. по результатам обследования выбрать и/или разработать ключевые компоненты информационной системы;

· система управления корпоративной базой данных;

· система автоматизации деловых операций и документооборота;

· система управления электронными документами;

· специальные программные средства;

· системы поддержки принятия решений.

Рассмотрим последовательно каждый из перечисленных этапов.

Информационная система нужна организации для того, чтобы обеспечивать информационно-коммуникационную поддержку ее основной и вспомогательной деятельности. Поэтому прежде, чем вести речь о структуре и функциональном наполнении информационной системы, необходимо разобраться в целях и задачах самой организации, чтобы понять, что же нужно автоматизировать.

Ответы на поставленные вопросы можно получить только после детального информационного обследования компании, целями которого являются:

· формулировка и описание функций каждого подразделения компании, а также решаемые ими задачи;

· описание технологии работы каждого из подразделений компании и понимание, что необходимо автоматизировать и в какой последовательности;

· описание технологии работы каждого из подразделений и связанных с ними информационных потоков;

· отображение технологии на структуру, определение ее функционального состава и количества рабочих мест в каждом структурном подразделении компании, а также описание функций, которые выполняются (автоматизируются) на каждом рабочем месте;

· описание основных путей и алгоритмы прохождения входящих, внутренних и исходящих документов, а также технологии их обработки.

Результатом обследования являются модели деятельности компании, и ее информационной инфраструктуры, на базе которых разрабатываются проект корпоративной информационной системы, требования к программно-аппаратным средствам и спецификации на разработку прикладного программного обеспечения, если в этом есть необходимость.

При выборе описываемых средств необходимо обратить внимание на то, чтобы работа с ними была бы доступна не только профессиональным работникам, но и более широкому классу.

По результатам обследования необходимо выбрать архитектуру системы. Для корпоративных систем рекомендуется архитектура клиент/сервер. Архитектура клиент/сервер предоставляет технологию доступа конечного пользователя к информации в масштабах предприятия. Таким образом, архитектура клиент/сервер позволяет создать единое информационное пространство, в котором конечный пользователь имеет своевременный и беспрепятственный (но санкционированный) доступ к корпоративной информации.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Конструкция современных корпоративных сетей

2. Основные характеристики корпоративных компьютерных сетей

2.1 Производительность сети

2.2 Пропускная способность

2.3 Надежность

2.4 Управляемость сети

2.5 Совместимость либо интегрируемость

2.6 Расширяемость и масштабируемость

2.7 Прозрачность и помощь разных видов трафика

3. Организация корпоративных сетей

4. Этапы организации компьютерных сетей

5. Роль Internet в корпоративных сетях

5.1 Потенциальные опасности, связанные с подключением корпоративной сети к Internet

5.2 Программные и программно-аппаратные способы охраны

Заключение

Список литературы

В ведение

Наша страна идет к общей компьютеризации. Стремительно расширяется сфера применения компьютеров в народном хозяйстве, науке, образовании, в быту. Возрастает выпуск вычислительных машин от сильных компьютеров, до ПК, мелких и микрокомпьютеров. Но вероятности таких компьютеров ограничены. Следственно и появляется надобность объединить такие компьютеры в цельную сеть, связать их с крупными компьютерами и вычислительными центрами, где находятся базы и банки данных и где дозволено в ограниченное время производить вычисления различной степени трудности либо получить хранящуюся там информацию.

Теперь, любая, даже маленькая организация, имеющая несколько компьютеров, не мыслит своего функционирования без компьютерных сетей.

Объединение отдельно стоящих компьютеров в группы позволило получить ряд превосходств, в том числе коллективно применять дорогостоящие суперкомпьютеры, периферийное оборудование и так дальше. программный компьютерный трафик корпоративный

Сеть предоставила пользователям большое число многообразнейших источников, возможность общения и отдыха, серфинг в Интернете, бесплатные звонки в другие страны, участие в торгах на биржах, вероятность недурно зарабатывать и т. д.

Результативная работа фирмы, компаний, предприятий высших и средних учебных заведений сегодня теснее не может быть реализована без применения технических средств, разрешающих оптимизировать производственные процессы и процессы обучения, документооборота, делопроизводства.

На современном этапе становления и применения корпоративных сетей особенно значение приобрели такие вопросы, как оценка продуктивности и качества корпоративных сетей и их компонентов, оптимизация существующих либо планируемых корпоративных сетей.

Производительность и пропускная способность корпоративной сети определяется рядом факторов: выбором серверов и рабочих станций, каналов связи, сетевого оборудования, сетевого протокола передачи данных, сетевых операционных систем и операционных систем рабочих станций, серверов и их конфигураций, разделением файлов базы данных по серверам в сети, организацией распределенного вычислительного процесса, охраны, поддержания и исправления работоспособности в случае сбоев и отказов и т.п.

В данной курсовой работе поставлена задача дать характеристику корпоративным компьютерным сетям и их организации.

Для достижения поставленной цели в курсовой работе решаются следующие задачи:

Задачи курсовой работы:

1. Разобрать конструкцию современных корпоративных сетей.

2. Выделить основные характеристики корпоративных компьютерных сетей:

3. Производительность сети

4. Пропускная способность

5. Надежность

6. Управляемость сети

7. Совместимость либо интегрируемость

8. Расширяемость и масштабируемость

9. Прозрачность и помощь разных видов трафика

10. Выяснить организацию корпоративных сетей.

11. Выделить этапы организации компьютерных сетей.

12. Описание разрабатываемой сети

13. Разработка схемы адресации

14. Выбор активного оборудования

15. Выбор коммутаторов

16. Выбор маршрутизаторов

17. Выяснить роль Internet в корпоративных сетей:

18. Потенциальные опасности, связанные с подключением корпоративной сети к Интернет:

19. Программные и программно-аппаратные способы охраны

1. К онструкция современных корпоративных сетей

Корпоративная сеть - это сеть, основным назначением которой является поддержание работы определенного предприятия, обладающего данной сетью. Пользователями корпоративной сети являются только работники предприятия.

Корпоративная сеть - коммуникационная система, принадлежащая и/или управляемая организацией в соответствии с правилами этой организации. Корпоративная сеть отличается от сети, скажем, интернет-провайдера тем, что правила разделения IP адресов, работы с интернет источниками и т. д. едины для всей корпоративной сети, в то время как провайдер контролирует только магистральный отделы сети, разрешая своим заказчикам самосильно руководить их отделами сети, которые могут являться как частью адресного пространства провайдера, так и быть спрятаны механизмом сетевой трансляции адресов за одним либо несколькими адресами провайдера.

Корпоративную сеть рассматривают как сложную систему, состоящую из нескольких взаимодействующих слоев. В основании пирамиды, представляющей корпоративную сеть, лежит слой компьютеров - центров хранения и обработки информации, и транспортная подсистема (рис. 1), обеспечивающая качественную передачу информационных пакетов между компьютерами.

Рис. 1. Ие рархия слоев корпоративной сети

Над транспортной системой работает слой сетевых операционных систем, он организует работу программ в компьютерах и предоставляет через транспортную систему ресурсы своего компьютера в всеобщее пользование.

Над операционной системой работают разные программы, но из-за главной роли систем управления базами данных, хранящих в определённом виде основную корпоративную информацию и проводящих над ней базовые операции поиска, данный класс системных приложений выделяют в обособленный слой корпоративной сети.

На следующем уровне работают системные сервисы, которые, пользуясь СУБД, как инструментом для поиска требуемой информации среди миллионов и миллиардов байт, хранимых на дисках, предоставляют пользователям эту информацию в доступной для принятия решения форме, а также исполняют некоторые всеобщие для предприятий всех типов процедуры обработки информации. К этим услугам относится служба WWW, система электронной почты, системы коллективной работы и многие другие.

Верхний уровень корпоративной сети представляют особые программные системы, которые реализуют задачи, специфические для данного предприятия либо предприятий данного типа. Примерами таких систем могут служить системы автоматизации банка, организации бухгалтерского учета, автоматизированного проектирования, управления технологическими процессами и т.п.

Финальная цель корпоративной сети воплощена в прикладных программах верхнего уровня, но для их удачной работы, безусловно, нужно, чтобы подсистемы других слоев точно исполняли свои функции.

2. О сновные характеристики корпоративных компьютерных сетей

К корпоративным компьютерным сетям (Intranet), как и к иным видам компьютерных сетей, предъявляется ряд требований. Основное требование - выполнение сетью ее главной функции: обеспечение пользователям потенциальной вероятности доступа к разделяемым источникам всех компьютеров, объединенных в сеть. Решению этой главной задачи подчинены остальные требования: по производительности, надёжности, отказоустойчивости, безопасности, управляемости, совместимости, расширяемости, масштабируемости, прозрачности и поддержке разных видов трафика.

2.1 Производительность сети

Производительность сети - одно из основных свойств корпоративных сетей. Обеспечивается возможностью распараллеливания работ между несколькими элементами сети. Производительность сети измеряется с помощью показателей 2-х типов - временных, оценивающих задержку, вносимую сетью при выполнении обмена данными, и показателей пропускной способности, отражающих количество информации, переданной сетью в единицу времени. Эти два типа показателей являются взаимно обратными, и, зная один из них, можно вычислить иной.

Для оценки производительности сети применяют ее основные характеристики:

· время реакции;

· пропускная способность;

· задержка передачи и вариация задержки передачи данных.

В качестве временной характеристики продуктивности сети применяется такой показатель как время реакции. Термин "время реакции" может применяться в очень широком смысле, следовательно, во всяком определенном случае нужно уточнить, что воспринимается под этим термином. В общем случае, время реакции определяется, как промежуток времени между возникновением запроса пользователя к какому-нибудь сетевому сервису и получением результата на данный запрос как показано на рис. 2.1.

Рис. 2.1 . Время реакции - промежуток между запросом и результатом

Очевидно, что смысл и значение этого показателя зависят от типа обслуживания, к которому обращается пользователь, от того, какой пользователь и к какому серверу обращается, а также от нынешнего состояния других элементов сети - загруженности секций, через которые проходит запрос, загруженности сервера и т.п.

Время реакции складывается из нескольких составляющих:

· время подготовки запросов на клиентском компьютере;

· время передачи запросов между заказчиком и сервером через сегменты сети и промежуточное коммуникационное оборудование;

· время обработки запросов на сервере;

· время передачи результатов от сервера заказчику;

· время обработки получаемых от сервера результатов на клиентском компьютере.

Ниже приведены несколько примеров определения показателя "время реакции", иллюстрируемых рис. 2.2.

Рис. 2.2 Показатели продуктивности сети

В первом примере под временем реакции понимается время, которое проходит с момента обращения пользователя к сервису FTP для передачи файла с сервера 1 на клиентский компьютер 1 до момента окончания этой передачи. Очевидно, что это время имеет несколько составляющих. Значительный вклад вносят такие составляющие времени реакции как: время обработки запросов на передачу файла на сервере, время обработки получаемых в пакетах IP частей файла на клиентском компьютере, время передачи пакетов между сервером и клиентским компьютером по протоколу Ethernet в пределах одного коаксиального сегмента.

Для более точной оценки производительности сети рационально вычленить из времени реакции составляющие, соответствующие этапам несетевой обработки данных - поиску требуемой информации на диске, записи ее на диск и т.п. Полученное в итоге таких сокращений время можно считать иным определением времени реакции сети на прикладном уровне.

Вариантами этого критерия могут служить времена реакции, измеренные при разных, но фиксированных состояниях сети:

1. Полностью ненагруженная сеть. Время реакции измеряется в условиях, когда к серверу 1 обращается только клиент 1, то есть на сегменте сети, объединяющем сервер 1 с клиентом 1, нет никакой иной активности - на нем присутствуют только кадры сессии FTP, производительность которой измеряется. В иных сегментах сети трафик может циркулировать, главное - чтобы его кадры не попадали в раздел, в котором проводятся измерения. Потому что ненагруженный раздел в реальной сети - явление экзотическое, то данный вариант показателя эффективности имеет ограниченную применимость - его отменные значения говорят только о том, что программное обеспечение и аппаратура данных 2-х узлов и сегмента владеют нужной эффективностью для работы в облегченных условиях.

2. Нагруженная сеть. Это наиболее увлекательный случай проверки эффективности обслуживания FTP для определенных сервера и клиента. Впрочем, при измерении критерия продуктивности в условиях, когда в сети работают и другие узлы и сервисы, появляются свои трудности - в сети может существовать слишком крупное число вариантов нагрузки, следственно при определении критериев такого сорта - проведение измерений при некоторых типовых условиях работы сети. Так как трафик в сети носит пульсирующий характер, и характеристики трафика значительно изменяются в зависимости от времени дня и дня недели, то определение типовой нагрузки - процедура трудная, требующая долгих измерений на сети. Если же сеть только разрабатывается, то вычисление типовой нагрузки усложняется.

Во втором примере критерием продуктивности сети является время задержки между передачей кадра Ethernet в сеть сетевым адаптером клиентского компьютера 1 и поступлением его на сетевой адаптер сервера 3. Данный критерий также относится к критериям типа "время реакции", но соответствует сервису нижнего - канального уровня. Потому что протокол Ethernet - протокол дейтаграммного типа, то есть без установления соединений, для которого определение "ответ" не определено, то под временем реакции в данном случае воспринимается время прохождения кадра от узла-источника до узла-получателя. Задержка передачи кадра включает в этом случае время распространения кадра по начальному сегменту, время передачи кадра коммутатором из раздела А в раздел В, время передачи кадра маршрутизатором из раздела В в раздел С и время передачи кадра из раздела С в раздел D повторителем. Критерии, относящиеся к нижнему уровню сети, отлично характеризуют качества транспортного обслуживания сети и являются более информативными для сетевых интеграторов, потому что не содержат избыточную для них информацию о работе протоколов верхних уровней.

При оценке продуктивности сети не по отношению к отдельным парам узлов, а к каждом узлу в совокупности применяются критерии 2-х типов: средне-взвешенные и пороговые.

Средно - взвешенный критерий представляет собой сумму времен реакции всех либо некоторых узлов при взаимодействии со всеми либо некоторыми серверами сети по определенному сервису, то есть сумму вида:

(?i?jTij)/(nxm) ,

где T ij - время реакции i - го клиента при обращении к j - му серверу, n - число клиентов, m - число серверов. Если усреднение производится и по сервисам, то в приведенном выражении добавится еще одно суммирование - по числу рассматриваемых сервисов. Оптимизация сети по данному критерию заключается в нахождении значений параметров, при которых критерий имеет минимальное значение либо, по крайней мере не превышает некоторое заданное число.

Пороговый критерий отражает наихудшее время реакции по каждому допустимому сочетанию клиентов, серверов и сервисов:

maxijkTijk ,

где i и j имеют тот же смысл, что и в первом случае, а k обозначает тип сервиса. Оптимизация также может выполняться с целью минимизации критерия, либо же с целью достижения им некоторой заданной величины, признаваемой разумной с практической точки зрения.

2.2 Пропускная способность

Пропускная способность - отражает объем данных, переданных сетью либо ее частью в единицу времени. Различают среднюю, мгновенную и максимальную пропускную способность.

Средняя пропускная способность вычисляется путем деления общего объема переданных данных на время их передачи, причем выбирается довольно долгий интервал времени - час, день либо неделя.

Мгновенная пропускная способность отличается от средней пропускной способности тем, что для усреднения выбирается очень маленький интервал времени - скажем, 10 мс либо 1 с.

Максимальная пропускная способность - это наибольшая мгновенная пропускная способность, зафиксированная в течение периода отслеживания.

Главная задача, для решения которой строится любая сеть - стремительная передача информации между компьютерами. Следовательно, критерии, связанные с пропускной способностью сети либо части сети, отлично отражают качество выполнения сетью ее главной функции.

Существует огромное число вариантов определения критериев этого вида, также, как и в случае критериев класса "время реакции". Эти варианты могут отличаться друг от друга: выбранной единицей измерения числа передаваемой информации, характером рассматриваемых данных - только пользовательские либо же пользовательские совместно со служебными, числом точек измерения передаваемого трафика, методом усреднения итогов на сеть в совокупности. Разберём разные методы построения критерия пропускной способности детально.

Критерии, отличающиеся единицей измерения передаваемой информации. В качестве единицы измерения передаваемой информации традиционно применяются пакеты (либо кадры, дальше эти термины будут применяться как синонимы) либо биты. Следовательно, пропускная способность измеряется в пакетах в секунду либо же в битах в секунду.

Так как вычислительные сети работают по тезису коммутации пакетов (либо кадров), то измерение числа переданной информации в пакетах имеет смысл, тем более что пропускная способность коммуникационного оборудования, работающего на канальному ровнее и выше, также чаще каждого измеряется в пакетах в секунду. Впрочем, из-за переменного размера пакета (это свойственно для всех протоколов за исключением АТМ, имеющего фиксированный размер пакета в 53 байта), измерение пропускной способности в пакетах в секунду связано с некоторой неопределенностью - пакеты какого протокола и какого размера имеются в виду? Чаще всего подразумевают пакеты протокола Ethernet, как самого распространенного, имеющие наименьший для протокола размер в 64 байта. Пакеты минимальной длины выбраны в качестве эталонных из-за того, что они создают для коммуникационного оборудования наиболее весомый режим работы - вычислительные операции, производимые с всяким пришедшим пакетом, в слабой степени зависят от его размера, следственно на единицу переносимой информации обработка пакета минимальной длины требует выполнения значительно много операций, чем для пакета максимальной длины.

Измерение пропускной способности в битах в секунду (для локальных сетей больше характерны скорости, измеряемые в миллионах бит в секунду - Мб/c) дает более точную оценку скорости передаваемой информации, чем при применении пакетов.

Критерии, отличающиеся учетом служебной информации. В любом протоколе имеется заголовок, переносящий служебную информацию, и поле данных, в котором переносится информация, считающаяся для данного протокола пользовательской. Скажем, в кадре протокола Ethernet малейшего размера 46 байт (из 64) представляют собой поле данных, а оставшиеся 18 являются служебной информацией. При измерении пропускной способности в пакетах в секунду отделить пользовательскую информацию от служебной немыслимо, а при побитовом измерении - возможно.

Если пропускная способность измеряется без деления информации на пользовательскую и служебную, то в этом случае невозможно ставить задачу выбора протокола либо стека протоколов для данной сети. Это объясняется тем, что даже если при замене одного протокола на иной мы получим высокую пропускную способность сети, то это не обозначает, что для финальных пользователей сеть будет работать быстрее - если доля служебной информации, доводящаяся на единицу пользовательских данных, у этих протоколов разная, то разрешается в качестве оптимального предпочесть более замедленный вариант сети.

Если же тип протокола не меняется при настройке сети, то можно применять и критерии, не выделяющие пользовательские данные из всеобщего потока.

При тестировании пропускной способности сети на прикладном уровне проще измерять как раз пропускную способность по пользовательским данным. Для этого довольно измерить время передачи файла определенного размера между сервером и клиентом и поделить размер файла на полученное время. Для измерения всеобщей пропускной способности нужны особые инструменты измерения - анализаторы протоколов либо SNMP либо RMON агенты, встроенные в операционные системы, сетевые адаптеры либо коммуникационное оборудование.

Критерии, отличающиеся числом и расположением точек измерения. Пропускную способность, возможно, измерять между всякими двумя узлами либо точками сети, скажем, между клиентским компьютером 1 и сервером 3 из примера, приведенного на рис. 2.2. При этом получаемые значения пропускной способности будут изменяться при одних и тех же условиях работы сети в зависимости от того, между какими двумя точками производятся измерения. Потому что в сети единовременно работает огромное число пользовательских компьютеров и серверов, то полные данные о пропускной способности сети дает комплект пропускных способностей, измеренных для разных сочетаний взаимодействующих компьютеров - так называемая матрица трафика узлов сети. Существуют особые средства измерения, которые фиксируют матрицу трафика для всего узла сети.

В связи с тем, что в сетях данные на пути до узла назначения традиционно проходят через несколько транзитных промежуточных этапов обработки, то в качестве критерия результативности может рассматриваться пропускная способность отдельного промежуточного элемента сети - отдельного канала, сегмента либо коммуникационного устройства.

Знание всей пропускной способности между двумя узлами не может дать полной информации о допустимых путях ее возрастания, потому что из всеобщей цифры невозможно осознать, какой из промежуточных этапов обработки пакетов в наибольшей степени тормозит работу сети. Следовательно, данные о пропускной способности отдельных элементов сети могут быть пригодны для принятия решения о методах ее оптимизации.

В рассматриваемом примере пакеты на пути от клиентского компьютера 1 до сервера 3 проходят через следующие промежуточные элементы сети:

Сегмент АR Коммутатор R сегмент ВR Маршрутизатор R сегмент СR Повторитель R сегмент D.

Всякий из этих элементов владеет определенной пропускной способностью, следовательно, общая пропускная способность сети между компьютером 1 и сервером 3 будет равна минимальной из пропускных способностей элементов маршрута, а задержка передачи одного пакета (один из вариантов определения времени реакции) будет равна сумме задержек, вносимых всяким элементом. Для возрастания пропускной способности составного пути нужно в первую очередь обратить внимание на самые медленные элементы - в данном случае таким элементом скорее будет маршрутизатор.

Необходимо определить всеобщую пропускную способность сети как среднее число информации, переданной между всеми узлами сети в единицу времени. Общая пропускная способность сети может измеряться как в пакетах в секунду, так и в битах в секунду. При делении сети на секции либо подсети общая пропускная способность сети равна сумме пропускных способностей подсетей плюс пропускная способность межсегментных либо межсетевых связей.

Задержка передачи определяется как задержка между моментом поступления пакета на вход какого-нибудь сетевого устройства либо части сети и моментом появления его на выходе этого устройства.

2.3 Надежность

Надёжность - это способность верно работать в течение продолжительного периода времени. Это качество имеет три составляющих: собственно безопасность, подготовленность и удобство сервиса.

Увеличение безопасности заключается в предотвращении неисправностей, отказов и сбоев за счет использования электронных схем и компонентов с высокой степенью интеграции, снижения уровня помех, облегченных режимов работы схем, обеспечения тепловых режимов их работы, а также за счет улучшения способов сборки аппаратуры. Надёжность измеряется интенсивностью отказов и средним временем наработки на отказ. Надёжность сетей как распределенных систем во многом определяется безопасностью кабельных систем и коммутационной аппаратуры - разъемов, кроссовых панелей, коммутационных шкафов и т.п., обеспечивающих собственно электрическую либо оптическую связность отдельных узлов между собой.

Повышение готовности полагает подавление в определенных пределах влияния отказов и сбоев на работу системы с поддержкой средств контроля и коррекции ошибок, а также средств механического восстановления циркуляции информации в сети после выявления неисправности. Увеличение готовности представляет собой борьбу за снижение времени простоя системы.

Критерием оценки готовности является показатель готовности, тот, что равен доле времени нахождения системы в работоспособном состоянии и может интерпретироваться как вероятность нахождения системы в работоспособном состоянии. Показатель готовности вычисляется как отношение среднего времени наработки на отказ к сумме этой же величины и среднего времени восстановления. Системы с высокой готовностью называют также отказоустойчивыми.

Основным методом увеличения готовности является избыточность, на основе которой реализуются разные варианты отказоустойчивых архитектур. Вычислительные сети включают огромное число элементов разных типов, и для обеспечения отказоустойчивости нужна избыточность по всему из ключевых элементов сети.

Если рассматривать сеть только как транспортную систему, то избыточность должна существовать для всех магистральных маршрутов сети, то есть маршрутов, являющихся общими для большого числа клиентов сети. Такими маршрутами традиционно являются маршруты к корпоративным серверам - серверам баз данных, Web-серверам, почтовым серверам и т.п. Следовательно, для организации отказоустойчивой работы все элементы сети, через которые проходят такие маршруты, обязаны быть зарезервированы: обязаны иметься резервные кабельные связи, которыми дозволено воспользоваться при отказе одного из основных кабелей, все коммуникационные устройства на магистральных путях обязаны либо сами быть реализованы по отказоустойчивой схеме с резервированием всех основных своих компонентов, либо для всего коммуникационного устройства должно иметься резервное схожее устройство.

Переход с основной связи на резервную либо с основного устройства на резервное может протекать как в механическом режиме, так и вручную, при участии администратора. Видимо, что механический переход повышает показатель готовности системы, потому что время простоя сети в этом случае будет значительно меньше, чем при вмешательстве человека. Для выполнения механических процедур реконфигурации нужно иметь в сети интеллектуальные коммуникационные устройства, а также централизованную систему управления, помогающую устройствам распознавать отказы в сети и адекватно на них реагировать.

Высокую степень готовности сети возможно обеспечить в том случае, когда процедуры тестирования работоспособности элементов сети и перехода на резервные элементы встроены в коммуникационные протоколы. Примером такого типа протоколов может служить протокол FDDI, в котором непрерывно тестируются физические связи между узлами и концентраторами сети, а в случае их отказа выполняется механическая реконфигурация связей за счет вторичного резервного кольца.

Существуют и особые протоколы, поддерживающие отказоустойчивость сети, скажем, протокол SpanningTree, исполняющий механический переход на резервные связи в сети, построенной на основе мостов и коммутаторов.

Существуют разные градации отказоустойчивых компьютерных систем, к которым относятся и вычислительные сети. Приведем несколько общепризнанных определений:

· высокая готовность (highavailability) - характеризует системы, исполненные по традиционной компьютерной спецтехнологии, использующие избыточные аппаратные и программные средства и допускающие время исправления в промежутке от 2 до 20 минут;

· устойчивость к отказам (faulttolerance) - характеристика таких систем, которые имеют в запасе избыточную аппаратуру для всех функциональных блоков, включая процессоры, источники питания, подсистемы ввода/вывода, подсистемы дисковой памяти, причем время восстановления при отказе не превышает одной секунды;

· непрерывная готовность (continuousavailability) - это качество систем, которые также обеспечивают время восстановления в пределах одной секунды, но в отличие от систем устойчивых к отказам, системы постоянной готовности устраняют не только простои, возникшие в итоге отказов, но и плановые простои, связанные с модернизацией либо обслуживанием системы. Все эти работы проводятся в режиме online. Дополнительным требованием к системам постоянной готовности является отсутствие деградации, то есть система должна поддерживать непрерывный уровень функциональных вероятностей и эффективности самостоятельно от происхождения отказов.

Основными для теории безопасности являются загвоздки надежностного анализа и синтеза. Первая состоит в вычислении количественных показателей безопасности присутствующей либо проектируемой системы с целью определения соответствия ее предъявляемым требованиям. Целью надежностного синтеза является обеспечение требуемого уровня безопасности системы.

Для оценки безопасности трудных систем используется дальнейший комплект характеристик:

· Готовность либо показатель готовности (availability) - обозначает долю времени, в течение которого система может быть использована. Подготовленность может быть усовершенствована путем вступления избыточности в конструкцию системы. Дабы сеть дозволено было отнести к высоконадежной, она должна как минимум владеть высокой готовностью, нужно обеспечить сохранность данных и охрану их от искажений, должна поддерживаться согласованность (непротиворечивость) данных (скажем, если для возрастания безопасности на нескольких файловых серверах хранится несколько копий данных, то надобно непрерывно обеспечивать их идентичность).

· Безопасность (security) - способность системы защитить данные от несанкционированного доступа.

· Отказоустойчивость (faulttolerance). В сетях под отказоустойчивостью воспринимается способность системы спрятать от пользователя отказ отдельных ее элементов. В отказоустойчивой системе отказ одного из ее элементов приводит к некоторому снижению качества ее работы (деградации), а не к полному останову. В совокупности система будет продолжать исполнять свои функции;

· Вероятность доставки пакета узлу назначения без искажений.

· Наряду с этой характеристикой могут применяться и другие показатели:

· вероятность потери пакета;

· вероятность искажения отдельного бита передаваемых данных;

· отношение утраченных пакетов к доставленным.

Основой безопасности всех корпоративных сетей, является безопасность сетей связи (СС), но обеспечение высокой безопасности не является самоцелью, а представляет собой средство достижения максимальной результативности сети уровень безопасности, при котором достигается максимум показателя результативности СС, является оптимальным для нее. Данный уровень определяется многими факторами, к числу которых относятся: предназначение СС, ее конструкция, размер убытков, вызванных потерей заявки на обслуживание, используемые алгоритмы управления, уровень безопасности элементов СС, их стоимость, данные эксплуатации и т.д. Наилучший уровень безопасности СС определяется на этапе системного проектирования системы высокого порядка, в которую СС входит в качестве подсистемы.

Обеспечение требуемого уровня безопасности на этапе управления присутствующей СС сначала решается с целью применения для этого внутренних источников сети, без вступления структурной избыточности, и сводится к образованию множества маршрутов для всей тяготеющей пары, обеспечивающего требуемый уровень безопасности.

Образование множества маршрутов осуществляется итеративно, причем на всяком шаге для сформированного к началу этого шага множества рассчитывается вероятность удачной реализации сеанса. Если эта вероятность не меньше нужной, процесс завершается.

Образование исходного множества маршрутов может осуществляться двумя методами:

- 1-й заключается в том, что пользователь включает в него маршруты, отобранные им на основании некоторого критерия, скажем, исходя из бывшего опыта их применения.

2-й метод используется, когда пользователь не имеет вероятности независимо сформировать это множество. В этом случае отбирается некоторое число (традиционно не больше десяти) верных маршрутов, из которых пользователь выбирает по своему усмотрению некоторое подмножество. Если показатель безопасности сформированной таким образом подсети поменьше требуемого, из оставшегося множества выбираются особенно верные маршруты (допустимо, один), оценивается обеспечиваемая при этом вероятность связности и т.д.

2.4 Управляемость сети

Управляемость сети - это вероятность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, исполнять обзор продуктивности и планировать развитие сети. То есть присутствие вероятностей для взаимодействия обслуживающего персонала с сетью с целью оценки работоспособности сети и ее элементов, настройки параметров и внесения изменений в процесс функционирования сети.

Отличная система управления следит за сетью и, найдя проблему, активизирует определенное действие, исправляет обстановку и уведомляет администратора о том, что случилось и какие шаги предприняты. Единовременно с этим система управления должна накапливать данные, на основании которых возможно планировать разработки сети.

Система управления должна быть самостоятельна от изготовителя и владеть комфортным интерфейсом, дозволяющим исполнять все действия с одной консоли.

Интернациональная организация по стандартизации (ISO) определила следующие пять категорий управления, которые должна включать система управления сетью:

· Управление конфигурацией. В границах этой категории производится установление и управление параметрами определяющими состояние сети;

· Обработка сбоев. Тут существует выявление, изоляция и исправление неполадок в сети;

· Управление учетом. Основные функции - запись и выдача информации об исправлении источников сети;

· Управление эффективностью. Тут производится обзор и управление скоростью, с которой сеть передает и обрабатывает данные;

· Управление охраной. Основные функции - контроль доступа к источникам сети и охрана циркулирующей в сети информации.

2.5 Совместимость либо интегрируемость

Совместимость либо интегрируемость обозначает, что сеть способна включать в себя самое многообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать разные операционные системы, поддерживающие различные стеки коммуникационных протоколов, и работать аппаратные средства и приложения от различных изготовителей.

Сеть, состоящая из разнотипных элементов, именуется неоднородной либо гетерогенной, а если гетерогенная сеть работает без задач, то она является интегрированной.

2.6 Расширяемость и масштабируемость

Расширяемость (extensibility) обозначает вероятность относительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, служб), наращивания длины элементов сети и замены присутствующей аппаратуры более сильной. При этом твердо значимо, что легкость растяжения системы изредка может обеспечиваться в некоторых крайне ограниченных пределах. Скажем, локальная сеть Ethernet, построенная на основе одного сегмента толстого коаксиального кабеля, владеет отличной расширяемостью, в том смысле, что разрешает легко подключать новые станции. Впрочем, такая сеть имеет лимитацию на число станций - их число не должно превышать 30-40. Правда сеть допускает физическое подключение к сегменту и большего числа станций (до 100), но при этом чаще всего сильно снижается эффективность сети. Присутствие такого ограничения и является знаком плохой масштабируемости системы при отличной расширяемости.

Масштабируемость (scalability) обозначает, что сеть может наращивать число узлов и протяженность связей в широких пределах, при этом эффективность сети не ухудшается. Для обеспечения масштабируемости сети доводится использовать дополнительное коммуникационное оборудование и особым образом структурировать сеть.

Скажем, отличной масштабируемостью владеет многосегментная сеть, построенная с применением коммутаторов и маршрутизаторов и имеющая иерархическую конструкцию связей. Такая сеть может включать несколько тысяч компьютеров и при этом обеспечивать всем пользователям сети необходимое качество обслуживания.

2.7 Прозрачность и помощь разных видов трафика

Прозрачность (transparency) -это качество сети скрывать от пользователя детали своего внутреннего устройства, упрощая тем самым его работу в сети.

Прозрачность сети достигается в том случае, когда сеть представляется пользователям не как множество отдельных компьютеров, связанных между собой трудной системой кабелей, а как цельная традиционная вычислительная машина с системой распределения времени.

Поддержка разных видов трафика - главная характеристика сети, определяющая ее вероятности. Существуют такие виды трафика, как:

· трафик компьютерных данных;

· трафик мультимедийных данных, представляющих в цифровой форме речь и видеоизображение.

Сети, в которых применяют два этих вида трафика, применяются для организации видео конференций, обучения и развлечения на основе видео фильмов и т.п. Такие сети являются значительно сложными по своему программному и аппаратному обеспечению и по организации функционирования по сопоставлению с сетями, где осуществляется передача и обработка только трафика компьютерных данных либо только мультимедийного трафика.

Трафик компьютерных данных характеризуется весьма неравномерной интенсивностью поступления сообщений в сеть при отсутствии жестких требований к синхронности доставки этих сообщений. Все алгоритмы компьютерной связи, соответствующие протоколы и коммуникационное оборудование были рассчитаны именно на такой "пульсирующий" характер трафика. Надобность передавать мультимедийный трафик требует внесения принципиальных изменений, как в протоколы, так и оборудование. Сегодня фактически все новые протоколы в той либо другой степени предоставляют поддержку мультимедийного трафика.

3. Организация корпоративных сетей

При разработке корпоративной сети необходимо предпринимать все меры для минимизации объемов передаваемых данных. В остальном же корпоративная сеть не должна вносить ограничений на то, какие именно приложения и каким образом обрабатывают переносимую по ней информацию.

Под приложениями воспринимаются как системное программное обеспечение - базы данных, почтовые системы, вычислительные источники, файловый сервис и другое - так и средства, с которыми работает финальный пользователь.

Основными задачами корпоративной сети оказываются взаимодействие системных приложений, расположенных в разных узлах, и доступ к ним удаленных пользователей.

Первая задача, которую необходимо решать при создании корпоративной сети - организация каналов связи. Если в пределах одного города позволено рассчитывать на аренду выделенных линий, в том числе высокоскоростных, то при переходе к географически удаленным узлам стоимость аренды каналов становится примитивно астрономической, а качество и безопасность их зачастую оказываются крайне невысокими. На рис. 3.1 в качестве примера показана корпоративная сеть, включающая себя локальные и региональные сети, сети всеобщего доступа и Internet.

Натуральным решением этой загвоздки является применение существующих глобальных сетей. В этом случае довольно обеспечить каналы от офисов до ближайших узлов сети. Задачу доставки информации между узлами глобальная сеть при этом возьмет на себя. Даже при создании маленькой сети в пределах одного города следует иметь в виду вероятность последующего растяжения и применять спецтехнологии, совместимые с существующими глобальными сетями. Зачастую первой, а то и исключительной такой сетью, мысль о которой приходит в голову, оказывается Internet.

Рис. 3.1. Объединение разных сетевых каналов коммуникации в корпоративную сеть.

На рис. 3.2. приведено несколько топологий локальных сетей.

Рис. 3.2. Методы объединения компьютеров в сеть.

У всякой, даже самой крошечной, сети должен быть менеджер (Supervisor). Это человек (либо группа лиц), которые настраивают ее и обеспечивают бесперебойную работу. В задачи менеджеров входит:

· распределение информации по рабочим группам и между определенными заказчиками;

· создание и поддержка всеобщего банка данных;

· защита сети от несанкционированного проникновения, а информации - от порчи и т.д.

Если коснуться технического аспекта построения локальной компьютерной сети, то дозволено выделить следующие ее элементы:

· Интерфейсная плата в компьютерах пользователей. Это устройство для присоединения компьютера к общему кабелю локальной сети.

· Прокладка кабеля. С поддержкой особых кабелей организовывается физическая связь между устройствами локальной сети.

· Протоколы локальной сети. Вообще, протоколы - это программы, которые обеспечивают транспортировку данных между устройствами, подключенными к сети. На рис. 3.3. схематично показан правило действия всякого протокола, локальной сети либо сети Internet:

Рис. 3.3. Правило передачи данных по сети.

Сетевая операционная система. Это программа, которая устанавливается на файл-сервере и служит для обеспечения интерфейса между пользователями и данными на сервере.

· Файл-сервер. Он служит для хранения и размещения программ и файлов данных, которые применяются для коллективного доступа пользователей.

· Сетевая печать. Она разрешает многим пользователям локальной сети коллективно применять одно либо несколько печатающих устройств.

· Защита локальной сети. Охрана сети представляет собой комплект способов, применяемых для охраны данных от повреждений со стороны несанкционированного доступа либо какой-нибудь случайности.

· Мосты, шлюзы и маршрутизаторы. Они дозволяют соединять сети между собой.

· Управление локальной сетью. Это все, что относится к перечисленным ранее задачам менеджера.

Стержневой функцией любой локальной сети является разделение информации между определенными работниками, так, дабы выполнялись два данные:

1. Любая информация должна быть защищена от несанкционированного ее применения. То есть любой сотрудник должен трудиться только с той информацией, на которую у него есть права, без разницы от того, на каком компьютере он вошел в сеть.

2. Работая в одной сети и применяя одни и те же технические средства передачи данных, клиенты сети обязаны не мешать друг другу. Существует такое представление, как загрузка сети. Сеть должна быть построена таким образом, дабы не давать сбоев и работать довольно быстро при любом числе заказчиков и обращений.

4. Этапы организации компьютерных сетей

Компьютерные сети лучше представлять в виде трехуровневой иерархической модели. Эта модель включает в себя следующие три уровня иерархии:

- уровень ядра;

- уровень разделения;

- уровень доступа.

Уровень ядра отвечает за высокоскоростную передачу сетевого трафика. Первичное призвание узлов сети является коммутация пакетов. В соответствии с указанными тезисами на устройствах уровня ядра запрещается вводить разные спецтехнологии, такие как, скажем, списки доступа либо маршрутизация по правилам, мешающие стремительной коммутации пакетов.

На уровне разделения происходит суммирование маршрутов и агрегация трафика. Под суммированием маршрутов воспринимается представление нескольких сетей в виде одной огромной сети с короткой маской. Такое суммирование дозволяет уменьшить таблицу маршрутизации в устройствах уровень ядра, а также изолировать метаморфозы, которые происходят внутри огромный сети.

Уровень доступа необходима для образования сетевого трафика и контроля за доступом к сети. Маршрутизаторы уровня доступа служат для подключения отдельных пользователей (серверы доступа) либо отдельных локальных сетей к всеобщей вычислительной сети.

При проектировании компьютерной сети нужно исполнить два требования: структурированность и избыточность.

Первое требование подразумевает, что сеть должна иметь определенную иерархическую конструкцию. В первую очередь, это относиться к схеме адресации, которая должна быть разработана таким образом, чтобы можно было проводить суммирование подсетей. Это дозволит уменьшить таблицу маршрутизации и утаить от маршрутизаторов высших уровней метаморфозы в топологии.

Под избыточностью воспринимается создание запасных маршрутов. Избыточность повышает безопасность сети. В тоже время, она создает трудность для адресации.

Описание разрабатываемой сети

Выбрана смешанная топология, включающая в себя топологии иерархическая звезда, кольцо, "каждый с каждым".

Уровень ядра - это три центральных офиса организации, расположенных в различных городах. Маршрутизаторы этих узлов - маршрутизаторы ядра (A, B, C) - объединены между собой посредством спецтехнологии глобальных сетей IP-VPN MPLS, образуя кольцевое ядро сети с избыточными путями. К каждому из маршрутизаторов ядра через коммутатор подключены группа серверов и маршрутизатор Х, образующие демилитаризованную зону, через которую осуществляется выход в Интернет. К маршрутизатору ядра B через коммутатор подключены корпоративные серверы. Функции уровня разделения будут исполнять энергичные устройства уровня ядра. К каждому маршрутизатору уровня ядра посредством маршрутизаторов кампусов и спецтехнологии глобальных сетей IP-VPN MPLS подключаются кампусные сети, которые составляют уровень доступа. Весь кампус состоит из трёх зданий, общее число рабочих мест в которых определяется согласно заданию.

Маршрутизатор уровня доступа, установленный во всех кампусах, подключается к локальной сети через коммутатор кампуса. К этому же коммутатору подключены сервера кампуса и коммутатор здания. К коммутаторам зданий подключаются коммутаторы рабочих групп. Топология проектируемой сети представлена на рис. 4.1.

Рис. 4.1. Топология проектируемой сети

Разработка схемы адресации

Адресная схема разрабатывается в соответствии с иерархическим тезисом проектирования компьютерных сетей.

Схема адресации должна разрешать агрегирование адресов. Это обозначает, что адреса сетей низших уровней обязаны входить в диапазон сети высшего уровня с большей маской. Помимо того, нужно предусмотреть вероятность растяжения адресного пространства на всех ярусах иерархии.

Сеть разбивается на три региона. В каждом регионе содержится не больше 50 кампусов. В каждом кампусе находится не больше 10 подразделений, на каждом из которых выдается подсеть. На нижнем уровне иерархии располагаются адреса хостов, во всём подразделении - не больше 200 хостов.

Для раздачи адресов внутри проектируемой корпоративной сети используем диапазон 10.0.0.0, владеющий наибольшей емкостью (24 бита адресного пространства).

Разделение бит в IP-адресе проектируемой корпоративной сети показано на рис. 4.2 и в таблице 4.1.

Рис. 4.2. Разделение бит в IP-адресе

Таблица 4.1. Разделение бит в IP-адресе

Диапазоны адресов регионов указаны в таблице 4.2, адресов кампусов для второго региона - в таблице 4.3 (для остальных регионов адреса строятся подобно), для адресов подразделений второго региона первого кампуса показаны в таблице 4.4. Примеры адресов хостов приведены в таблице 4.5. Остальные адреса вычисляются подобно.

Таблица 4.2. Диапазоны адресов регионов

Двоичный код

Диапазон адресов

10.32.0.1 - 10.63.255.254/12

10.64.0.1 - 10.95.255.254/12

10.96.0.1-10.127.255.254/12

10.128.0.1 - 10.143.255.254/12

Таблица 4.3. Диапазоны адресов кампусов для второго региона

Двоичный код

Диапазоны адресов

10.32.33.1 - 10.32.42.254

10.32.65.1 - 10.32.74.254

10.32.97.1-10.32.106.254

10.38.65.1-10.38.74.254

Таблица 4.4. Диапазоны адресов подразделений для второго региона первого кампуса

Подразделение

Двоичный код

Диапазон адресов

10.32.33.1 - 10.32.33.254

10.32.34.1 - 10.32.34.254

10.32.35.1-10.32.35.254

10.32.42.1-10.32.42.254

Таблица 4.5. Примеры адресов хостов

Таблица 4.6. Адреса служебных сетей

Выбор активного оборудования

Активное оборудование выбирается в соответствии с требованиями проектируемой сети, с учётом типа оборудования (коммутатор либо маршрутизатор), его характеристиками - числом и типом интерфейсов, поддерживаемыми протоколами, пропускной способности. Нужно предпочесть:

- маршрутизаторы ядра сети;

- маршрутизаторы кампусов;

- маршрутизаторы доступа в Интернет;

- коммутаторы кампуса;

- коммутаторы зданий;

- коммутаторы рабочих подразделений.

Выбор коммутаторов

Коммутаторы рабочих групп служат для непосредственного подключения компьютеров к сети. От коммутаторов этой группы не требуется высокой скорости коммутации, поддержки маршрутизации либо других дополнительных функций.

Коммутаторы уровня предприятия служат для объединения в одну сеть коммутаторов для рабочих групп. От того что через эти коммутаторы проходит трафик от многих пользователей, то они обязаны иметь высокую скорость коммутации. Эти коммутаторы также исполняют функции маршрутизации трафика между виртуальными подсетями.

Выбор маршрутизаторов

Маршрутизаторы ядра предназначены для быстрой маршрутизации всех потоков данных, приходящих с нижних ярусов иерархии сети. Это модульные маршрутизаторы с высокоскоростными интерфейсными модулями.

Маршрутизаторы доступа в Интернет для подключения маленьких локальных сетей к общей. Это небольшие модульные маршрутизаторы, с интерфейсами для подключения, как к локальной, так и общей сети. Помимо маршрутизации пакетов такие устройства исполняют добавочные функции, такие как, скажем, фильтрация трафика, организация VPN и т.д.

5. Роль Internet в корпоративных сетях

Если заглянуть вовнутрь Internet, мы увидим, что информация проходит через большое количество, безусловно, самостоятельных и по большей части некоммерческих узлов, связанных через самые разнородные каналы и сети передачи данных. Безумный рост служб, предоставляемых в Internet, приводит к перегрузке узлов и каналов связи, что круто снижает скорость и безопасность передачи информации. При этом подрядчики служб Internet не несут никакой ответственности за функционирование сети в совокупности, а каналы связи прогрессируют весьма неравномерно и в основном там, где государство считает надобным вкладывать в это средства. Помимо того, Internet привязывает пользователей к одному протоколу - IP (InternetProtocol). Это отменно, когда мы пользуемся стандартными приложениями, работающими с этим протоколом. Применение же с Internet других систем оказывается делом непростым и дорогим.

...

Подобные документы

    Виртуализированная архитектура сети 5G. Требования к пятому поколению сетей. Пропускная способность сети, количество одновременного подключения устройств. Потенциальные технологии в стандарте 5G. Будущее медицины с развитием 5G. 5G в эволюции автомобилей.

    реферат , добавлен 21.12.2016

    Признаки корпоративности продукта. Особенности и специфика корпоративных сетей. Слой компьютеров (центры хранения и обработки информации) и транспортная подсистема для передачи информационных пакетов между компьютерами в основе корпоративной сети.

    контрольная работа , добавлен 14.02.2011

    Классификация компьютерных сетей. Назначение компьютерной сети. Основные виды вычислительных сетей. Локальная и глобальная вычислительные сети. Способы построения сетей. Одноранговые сети. Проводные и беспроводные каналы. Протоколы передачи данных.

    курсовая работа , добавлен 18.10.2008

    Сущность и классификация компьютерных сетей по различным признакам. Топология сети - схема соединения компьютеров в локальные сети. Региональные и корпоративные компьютерные сети. Сети Интернет, понятие WWW и унифицированный указатель ресурса URL.

    презентация , добавлен 26.10.2011

    Основные сведения о корпоративных сетях. Организация VPN. Внедрение технологий VPN в корпоративную сеть и их сравнительная оценка. Создание комплекса мониторинга корпоративной сети. Слежение за состоянием серверов и сетевого оборудования. Учет трафика.

    дипломная работа , добавлен 26.06.2013

    Понятие и основные характеристики локальной вычислительной сети. Описание типологии "Шина", "Кольцо", "Звезда". Изучение этапов проектирования сети. Анализ трафика, создание виртуальных локальных компьютерных сетей. Оценка общих экономических затрат.

    дипломная работа , добавлен 01.07.2015

    Применение сетевых технологий в управленческой деятельности. Понятие компьютерной сети. Концепция открытых информационных систем. Преимущества объединения компьютерных сетей. Локальные вычислительные сети. Глобальные сети. Международная сеть INTERNET.

    курсовая работа , добавлен 16.04.2012

    Принципы организации локальных сетей и их аппаратные средства. Основные протоколы обмена в компьютерных сетях и их технологии. Сетевые операционные системы. Планирование информационной безопасности, структура и экономический расчет локальной сети.

    дипломная работа , добавлен 07.01.2010

    Архитектура и топологии IP-сетей, принципы и этапы их построения. Основное оборудование корпоративных IP сетей магистрального и локального уровней. Маршрутизация и масштабируемость в объединенных сетях. Анализ моделей проектирования кампусных сетей.

    дипломная работа , добавлен 10.03.2013

    Internet. Протоколы сети Internet. Принцип работы Internet. Прикладные программы. Возможности в Internet? Правовые нормы. Политика и Internet. Этические нормы и частная коммерческая Internet. Соображения безопасности. Объем сети Internet.

Создание локальной сети — это наилучший способ организации единой информационной среды предприятия. Благодаря ей пользователи получат доступ к общим ресурсам, смогут совместно использовать принтеры и прочее сетевое оборудование. Правильно настроив сеть, администратор может обеспечить должный уровень секретности и предотвратить утечку данных, составляющих коммерческую тайну.

Четыре этапа организации

Весь этот процесс можно разделить на следующие этапы:

  • Разработка сети. На этом этапе специалисты обследуют территорию предприятия, выслушивают пожелания заказчика по функционалу, составляют план, ТЗ и готовят оборудование, необходимое для ее установки.
  • Монтаж. На этом этапе прокладываются кабели, производится монтаж оборудования и настройка необходимого программного обеспечения.
  • Тестирование. Специалисты проверяют работу, соответствие установленной сети общепринятым стандартам качества.
  • Обслуживание. Этот этап включает модернизацию и при необходимости устранение неполадок.

Созданная сеть предприятия должна удовлетворять таким основным требованиям:

  • Быть легко управляемой.
  • Быть защищенной от хакерских атак. Защита корпоративной сети предполагает установку специального программного обеспечения — файрволла.
  • Быть адаптированной к основным типам сетевых устройств и кабелей. Благодаря этому сеть в любой момент можно модернизировать, изменить.

Топология

Организация корпоративной сети предполагает выбор одной из архитектур ее построения:

  • звезда;
  • шина;
  • кольцо.

Первая схема подключения компьютеров в локальной сети наиболее распространена. Каждая вершина «звезды» — это отдельный компьютер сети. ПК соединяются с концентратором кабелем. Как правило, это витая пара с разъемом RJ-45. Преимущество такого способа подключения — независимость в работе отдельных ПК. Когда один из компьютеров теряет связь с сетью, другие продолжают нормально работать. Недостаток схемы состоит в том, что, если из строя выйдет концентратор, ни один из компьютеров не сможет подключиться к интернету. Для построения локальной сети «звездой» необходимо использовать кабеля большей протяженности, чем в случае кольца или шины.

В случае шинной топологии все компьютеры подключаются к одному главному кабелю — магистрали. Данные при этом получает только адресат с определенным IP-адресом. При нарушении соединения на каждом отдельном компьютере неминуемо «ляжет» и вся сеть.

В случае «кольца» сигнал передается «по кругу» от одного компьютера ко второму, к третьему и т. д. Каждый ПК в этом случае — это повторитель и усилитель сигнала. Недостаток кольца такой же, что и шины: если один компьютер теряет связь с интернетом, то же самое происходит и на всех остальных машинах.

Необходимое оборудование

Для построения локальной сети необходимо активное и пассивное сетевое оборудование. Активное оборудование не только передает, но и преобразовывает сигнал. Это такое оснащение, как сетевые карты компьютеров и ноутбуков, принт-серверы, маршрутизаторы. Пассивное оборудование только передает данные на физическом уровне.

Для организации локальной сети используется витая пара или оптоволоконный кабель. Витая пара — это попарно перевитые медные изолированные проводники. Бывает кабель на 8 проводников (4 пары) или 4 проводника (2 пары).

Для подключения компьютера он должен иметь сетевую карту. Если внутренняя карта не работает, допустимо использовать адаптер USB.

Также необходим концентратор — устройство, которое анализирует входящий трафик и распределяет его по подключенным ПК. Если каждый из компьютеров имеет модуль Wi-Fi, вместо концентратора лучше использовать роутер. В роутере есть один WAN-порт и несколько LAN. К порту WAN подключается кабель интернет-оператора, а к портам LAN — кабели, идущие к потребителям сигнала: компьютерам, телевизорам и т. д.

Будет нужно и дополнительное оборудование — повторители сигнала и принт-сервер. Повторитель — это устройство, которое необходимо для увеличения расстояния сетевого соединения. Благодаря им можно соединить кабелем несколько располагающихся рядом зданий. Принт-сервер — это сетевое устройство для подключения принтера. Принтер при этом не подключается напрямую к компьютеру, таким образом, печатающее устройство доступно в любой момент времени.

Как обеспечить безопасность корпоративной сети

Для защиты корпоративной сети необходимо специальное программное обеспечение — интернет-шлюз . Это целый программный комплекс, включающий в себя VPN, антивирус, брэндмауэр, шейпер трафика, почтовый сервер и многое другое. Именно таким шлюзом и является наш софт — ИКС.

Сетевые компьютерные технологии бурно развиваются. Если раньше основной заботой сетевого администратора была локальная вычислительная сеть предприятия или организации, то теперь эта сеть все чаще становится территориально распределенной. Пользователи должны иметь возможность получать доступ к ресурсам сети предприятия практически из любого места. При этом они хотят не только просматривать и отправлять электронную почту, но и иметь возможность обращаться к файлам, базам данных и другим ресурсам сети предприятия. В рамках организации часто создаются удаленно расположенные отделения со своими локальными сетями, которые необходимо соединить с сетью основного подразделения с помощью надежной, защищенной и прозрачной для пользователей связи. Такие сети называются корпоративными. Учитывая сегодняшние реалии, пользователям корпоративной сети предприятия также необходимо предоставить возможность доступа к ресурсам глобальной мировой сети Internet, обезопасив при этом внутреннюю сеть от несанкционированного доступа извне.

Таким образом, корпоративная сеть - это аппаратно-программная система, обеспечивающая надежную передачу информации между различными приложениями, используемыми в организации. Часто узлы корпоративной сети оказываются расположенными в различных городах. Принципы, по которым строится подобная сеть, достаточно сильно отличаются от тех, которые используются при создании локальной сети, даже охватывающей несколько зданий. Основное отличие состоит в том, что территориально распределенные сети используют достаточно медленные (на сегодня это чаще десятки и сотни килобит в секунду, иногда 2 Мбит/с и выше) арендованные линии связи. Если при создании локальной сети основные затраты приходятся на закупку оборудования и прокладку кабеля, то в территориально распределенных сетях наиболее существенным элементом стоимости оказывается арендная плата за использование каналов, которая быстро растет с увеличением качества и скорости передачи данных. В остальном же корпоративная сеть не должна накладывать ограничений на то, какие именно приложения и каким образом обрабатывают переносимую по ней информацию. Основная проблема, которую приходится решать при создании корпоративной сети, - организация каналов связи. Если в пределах одного города можно рассчитывать на аренду выделенных линий, в том числе высокоскоростных, то при переходе к географически удаленным узлам стоимость аренды каналов становится очень большой, а качество и надежность их часто оказываются весьма невысокими. Естественным решением этой проблемы является использование уже существующих глобальных сетей. В этом случае достаточно обеспечить каналы от офисов до ближайших узлов сети. Задачу доставки информации между узлами глобальная сеть при этом возьмет на себя.

Идеальным вариантом для корпоративной сети было бы создание каналов связи только на тех участках, где это необходимо, и передача по ним любых сетевых протоколов, которые требуются работающим приложениям. На первый взгляд это возврат к арендованным линиям связи. Однако существуют технологии построения сетей передачи данных, позволяющие организовать внутри них каналы, возникающие только в нужное время и в нужном месте. Такие каналы называются виртуальными. Систему, объединяющую удаленные ресурсы с помощью виртуальных каналов, естественно назвать виртуальной сетью. На сегодня существуют две основные технологии виртуальных сетей - сети с коммутацией каналов и сети с коммутацией пакетов. К первым относится обычная телефонная сеть, ISDN и ряд других более экзотических технологий. Сети с коммутацией пакетов представлены технологиями X.25, Frame Relay и в последнее время ATM. Остальные типы виртуальных (в различных сочетаниях) сетей широко используются при построении корпоративных информационных систем. Сети с коммутацией каналов обеспечивают абоненту несколько каналов связи с фиксированной пропускной способностью на каждое подключение. Обычная телефонная сеть дает один канал связи между абонентами. При необходимости увеличить количество одновременно доступных ресурсов приходится устанавливать дополнительные телефонные номера. Даже если забыть о низком качестве связи, видно, что ограничение количества каналов и длительное время установления соединения не позволяют использовать телефонную связь в качестве основы корпоративной сети. Для подключения же отдельных удаленных пользователей это достаточно удобный и часто единственно доступный метод.

Альтернативой сетям с коммутацией каналов являются сети с коммутацией пакетов. При использовании пакетной коммутации один канал связи используется в режиме разделения времени многими пользователями - примерно так же, как и в Internet. Однако в отличие от сетей типа Internet, где каждый пакет маршрутизируется отдельно, сети пакетной коммутации перед передачей информации требуют установления соединения между конечными ресурсами. После установления соединения сеть «запоминает» маршрут (виртуальный канал), по которому должна передаваться информация между абонентами, и помнит его, пока не получит сигнала о разрыве связи. Для приложений, работающих в сети пакетной коммутации, виртуальные каналы выглядят как обычные линии связи - с той только разницей, что их пропускная способность и вносимые задержки меняются в зависимости от загруженности сети. Рассмотрим основные технологии, которые используются для построения корпоративных сетей.

ISDN

Широко распространенным примером виртуальной сети с коммутацией каналов является ISDN (цифровая сеть с интеграцией услуг). ISDN обеспечивает цифровые каналы (64 Кбит/с), по которым могут передаваться как голос, так и данные. Базовое подключение ISDN (Basic Rate Interface) включает два таких канала и дополнительный канал управления со скоростью 16 Кбит/с (такая комбинация обозначается как 2B+D ). Возможно использование большего числа каналов - до тридцати (Primary Rate Interface, 30B+D ). Это существенно увеличивает полосу пропускания, но приводит к соответствующему удорожанию аппаратуры и каналов связи. Кроме того, пропорционально увеличиваются затраты на аренду и использование сети. В целом ограничения количества одновременно доступных ресурсов, налагаемые ISDN, приводят к тому, что этот тип связи оказывается удобным использовать в основном как альтернативу телефонным сетям. В системах с небольшим количеством узлов ISDN может использоваться также и как основной протокол сети. Следует только иметь в виду, что доступ к ISDN в нашей стране пока, скорее, исключение, чем правило.

X.25

Классической технологией коммутации пакетов является протокол X.25 . Сегодня практически не существует сетей X.25, использующих скорости выше 128 Кбит/с, что достаточно медленно. Но протокол X.25 включает мощные средства коррекции ошибок, обеспечивая надежную доставку информации даже на плохих линиях и широко используется там, где нет качественных каналов связи. (В нашей стране их нет почти повсеместно.) Естественно, за надежность приходится платить - в данном случае быстродействием оборудования сети и сравнительно большими, но предсказуемыми задержками распространения информации. В то же время X.25 - универсальный протокол, позволяющий передавать практически любые типы данных. «Естественной» для сетей X.25 является работа приложений, использующих стек протоколов OSI . К ним относятся системы, использующие стандарты X.400 (электронная почта) и FTAM (обмен файлами), а также некоторые другие. Доступны средства, позволяющие реализовать на базе протоколов OSI взаимодействие Unix-систем. Другая стандартная возможность сетей X.25 - связь через обычные асинхронные COM-порты. Образно говоря, сеть X.25 «удлиняет» кабель, подключенный к последовательному порту, донося его разъем до удаленных ресурсов. Таким образом, практически любое приложение, допускающее обращение к нему через COM-порт, может быть легко интегрировано в сеть X.25. В качестве примеров таких приложений следует упомянуть не только терминальный доступ к удаленным хост-компьютерам, например Unix-машинам, но и взаимодействие Unix-компьютеров друг с другом (cu, uucp), системы на базе Lotus Notes, электронную почту cc:Mail и MS Mail и т.п. Для объединения LAN в узлах, имеющих подключение к сети X.25, существуют методы инкапсуляции пакетов информации из локальной сети в пакеты X.25. Часть служебной информации при этом не передается, поскольку она может быть однозначно восстановлена на стороне получателя. Стандартным механизмом инкапсуляции считается описанный в документе RFC 1356. Он позволяет передавать различные протоколы локальных сетей (IP, IPX и т.д.) одновременно через одно виртуальное соединение. Этот механизм (или более старая его реализация RFC 877, допускающая только передачу IP) реализован практически во всех современных маршрутизаторах. Существуют также методы передачи по X.25 и других коммуникационных протоколов, в частности SNA , используемого в сетях мэйнфреймов IBM, а также ряда частных протоколов различных производителей. Таким образом, сети X.25 предлагают универсальный транспортный механизм для передачи информации между практически любыми приложениями. При этом разные типы трафика передаются по одному каналу связи, ничего «не зная» друг о друге. При объединении локальных сетей через X.25 можно изолировать друг от друга отдельные фрагменты корпоративной сети, даже если они используют одни и те же линии связи.

Сегодня в мире насчитываются десятки глобальных сетей X.25 общего пользования, их узлы имеются практически во всех крупных деловых, промышленных и административных центрах. В России услуги X.25 предлагают «Спринт Сеть», Infotel, «Роспак», «Роснет», Sovam Teleport и ряд других поставщиков. Кроме объединения удаленных узлов в сетях X.25 всегда предусмотрены средства доступа для конечных пользователей. Для того чтобы подключиться к любому ресурсу сети X.25, пользователю достаточно иметь компьютер с асинхронным последовательным портом и модем. При этом проблем с авторизацией доступа в географически удаленных узлах не возникает; если ваш ресурс подключен к сети X.25, вы можете получить доступ к нему как с узлов вашего поставщика, так и через узлы других сетей - то есть практически из любой точки мира. Недостатком технологии X.25 является наличие ряда принципиальных ограничений скорости. Первое из них связано именно с развитыми возможностями коррекции и восстановления. Эти средства вызывают задержки передачи информации и требуют от аппаратуры X.25 большой вычислительной мощности и производительности, в результате чего она просто «не успевает» за быстрыми линиями связи. Хотя существует оборудование, имеющее высокоскоростные порты, реально обеспечиваемая им скорость не превышает 250-300 Кбит/с на порт. В то же время для современных скоростных линий связи средства коррекции X.25 оказываются избыточными и при их использовании мощности оборудования часто работают вхолостую. Вторая особенность, заставляющая рассматривать сети X.25 как медленные, состоит в особенностях инкапсуляции протоколов локальных сетей (в первую очередь IP и IPX). При прочих равных условиях связь локальных сетей по X.25 оказывается в зависимости от параметров сети на 15-40% медленнее, чем при использовании HDLC по выделенной линии.

Все-таки на линиях связи невысокого качества сети X.25 вполне эффективны и дают значительный выигрыш в цене и возможностях по сравнению с выделенными линиями.

Frame Relay

Технология Frame Relay появилась как средство, позволяющее реализовать преимущества пакетной коммутации на скоростных линиях связи. Основное отличие сетей Frame Relay от X.25 состоит в том, что в них исключена коррекция ошибок между узлами сети. Задачи восстановления потока информации возлагаются на оконечное оборудование и программное обеспечение пользователей. Естественно, это требует использования достаточно качественных каналов связи. Считается, что для успешной работы с Frame Relay вероятность ошибки в канале должна быть не выше 10-6-10-7. Качество, обеспечиваемое обычными аналоговыми линиями, обычно на один-три порядка ниже. Вторым отличием сетей Frame Relay является то, что в настоящее время практически во всех них реализован только механизм постоянных виртуальных соединений (PVC ). Это означает, что, подключаясь к порту Frame Relay, вы должны заранее определить, к каким именно удаленным ресурсам будете иметь доступ. Принцип пакетной коммутации - множество независимых виртуальных соединений в одном канале связи - здесь остается, однако вы не можете выбрать адрес любого абонента сети. Все доступные вам ресурсы определяются при настройке порта. Таким образом, на базе технологии Frame Relay удобно строить замкнутые виртуальные сети, используемые для передачи других протоколов, средствами которых осуществляется маршрутизация. «Замкнутость» виртуальной сети означает, что она полностью недоступна для других пользователей, работающих в той же сети Frame Relay. Например, в США сети Frame Relay широко применяются в качестве опорных для работы Internet. Однако ваша частная сеть может использовать виртуальные каналы Frame Relay в тех же линиях, что и трафик Inernet, - и быть абсолютно от него изолированной. Как и сети X.25, Frame Relay предоставляет универсальную среду передачи практически для любых приложений. Основной областью применения Frame Relay сегодня является объединение удаленных LAN. При этом коррекция ошибок и восстановление информации производятся на уровне транспортных протоколов LAN - TCP, SPX и т.п. Потери на инкапсуляцию трафика LAN во Frame Relay не превышают двух-трех процентов. Отсутствие коррекции ошибок и сложных механизмов коммутации пакетов, характерных для X.25, позволяет передавать информацию по Frame Relay с минимальными задержками. Дополнительно возможно включение механизма приоритезации, позволяющего пользователю иметь гарантированную минимальную скорость передачи информации для виртуального канала. Такая возможность позволяет использовать Frame Relay для передачи критичной к задержкам информации, например голоса и видео в реальном времени. Эта сравнительно новая возможность приобретает все большую популярность и часто является основным аргументом в пользу выбора Frame Relay как основы корпоративной сети. Следует помнить, что сегодня услуги сетей Frame Relay доступны в нашей стране не более чем в полутора десятках городов, в то время как X.25 - примерно в двухстах. Есть все основания полагать, что по мере развития каналов связи технология Frame Relay будет становиться все более распространенной - прежде всего там, где сейчас существуют сети X.25. К сожалению, не существует единого стандарта, описывающего взаимодействие различных сетей Frame Relay, поэтому пользователи оказываются привязаны к одному поставщику услуг. При необходимости расширить географию возможно подключение в одной точке к сетям разных поставщиков - с соответствующим увеличением расходов. Существуют также частные сети Frame Relay, работающие в пределах одного города или использующие междугородние (как правило, спутниковые) выделенные каналы. Построение частных сетей на базе Frame Relay позволяет сократить количество арендуемых линий и интегрировать передачу голоса и данных.

Ethernet/Fast Ethernet

Ethernet - наиболее популярная топология локальных сетей. В ее основе лежит стандарт IEEE 802.3. За годы своего существования Ethernet претерпел значительную эволюцию, и теперь эта технология обеспечивает поддержку новых сред передачи данных и обладает рядом таких характеристик, которые не были предусмотрены в исходном стандарте. Имеющаяся полоса пропускания может либо разделяться между несколькими пользователями с помощью концентраторов, либо полностью предоставляться индивидуальным ПК с помощью коммутаторов. Не так давно сформировалась отчетливо выраженная тенденция к предоставлению пользователям настольных станций полнодуплексных каналов связи на 10 Мбит/с. Такая тенденция смогла укорениться благодаря появлению недорогих коммутаторов Ethernet, позволивших без больших затрат создавать высокопроизводительные многофункциональные сети.

Технология Fast Ethernet была разработана с целью предоставить более широкую полосу пропускания устройствам, которые в этом нуждались, - в первую очередь серверам и коммутаторам для настольных станций. В основе Fast Ethernet лежит стандарт Ethernet; это означает, что для внедрения этой скоростной технологии не требуется перестройки существующей инфраструктуры, замены системы управления и переподготовки сотрудников отдела информационных технологий. Сейчас это одна из самых популярных высокоскоростных технологий - она недорога, стабильна и полностью совместима с существующими сетями Ethernet. В сетях Fast Ethernet можно использовать оптоволоконные (100Base-FX) или медные (100Base-TX) кабели. Поддерживается полнодуплексная связь.

Все администраторы информационных систем сталкиваются с проблемой предоставления каналов Fast Ethernet для подключения наиболее мощных настольных станций и серверов без нарушения работы тех пользователей, которым хватает Ethernet 10Base-T. Именно для этого нужна технология автоматического распознавания скорости работы сети Ethernet/Fast Ethernet. В соответствии с этой технологией одно и то же устройство поддерживает и 10Base-T, и 100Base-TX. Один и тот же коммутатор обеспечит поддержку Ethernet и Fast Ethernet, предоставляя настольным станциям более широкую полосу пропускания, объединяя концентраторы на 10 и 100 Мбит/с и не внося никаких изменений в условия работы тех пользователей, которые полностью удовлетворены каналами 10 Мбит/с. Кроме того при работе с коммутатором, автоматически распознающим скорость передачи данных, нет необходимости конфигурировать каждый из портов отдельно. Это - один из наиболее эффективных способов избирательного наращивания полосы пропускания в местах возникновения перегрузок с полным сохранением возможностей дальнейшего расширения полосы пропускания в будущем.

Gigabit Ethernet

В технологии Gigabit Ethernet полностью сохраняется традиционная простота и управляемость Ethernet и Fast Ethernet, поэтому ее легко интегрировать в существующие локальные сети. Использование этой технологии позволяет на порядок увеличить полосу пропускания магистральной сети по сравнению с Fast Ethernet. Дополнительная полоса пропускания позволяет справиться с проблемами, связанными с незапланированным изменением структуры сети и добавлением к ней новых устройств, и избавляет от необходимости постоянно корректировать работу сети. Технология Gigabit Ethernet прекрасно подходит для магистральных участков сети и каналов связи с сервером, поскольку она дает широкую полосу пропускания без больших затрат, не требует отказа от традиционного формата кадров Ethernet и поддерживается существующими системами управления сетью.

Появление стандарта 802.3ab, позволяющего в качестве среды Gigabit Ethernet использовать медный кабель (правда на расстояния не более 100 метров), является еще одним важным аргументом в пользу данной технологии. Нельзя не отметить и работу IEEE над новым стандартом на 10 Гбит/с.

ATM

ATM - популярная технология для магистралей локальных вычислительных сетей. Ее использование сулит значительные выгоды большим организациям, поскольку обеспечивает тесную интеграцию между локальными и территориально распределенными сетями и характеризуется высоким уровнем отказоустойчивости и резервирования. Для передачи данных по сети используются каналы связи OC-3 (155 Мбит/с) и OC-12 (622 Мбит/с). Если просто сравнивать цифры, то эти значения меньше, чем для Gigabit Ethernet, однако в ATM используются альтернативные методы выделения полосы пропускания; задав тот или иной уровень качества услуг (Quality of Service, QoS), можно гарантировать предоставление полосы пропускания, необходимой для работы приложения. Средства управления трафиком, предоставляемые технологией АТМ, позволяют добиться полной определенности в работе приложений и обеспечении услуг в сложных сетях. Технология АТМ обладает важными преимуществами перед существующими методами передачи данных в локальных и глобальных сетях, которые должны обусловить ее широкое распространение во всем мире. Одно из важнейших достоинств АТМ - обеспечение высокой скорости передачи информации (широкой полосы пропускания). АТМ устраняет различия между локальными и глобальными сетями, превращая их в единую интегрированную сеть. Сочетая в себе масштабируемость и эффективность аппаратной передачи информации, присущие телефонным сетям, метод АТМ обеспечивает более дешевое наращивание мощности сети. Это техническое решение, способное удовлетворить грядущие потребности, поэтому многие пользователи часто выбирают АТМ больше ради ее будущей, нежели сегодняшней значимости. Стандарты АТМ унифицируют процедуры доступа, коммутации и передачи информации различного типа (данных, речи, видеоизображений и т.д.) в одной сети связи с возможностью работы в реальном масштабе времени. В отличие от ранних технологий локальных и глобальных сетей ячейки АТМ могут передаваться по широкому спектру носителей - от медного провода и волоконно-оптического кабеля до спутниковых линий связи, при любых скоростях передачи, достигающих сегодняшнего предела 622 Мбит/с. Технология АТМ обеспечивает возможность одновременного обслуживания потребителей, предъявляющих различные требования к пропускной способности телекоммуникационной системы. Технология АТМ уже в течение нескольких лет постепенно прокладывает путь в инфраструктуры корпораций. Пользователи строят сеть АТМ поэтапно, эксплуатируя ее параллельно с уже существующими у них системами. Конечно, в первую очередь технология АТМ окажет влияние на глобальные сети, в меньшей степени - на магистральные линии связи, соединяющие несколько локальных вычислительных сетей. Недавний опрос, проведенный компанией Sege Research, в котором приняли участие 175 пользователей, касался вопроса о том, какие технологии они намерены использовать в своих сетях в 1999 году. АТМ обогнал по популярности Ethernet. Более 40% пользователей хотели бы установить Ethernet на 100 Мбит/с, а около 45% планируют использовать АТМ на 155 Мбит/с. Совершенно неожиданно оказалось, что 28% опрошенных намерены использовать АТМ на 622 Мбит/с. Несколько слов о взаимоотношениях АТМ и Gigabit Ethernet. У каждой из этих технологий своя, достаточно четко определенная ниша. Для АТМ - это опорные сети группы зданий, объединенных в корпоративную сеть, и магистрали глобальных сетей. Для Gigabit Ethernet - это магистрали локальных сетей и линии связи с высокопроизводительными серверами. Успешно решаются проблемы обмена трафиком между Gigabit Ethernet и ATM и проблемы прозрачной маршрутизации. Компания Cisco Systems недавно разработала специальный АТМ-модуль для маршрутизирующего коммутатора Catalyst 8500. Этот модуль позволяет проводить маршрутизацию между портами АТМ и Ethernet.

Построение корпоративной сети

При построении территориально распределенной корпоративной сети могут использоваться все описанные выше технологии. На уровне локальных сетей альтернативы технологиям Ethernet, включая Fast Ethernet и Gigabit Ethernet, не существует; в качестве физической среды передачи предпочтительнее витая пара категории 5. Для подключения удаленных пользователей самым простым и доступным вариантом является использование телефонной связи. Там, где это возможно, могут использоваться сети ISDN. Для объединения узлов сети в большинстве случаев используются глобальные сети передачи данных. Даже там, где возможна прокладка выделенных линий, использование технологий пакетной коммутации позволяет уменьшить количество необходимых каналов связи и, что немаловажно, обеспечить совместимость системы с существующим оборудованием глобальных сетей. Подключение корпоративной сети к Internet оправданно, если вам нужен доступ к соответствующим услугам. Использовать Internet как среду передачи данных имеет смысл только тогда, когда другие способы недоступны и финансовые соображения перевешивают требования надежности и безопасности. Если вы будете использовать Internet только в качестве источника информации, лучше пользоваться технологией «соединение по запросу», то есть таким способом подключения, когда соединение с узлом Internet устанавливается только по вашей инициативе и на нужное время. Это резко снижает риск несанкционированного проникновения в вашу сеть извне. Простейший способ обеспечить такое подключение - использовать дозвон до узла Internet по телефонной линии или, если возможно, через ISDN. Другой более надежный способ обеспечить соединение по запросу - использовать выделенную линию и протокол Frame Relay. В этом случае маршрутизатор с вашей стороны должен быть настроен так, чтобы разрывать виртуальное соединение при отсутствии данных в течение определенного времени и вновь устанавливать его тогда, когда требуется доступ к данным. Широко распространенные способы подключения с использованием PPP или HDLC такой возможности не дают. Если же вы хотите предоставлять свою информацию в Internet (например, установить WWW- или FTP-сервер), соединение по запросу оказывается неприменимым. В этом случае следует не только использовать ограничение доступа с помощью Firewall, но и максимально изолировать сервер Internet от остальных ресурсов. Хорошим решением является использование единственной точки подключения к Internet для всей территориально распределенной сети, узлы которой связаны друг с другом с помощью виртуальных каналов X.25 или Frame Relay. В этом случае доступ из Internet возможен к единственному узлу, пользователи же в остальных узлах могут попасть в Internet с помощью соединения по запросу. Для передачи данных внутри корпоративной сети также стоит использовать виртуальные каналы сетей пакетной коммутации. Основные достоинства такого подхода - универсальность, гибкость, безопасность. В качестве виртуальной сети при построении корпоративной информационной системы может использоваться как X.25, так и Frame Relay или АТМ. Выбор между ними определяется качеством каналов связи, доступностью услуг в точках подключения и не в последнюю очередь - финансовыми соображениями. Сегодня затраты при использовании Frame Relay для междугородной связи оказываются в несколько раз выше, чем для сетей X.25. В то же время более высокая скорость передачи информации и возможность одновременно передавать данные и голос могут оказаться решающими аргументами в пользу Frame Relay. На тех участках корпоративной сети, где доступны арендованные линии, более предпочтительной является технология Frame Relay. Кроме того, по этой же сети возможна телефонная связь между узлами. Для Frame Relay лучше использовать цифровые каналы связи, однако даже на физических линиях или каналах тональной частоты можно создать вполне эффективную сеть, установив соответствующее канальное оборудование. Там, где необходимо организовать широкополосную связь, например при передаче видеоинформации, целесообразно применение АТМ. Для подключения удаленных пользователей к корпоративной сети могут использоваться узлы доступа сетей X.25, а также собственные коммуникационные узлы. В последнем случае требуется выделение нужного количества телефонных номеров (или каналов ISDN), что может оказаться слишком дорого.

При подготовке этой статьи использованы материалы сайтов www.3com.ru и www.race.ru

КомпьютерПресс 10"1999



Понравилась статья? Поделиться с друзьями: