Особенности растровой графики. Электронный учебник по курсу "повышение квалификации руководящих работников, специалистов и преподавателей вуза в области икт" Основные понятия растровой графики кратко

Компьютерная графика незаметно, но прочно вошла в нашу обыденную жизнь. Она уже давно перестала быть уделом избранных. Каждый раз, перенося фотографии с цифрового фотоаппарата в компьютер или просто нажимая на кнопку «сохранить», чтобы добавить в коллекцию понравившуюся картинку, вы работаете с компьютерной графикой.

Стоит ли тратить время на теорию?

Знание основ того, каким образом функционирует метод работы с изображениями, сослужит вам хорошую службу. Расширения после названия файла перестанут быть для вас некой волшебной абракадаброй, а начнут исправно поставлять важную информацию. Вы сможете сознательно решить, какие изображения лучше сжать, чтобы не засорять место на жестком диске, и грамотно выберете, каким именно способом это можно сделать.

Редактирование собственных фотографий также перейдет из состояния «метода научного тыка» на совершенно новый уровень. А у некоторых невинная забава с изображениями на экране постепенно переходила и в достаточно прибыльную работу.

Разница между растровой и векторной графикой

На данный момент в компьютерной среде в основном используется векторная и растровая графика. Они кардинально отличаются друг от друга способом кодирования информации.

Ни для кого не секрет, что все данные в компьютере записаны с помощью двоичного кода. Таким образом, любая информация, будь то текст, картинка или звук, определенным образом шифруется. Для того чтобы сохранить векторное изображение, оно разбивается на элементарные геометрические фигуры, которые, в свою очередь, описываются простейшими математическими формулами. Таким образом, к примеру, буква «и» для графического редактора будет описана двумя параллельными отрезками заданной длины, которые соединены линией под углом 45 градусов.

Растровое же изображение разбивается по другому принципу. Компьютер дробит картинку на множество точек, которые называют пикселями, и запоминает цвет и расположение каждого пикселя.

Преимущества и недостатки

Если вы работаете с векторным рисунком, то теоретически можете его увеличивать до бесконечности. Причем на качестве изображения это ни в коей мере не отразится. Так как параметры заданы в виде геометрических формул, компьютер просто перерабатывает их и заполняет все пустоты нужными цветами. В результате вы имеете четкое изображение.

Недостатки растровой графики кроются именно в том, что при сжатии (которое в подавляющем большинстве случаев имеет место при сохранении файла) может существенно пострадать качество. Появляется так называемая зернистость. Однако именно растровая графика используется в сложных изображениях. В векторных рисунках можно создать только очень простые картинки. Поэтому сейчас мы сосредоточимся на том, где применяется растровая графика.

Области применения

Растровые изображения идеально передают содержание отсканированных объектов. С их помощью можно работать с полутонами и плавным переходом цвета. Фотографии, снятые цифровым фотоаппаратом, также используют исключительно растровые изображения. Также этот формат служит незаменимым инструментом в области веб-дизайна.

Форматы растровой графики

Вспомним, что информация об изображении в нашем случае кодируется с помощью точек. Единицей измерения в этой кодировке служит пиксел. Это - наименьшая точка, которую невозможно поделить ни в отношении размера, ни в отношении цвета.

Количество этих точек на заданную единицу площади называется разрешением. На изображении с большим разрешением (большим количеством отдельных точек) мы увидим четкий рисунок и плавные переходы цвета. Однако в случае, когда разрешение небольшое, качество картинки может сильно страдать (ведь компьютер просто выводит на экран имеющееся в его памяти количество точек и растягивает их до запрашиваемого размера).

Можно условно сравнить с языком. Для того чтобы передать одну и ту же информацию на разных языках, потребуется разное количество букв, звуков и слов. Также в большинстве случаев будет различаться и грамматическая конструкция. А «переводчиками» с этих «языков» в наших компьютерах служат специализированные программы, которые либо «читают» его, либо конвертируют в нужный формат.

Основным отличием между форматами остается способ сохранения информации. Рассмотрим наиболее распространенные.

BMP

Это один из первопроходцев. Когда он разрабатывался, растровая графика находилась, можно сказать, у самых истоков своего существования. Создатели особо не заморачивались и запрограммировали BMP на последовательное запоминание каждого пиксела. Фактически, это просто копирование, но с некоторой потерей цвета, так как в распоряжении формата BMP всего 256 цветов.

TIFF

Достаточно громоздкий в масштабах цифровых хранилищ, однако просто незаменимый при выводе информации на печать. В отличие от BMP он поддерживает возможность информации. Причем для этого можно использовать не один, а несколько разных алгоритмов. Однако если вы не работаете в отрасли полиграфической печати или хотя бы какого-то издательства, серьезная мощность этого формата вам особо не понадобится.

GIF

Это уже более приближенный к реальному использованию (для неспециалистов) формат. Особенно знаменит он возможностью использования анимационной последовательности. Компьютерная графика, выполненная в этом формате, позволяет также создавать полупрозрачные изображения. Однако плавные переходы цветов вам передать не удастся. Чаще всего применение растровой графики в формате GIF можно увидеть в веб-дизайне. Оно совместимо со всеми платформами и к тому же достаточно компактно сжимает информацию, что является немаловажным фактором в скорости открытия интернет-страниц.

JPEG

Наиболее популярный формат. И это вполне заслуженно. Любые графические редакторы растровой графики без сомнения поддерживают этот формат. Он был разработан с конкретной целью - избавиться от ограничений, налагаемых сжатием GIF-файлов. в этом формате достигает коэффициента в 100 единиц. Это большой показатель. Однако у такого сжатия все-таки есть свои недостатки - происходит некоторая потеря данных, и не исключено, что сохраненное изображение станет несколько размытым. Так как этот формат попросту откидывает информацию, которую считает незначительной, всегда существует риск искажения некоторых деталей.

JPEG 2000

Улучшенный вариант ранней версии. Информация об изображении сжимается еще более компактно, а потерь в качестве стало значительно меньше. Чаще всего этот формат используется для хранения фотографий на жестком диске компьютера и на просторах интернета. Однако следует помнить, что если вы будете неоднократно сохранять одно и то же изображение в форматах JPEG или JPEG 2000, оно каждый раз будет терять частички информации, и в конечном итоге вы получите значительно искаженную, по сравнению с оригиналом, картинку.

PNG

Значительно улучшенный по качеству собрат формата GIF. Сохранив буквально все преимущества своего предшественника, он лишен его недостатков. Используется как для так и в дизайне веб-страниц. Кроме того, PNG, в отличие от GIF, официально находится в свободном доступе.

PSD

Растровая графика в формате PSD обрабатывается исключительно в программе Adobe Photoshop. Это внутренний пакет этой программы. Он поддерживает работу со слоями редактируемого изображения.

CDR

Это также внутренний пакет для программы растровой графики Как правило, эта программа используется графическими дизайнерами для создания изображений с нуля. Но бесспорно поддерживается и функция редактирования.

Редакторы растровой графики

А теперь немного о программах, которые работают с редактированием изображений.

Наиболее популярной среди пользователей на данный момент является программа Adobe Photoshop, в простонародье именуемая просто "Фотошопом". Эта разработка, по сути, монополизировала работу с растровыми изображениями в среде специалистов по дизайну. Однако программа эта платная и стоит она не так мало. Поэтому начали появляться разработки других компаний. Некоторые из них уже получили достаточно широкое применение.

Что до самого "Фотошопа", то это никак не отразилось на его популярности. программы достаточно простой, а в разнообразных видеокурсах и самоучителях недостатка не наблюдается.

В "Фотошопе" вы можете не только сделать коллаж из фотографий или добавить на изображение встроенные эффекты. Простейшие функции этой программы можно освоить очень быстро, и это откроет дверь для безудержного полета фантазии. Вы сможете исправлять недостатки внешности, корректировать цветовую гамму, изменять фон и еще много-много всего.

Графический редактор GIMP

Что до бесплатных программ, то тут можно смело рекомендовать GIMP. Этот графический редактор может легко потеснить раскрученный "Фотошоп". Он превосходно справляется со всеми задачами, необходимыми для редактирования растровых изображений, и имеет некоторые начальные функции для работы с векторной графикой.

Программа GIMP позволяет делать фотографии более насыщенными и живыми, она легко убирает лишние элементы с изображения и может использоваться для подготовки профессиональных дизайнерских проектов. Компьютерная графика, создаваемая с помощью этой программы, выглядит естественной и органично вписывается в общую картину.

Графический редактор Corel DRAW

Было бы неправильно обойти стороной продукцию компании Corel. В Corel DRAW вы сможете с легкостью работать как с растровыми, так и с векторными изображениями. Возможности этого инструмента столь многочисленны, что изучение программы Corel DRAW входит в обязательный курс подготовки графических дизайнеров в колледжах.

Эта программа также платная, и арсенал ее продукции пополняется с завидной регулярностью. Но, несмотря на широчайшие возможности, которые этот графический редактор предоставляет пользователю, его интуитивно понятный интерфейс превращает рабочий процесс в удовольствие.

Бесплатные графические редакторы

И еще буквально пару слов об альтернативных программах для редактирования изображений. В большинстве случаев они прекрасно справляются с запросами среднестатистического пользователя, а места и ресурсов на вашем компьютере забирают в разы меньше. Да и работать с ними по большому счету легче, так как вы не будете перегружены необходимостью выбора среди всевозможных функций, предназначение которых остается до конца не ясным.

Если вы любите необычные и по большей мере шуточные фотографии, попробуйте воспользоваться программой Funny Photo Maker. Там вы найдете множество оригинальных рамок и забавных визуальных эффектов.

Для более серьезных работ подойдет Picasa. Этот редактор заточен под использование в компьютерных сетях. Его новые возможности позволят вам еще проще оформлять свои страницы в социальных сетях. А встроенные эффекты для редактирования не разочаруют даже искушенного специалиста.

Еще одна интересная программа - это Paint.NET. Она очень похожа по своим функциям и возможностям на Adobe Photoshop. А используемые в Paint.NET инструменты могут составить серьезную конкуренцию упомянутому коммерческому аналогу.

Растровая графика

Минимальной единицей растровой графики является пиксел (точка). Растровые изображения напоминают лист клетчатой бумаги, на котором любая клетка закрашена каким-либо цветом, образуя в совокупности рисунок (bitmap). Основными характеристиками растровой графики являются глубина цвета и разрешение .

Глубина цвета.

Глубина цвета - это количество бит, отведенных на кодирование цвета.

В зависимости от того, сколько бит отведено для цвета каждого пиксела, возможно кодирование различного числа цветов. Таким образом, глубина цвета позволяет определить, какое максимальное количество цветов может быть реализовано в изображении. Например, если глубина цвета составляет 24 бита, то изображение может содержать до 16,8 млн. различных цветов и оттенков (т.е. 2 24 ≈ 16,8 млн.). Очевидно, что чем больше цветов используется для электронного представления изображения, тем точнее информация о цвете каждой его точки (т.е. его цветопередача).

Разрешение.

Разрешение - это количество точек на единицу длины, плотность расположения которых и определяет качество изображения (отображение цветов и деталей изображения). Чаще всего в качестве единицы длины используется дюйм, но иногда могут использоваться и миллиметры. Разрешение изображения измеряется в dpi (количество точек на дюйм).

Чем больше разрешение изображения, тем качественнее оно будет, но тем больше будет и размер файла, что необходимо учитывать при создании и редактировании изображений. Если изображение предназначено для отображения на экране монитора, то разрешение может быть меньше, чем если это изображение предназначено для печати (для вывода изображения на экран обычно достаточно разрешения 72 dpi или 96 dpi, для вывода его на печать от 150 dpi до 300 dpi, а в случае типографской печати оно может быть гораздо больше ).

+ Достоинства растровой графики:

  • отображение большого количествва цветов
  • отображение градиентов и переходов цветов
  • отображение большого количества мелких деталей

- Недостатки растровой графики:

  • при уменьшении изображения качество ухудшается, т.к. теряются мелкие детали
  • при увеличении изображения качество ухудшается, т.к. увеличивается размер точки (эффект пикселизации)
  • чем больше разрешение и глубина цвета, тем больше размер файла

Графические редакторы растровой графики

Растровые графические редакторы предназначены как для обработки готовых изображений (фотографии, отсканированные изображения), так и для создания изображений. Примерами таких редакторов являются Adobe PhotoShop , Corel PhotoPaint , Ulead PhotoImpact GIMP

Введение

Представление данных на мониторе компьютера в графическом виде впервые было реализовано в середине 50-х годов для больших ЭВМ, применявшихся в научных и военных исследованиях. С тех пор графический способ отображения данных стал неотъемлемой принадлежностью подавляющего числа компьютерных систем, в особенности персональных. Графический интерфейс пользователя сегодня является стандартом “де-факто” для программного обеспечения разных классов, начиная с операционных систем.

Существует специальная область информатики, изучающая методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов, – компьютерная графика. Она охватывает все виды и формы представления изображений, доступных для восприятия человеком либо на экране монитора, либо в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Без компьютерной графики невозможно представить себе не только компьютерный, но и обычный, вполне материальный мир. Визуализация данных находит применение в самых разных сферах человеческой деятельности. Для примера назовем медицину (компьютерная томография), научные исследования (визуализация строения вещества, векторных полей и других данных), моделирование тканей и одежды, опытно-конструкторские разработки.

В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую, векторную и фрактальную.

Рисунок 1 Рисунок 2 Рисунок 3

Отдельным предметом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.

Особенности цветового охвата характеризуют такие понятия, как черно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная графика, научная графика, Web-графика, компьютерная полиграфия и прочие.

На стыке компьютерных, телевизионных и кинотехнологий зародилась и стремительно развивается сравнительно новая область компьютерной графики и анимации.

Заметное место в компьютерной графике отведено развлечениям. Появилось даже такое понятие, как механизм графического представления данных (Graphics Engine). Рынок игровых программ имеет оборот в десятки миллиардов долларов и часто инициализирует очередной этап совершенствования графики и анимации.

Хотя компьютерная графика служит всего лишь инструментом, ее структура и методы основаны на передовых достижениях фундаментальных и прикладных наук: математики, физики, химии, биологии, статистики, программирования и множества других. Это замечание справедливо как для программных, так и для аппаратных средств создания и обработки изображений на компьютере. Поэтому компьютерная графика является одной из наиболее бурно развивающихся отраслей информатики и во многих случаях выступает “локомотивом”, тянущим за собой всю компьютерную индустрию.

1.Компьютерная графика

Компьютерная графика – это наука, предметом изучения которой является создание, хранение и обработка моделей и их изображений с помощью ЭВМ, т.е. это раздел информатики, который занимается проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере.

Под компьютерной графикой обычно понимают автоматизацию процессов подготовки, преобразования, хранения и воспроизведения графической информации с помощью компьютера. Под графической информацией понимаются модели объектов и их изображения.

Компьютерная графика - это область информатики, занимающаяся проблемами получения различных изображений (рисунков,чертежей, мультипликации) накомпьютере.Работа с компьютерной графикой - одно из самых популярных направлений использования персонального компьютера, причем занимаются этой работой не только профессиональные художники и дизайнеры. На любом предприятии время от времени возникает необходимость в подаче рекламных объявлений в газеты и журналы, в выпуске рекламной листовки или буклета. Иногда предприятия заказывают такую работу специальным дизайнерским бюро или рекламным агенствам, но часто обходятся собственными силами и доступными программными средствами.
Без компьютерной графики не обходится ни одна современная программа. Работа над графикой занимает до 90% рабочего времени программистких коллективов, выпускающих программы массового применения.
Основные трудозатраты в работе редакций и издательств тоже составляют художественные и оформительские работы с графическими прораммами.
Необходимость широкого использования графических программных средств стала особенно ощутимой в связи с развитием Интернета и, в первую очередь, благодаря службе World Wide Web, связавшей в единую "паутину" миллионы "домашних страниц". У страницы, оформленной без компьютерной графики мало шансов привлечь к себе массовое внимание.

Область применения компьютерной графики не ограничивается одними художественными эффектами. Во всех отраслях науки, техники, медицины, в коммерческой и управленческой деятельности используются построенные с помощью компьютера схемы, графики, диаграммы, предназначенные для наглядного отображения разнообразной информации. Конструкторы, разрабатывая новые модели автомобилей и самолетов, используют трехмерные графические объекты, чтобы представить окончательный вид изделия. Архитекторы создают на экране монитора объемное изображение здания, и это позволяет им увидеть, как оно впишется в ландшафт.

2.Виды компьютерной графики

Существует три вида компьютерной графики:

    Растровая графика

    Векторная графика

    Фрактальная графика

Растровое изображение , цифровое изображение - это файл данных или структура, представляющая прямоугольную сетку пикселей или точек цветов на компьютерном мониторе, бумаге и других отображающих устройствах и материалах. То есть, растровая графика - это формат изображения, который содержит информацию о расположении, количестве и цвете пикселей.

Главным достоинством растровой графики является создание (воспроизведение) практически любого рисунка, вне зависимости от сложности, в отличие, например, от векторной, где невозможно точно передать эффект перехода от одного цвета к другому (в теории, конечно, возможно, но файл размером 1 МБ в формате BMP будет иметь размер 200 МБ в векторном формате).

Векторная графика (другое название - геометрическое моделирование ) - это использование геометрических примитивов, таких как точки, линии, сплайны и многоугольники, для представления изображений в компьютерной графике. Термин используется в противоположность к растровой графике, которая представляет изображения как матрицу пикселей (точек).

Изначально человеческий глаз воспринимает изображение подобно растровому образу. Картинка проецируется на сетчатку, состоящую из отдельных, реагирующих на свет клеток. Далее система глаз-мозг распознаёт в изображении отдельные объекты, геометрические фигуры, которые уже легче обрабатывать и запоминать.

Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям. Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

3.Графические системы . С истемы растровой и векторной графики .

Растровая графика

Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать:

    разрешение оригинала;

    разрешение экранного изображения;

    разрешение печатного изображения.

Разрешение оригинала. Разрешение оригинала измеряется в точках на дюйм (dots per inch dpi ) и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требование к качеству, тем выше должно быть разрешение оригинала.

Разрешение экранного изображения. Для экранных копий изображения элементарную точку растра принято называть пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений),разрешение оригинала и масштаб отображения.

Мониторы для обработки изображений с диагональю 20–21 дюйм (профессионального класса),как правило, обеспечивают стандартные экранные разрешения 640х480, 800х600, 1024х768,1280х1024,1600х1200,1600х1280,1920х1200, 1920х1600 точек.

Расстояние между соседними точками люминофора у качественного монитора составляет 0,22–0,25 мм.

Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150–200 dpi, для вывода на фотоэкспонирующем устройстве 200–300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования.

Разрешение печатного изображения и понятие линиатуры. Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм (lines per inch – Ipi) и называется линиатурой.

Размер точки растра рассчитывается для каждого элемента и зависит от интенсивности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра. То есть, если в ячейку попал абсолютно черный цвет, размер точки растра совпадет с размером элемента растра. В этом случае говорят о 100% заполняемости. Для абсолютно белого цвета значение заполняемости составит 0%. На практике заполняемость элемента на отпечатке обычно составляет от 3 до 98%. При этом все точки растра имеют одинаковую оптическую плотность, в идеале приближающуюся к абсолютно черному цвету. Иллюзия более темного тона создается за счет увеличения размеров точек и, как следствие, сокращения пробельного поля между ними при одинаковом расстоянии между центрами элементов растра. Такой метод называют растрированием с амплитудной модуляцией (AM).

Интенсивность тона (так называемую светлоту) принято подразделять на 256 уровней. Большее число градаций не воспринимается зрением человека и является избыточным. Меньшее число ухудшает восприятие изображения (минимально допустимым для качественной полутоновой иллюстрации принято значение 150 уровней). Нетрудно подсчитать, что для воспроизведения 256 уровней тона достаточно иметь размер ячейки растра 256 = 16 х 16 точек.

При выводе копии изображения на принтере или полиграфическом оборудовании линиатуру растра выбирают, исходя из компромисса между требуемым качеством, возможностями аппаратуры и параметрами печатных материалов. Для лазерных принтеров рекомендуемая линиатура составляет 65-100 Ipi, для газетного производства – 65-85 lpi, для книжно-журнального – 85-133 lpi, для художественных и рекламных работ – 133-300 lpi.

При печати изображений с наложением растров друг на друга, например многоцветных, каждый последующий растр поворачивается на определенный угол. Традиционными для цветной печати считаются углы поворота: 105 градусов для голубой печатной формы, 75 градусов для пурпурной, 90 градусов для желтой и 45 градусов для черной. При этом ячейка растра становится косоугольной, и для воспроизведения 256 градаций тона с линиатурой 150 lpi уже недостаточно разрешения 16х150=2400 dpi. Поэтому для фотоэкспонирующих устройств профессионального класса принято минимальное стандартное разрешение 2540 dpi, обеспечивающее качественное растрирование при разных углах поворота растра. Таким образом, коэффициент, учитывающий поправку на угол поворота растра, для цветных изображений составляет 1,06.

Динамический диапазон. Качество воспроизведения тоновых изображений принято оценивать динамическим диапазоном (D). Это оптическая плотность, численно равная десятичному логарифму величины, обратной коэффициенту пропускания (для оригиналов, рассматриваемых “на просвет”, например слайдов) или коэффициенту отражения (для прочих оригиналов, например полиграфических отпечатков).

Для оптических сред, пропускающих свет, динамический диапазон лежит в пределах от 0 до 4. Для поверхностей, отражающих свет, значение динамического диапазона составляет от 0 до 2. Чем выше динамический диапазон, тем большее число полутонов присутствует в изображении и тем лучше качество его восприятия.

Связь между параметрами изображения и размером файла. Средствами растровой графики принято иллюстрировать работы, требующие высокой точности в передаче цветов и полутонов. Однако размеры файлов растровых иллюстраций стремительно растут с увеличением разрешения. Фотоснимок, предназначенный для домашнего промотра (стандартный размер 10х15 см, оцифрованный с разрешением 200-300 dpi, цветовое разрешение 24 бита), занимает в формате TIFF с включенным режимом сжатия около 4 Мбайт. Оцифрованный с высоким разрешением слайд занимает 45-50 Мбайт. Цветоделенное цветное изображение формата А4 занимает 120-150 Мбайт.

Масштабирование растровых изображений. Одним из недостатков растровой графики является так называемая пикселизация изображений при их увеличении (если не приняты специальные меры). Раз в оригинале присутствует определенное количество точек, то при большем масштабе увеличивается и их размер, становятся заметны элементы растра, что искажает саму иллюстрацию (рис.4). Для противодействия пикселизации принято заранее оцифровывать оригинал с разрешением, достаточным для качественной визуализации при масштабировании. Другой прием состоит в применении стохастического растра, позволяющего уменьшить эффект пикселизации в определенных пределах. Наконец, при масштабировании используют метод интерполяции, когда увеличение размера иллюстрации происходит не за счет масштабирования точек, а путем добавления необходимого числа промежуточных точек.

Понятие

72. Раз­решение: 800*600, 1024*768. 1280*1024. 4. Векторная и растровая графика : суть, отличия, области применения. Принципы... , где и как хранится/отображается рисунок. 6. Понятие графического примитива. Наиболее распространенные графические...

Изображения в растровой графике представлены в виде массива цифр. Основным элементом изображения является точка. При экранном изображении эта точка называется пикселем (от английского выражения picture element – pixel). В цифровом изображении каждая точка растра (пиксель) представлена единственным параметром - цветом. Именно это имеется в виду, когда рассматривается понятие "значение пикселя".

Необходимо различать технический и математический растр. Технический растр – целочисленная решетка на плоскости. Например, так реализуется изображение на экране телевизора, монитора. Для представления геометрического изображения используется множество элементов растра на целочисленной плоскости. В дальнейшем будем использовать только этот параметр, и именно его будем называть растром (растровой картой – bitmap). При ближайшем рассмотрении изображение напоминает мозаичное панно - можно разглядеть маленькие точки люми­нофора - пиксели, из которых состоит экранное изображение. Рас­сматривая любую иллюстрацию в книгах и журналах, также можно заметить, что изображение построено из точек. Однако точки растра достаточно малы для того, чтобы глаз человека воспринимал совокуп­ность разноцветных точек как единую картину, а не каждую из них в отдельности.

Для растровой графики ключевое значение имеет понятие разрешения. Разрешение – количество точек, приходящихся на единицу длины. Различают:

- разрешение оригинала;

- разрешение монитора;

- разрешение печатного изображения .

Как рисование, так и черчение имеют свои преимущества и недостатки.

Преимущест­во программ рисования (растровая графика) состоит в совершенно естественном способе создания изображе­ний. Если взять для примера программу Photoshop, то, при всей ее сложности, основные изобрази­тельные инструменты, заложенные в основу этой программы, не сложнее обычного ка­рандаша. Пользователь попеременно рисует и вытирает нарисованное, пока не добьется желаемого, как делал еще в начальной школе. Растровые изображения обеспечивают максимальную реали­стичность , поскольку в цифровую форму переводится каждый мельчайший фрагмент оригинала.

При всей простоте основных инструментов Photoshop пользователь может к тому же настраивать их "под себя". А это равносильно наличию бесконечного разнообразия мел­ков, цветных карандашей, пульверизаторов, акварельных и масляных красок и многого другого. Причем, рисунок можно в любой момент стереть, подкорректировать и т.д.

Еще одним достоинством представляется простота и, как следствие, техническая реализуемость автоматизации ввода (оцифровки) изобразительной информации. Эта простота базируется на принудительной дискретизации на элементы и оцифровка их в соответствии с какими-либо заранее заданными таблицами квантования. Существует развитая система внешних устройств для ввода фотографий, слайдов, рисунков, акварелей и прочих изобразительных оригиналов, к ним относятся сканеры, видеокамеры, цифровые фотокамеры. Эти внешние устройства непрерывно совершенствуются, предоставляя возможность все более адекватного преобразования изображений на материальных носителях (бумаге, пленке и т. д.) в цифровую форму.


Растровая графика обладает программной независимостью . Это достоинство в определенной степени также является следствием простого принципа, лежащего в основе пиксельной графики. Характер информации (совокупность чисел, организованных в двухмерную матрицу), который требуется для хранения пиксельного изображения, позволяет создавать стандартные форматы. Эти форматы "понимают" практически все программы, работающие с изображениями: редакторы пиксельной и векторной графики, программы верстки, браузеры и даже операционные системы.

Недостаток программ рисования - в ограниченном разрешении .Поскольку битовый рисунок состоит из фиксированного числа пикселей, разрешение изображения зависит от размера, в котором изображение распеча­тывается. В распечатке небольшого размера пиксели маленькие и разрешение высокое; распечатка большого размера увеличивает пиксели и снижает разрешение. Изображение в 15-дюймовый экран (800x600 пикселей) даст не­прерывное изменение цвета лишь в распечатке размером с половину почтовой марки. Если же распечатать его "в полный рост", на бумаге формата А4, отчетливо будут видны отдельные пиксели, образующие зазубрины на месте гладких линий. Единственный спо­соб справиться с подобной ситуацией - увеличить число пикселей в изображении, что, однако, влечет за собой резкое увеличение объема файла изображения. Так как изображение состоит из точек, то увеличение изображения приводит только к тому, что эти точки становятся крупнее. Никаких дополнительных деталей при увеличении растрового изображения рассмотреть не удается. Само увеличение точек растра визуально искажает иллюстрацию и делает ее грубой. Этот эффект называется пикселизацией .

Та­ким образом, качество растровых изображений зависит от их раз­мера . Как следствие того, что они состоят из пикселей фиксирован­ного размера, свободное масштабирование без потери качества к ним неприменимо. Эта особенность, а также сама структура рас­тровых изображений несколько затрудняет их редактирование и обработку. Улучшить качество изображения можно, увеличив разрешение, но это приводит к значительному увеличению объема файла. Поэтому один из основных недостатков растровой графики – большие размеры файлов .

V= L W R 2 D

Где, L – длина изображения в дюймах, W – ширина изображения в дюймах, R – разрешение в ppi, D – глубина цвета.

Серьезный недостаток всплывет при попытке слегка повернуть изображение, например, с четкими тонкими вертикальными линиями на небольшой угол. Сразу обнаруживается, что четкие линии превращаются в "ступеньки". Это означает, что при любых трансформациях (поворотах, масштабировании, наклонах и прочем) в точечной графике невозможно обойтись без искажений (это продиктовано дискретной природой изображения). Можно даже сказать, что точечную графику легче деформировать, чем трансформировать.

При редактировании точечной графики изменяется цвет определенной совокупности пикселей. Изменение цвета имеет своим результатом изменение формы изображаемых предметов.

Серьезным недостатком является аппаратная зависимость Растровой графики.

Если обобщенно рассмотреть внешние устройства, то практически все они визуализируют изображения средствами битовой карты. Любое изображение строится из совокупности каких-либо элементов (например, пикселов экрана, капель чернил, точек тонера), поэтому каждое из таких устройств характеризуется собственным разрешением. И этот параметр играет существенную роль при печати изображения, т. к. происходит наложение дискретной сетки изображения на дискретную сетку устройства. И далеко не всегда эта "встреча" благоприятна для окончательного результата. В частности, именно это "событие" является причиной муара (более подробно о муаре будет сказано в разделе Печать изображений).

С другой стороны, сетка дискретизации изображения формируется, к сожалению, в самом начале процесса, а последующие изменения сетки дискретизации (разрешения), как это мы выяснили ранее, вовсе не дают никакого улучшения.

Растровая графика

Схема хранения растровой графики.

Ра́стровое изображе́ние - представляет собой сетку пикселей или цветных точек (обычно прямоугольную) на компьютерном мониторе , бумаге и других отображающих устройствах и материалах (растр).

Важными характеристиками изображения являются:

Растровую графику редактируют с помощью растровых графических редакторов . Создается растровая графика фотоаппаратами, сканерами, непосредственно в растровом редакторе, также путем экспорта из векторного редактора или в виде Снимок экрана .

Достоинства

  • Растровая графика позволяет создать (воспроизвести) практически любой рисунок, вне зависимости от сложности, в отличие, например, от векторной, где невозможно точно передать эффект перехода от одного цвета к другому без потерь в размере файла.
  • Распространённость - растровая графика используется сейчас практически везде: от маленьких значков до плакатов.
  • Высокая скорость обработки сложных изображений, если не нужно масштабирование.
  • Растровое представление изображения естественно для большинства устройств ввода-вывода графической информации, таких как мониторы (за исключением векторных), матричные и струйные принтеры , цифровые фотоаппараты , сканеры, а также сотовые телефоны.

Недостатки

  • Большой размер файлов у простых изображений.
  • Невозможность идеального масштабирования.
  • Невозможность вывода на печать на плоттер .

Из‑за этих недостатков для хранения простых рисунков рекомендуют вместо даже сжатой растровой графики использовать векторную графику .

Форматы

Растровые изображения обычно хранятся в сжатом виде. В зависимости от типа сжатия может быть возможно или невозможно восстановить изображение в точности таким, каким оно было до сжатия (сжатие без потерь или сжатие с потерями соответственно). Так же в графическом файле может храниться дополнительная информация: об авторе файла, фотокамере и её настройках, количестве точек на дюйм при печати и др.

Сжатие без потерь

Использует алгоритмы сжатия, основанные на уменьшении избыточности информации .

  • BMP или Windows Bitmap - обычно используется без сжатия, хотя возможно использование алгоритма RLE .
  • GIF (Graphics Interchange Format) - устаревающий формат, поддерживающий не более 256 цветов одновременно. Всё ещё популярен из‑за поддержки анимации, которая отсутствует в чистом PNG , хотя ПО начинает поддерживать APNG .
  • PCX устаревший формат, позволявший хорошо сжимать простые рисованые изображения (при сжатии группы подряд идущих пикселов одинакового цвета заменяются на запись о количестве таких пикселов и их цвете).
  • PNG (Portable Network Graphics)

Сжатие с потерями

Основано на отбрасывании части информации (как правило наименее воспринимаемой глазом).

  • JPEG очень широко используемый формат изображений. Сжатие основано на усреднении цвета соседних пикселей(информация о яркости при этом не усредняется) и отбрасывании высокочастотных составляющих в пространственном спектре фрагмента изображения. При детальном рассмотрении сильно сжатого изображения заметно размытие резких границ и характерный муар вблизи них.

Разное

  • TIFF поддерживает большой диапазон изменения глубины цвета, разные цветовые пространства, разные настройки сжатия (как с потерями, так и без) и др.
  • RAW хранит информацию, непосредственно получаемую с матрицы цифрового фотоаппарата или аналогичного устройства без применения к ней каких-либо преобразований, а также хранит настройки фотокамеры. Позволяет избежать потери информации при применении к изображению различных преобразований (потеря информации происходит в результате округления и выхода цвета пиксела за пределы допустимых значений). Используется при съёмке в сложных условиях (недостаточная освещённость, невозможность выставить баланс белого и т. п.) для последующей обработки на компьютере (обычно в ручном режиме). Практически все полупрофессиональные и профессиональные цифровые фотоаппараты позволяют сохранять RAW изображения. Формат файла зависит от модели фотоаппарата, единого стандарта не существует.

История

Первые вычислительные машины не имели отдельных средств для работы с графикой, однако уже использовались для получения и обработки изображений. Программируя память первых электронных машин, построенную на основе матрицы ламп, можно было получать узоры.

В 1961 году программист С. Рассел возглавил проект по созданию первой компьютерной игры с графикой. Создание игры «Spacewar» («Космические войны») заняло около 200 человеко-часов. Игра была создана на машине PDP-1.

В 1963 году американский учёный Айвен Сазерленд создал программно-аппаратный комплекс Sketchpad, который позволял рисовать точки, линии и окружности на трубке цифровым пером. Поддерживались базовые действия с примитивами: перемещение, копирование и др. По сути, это был первый векторный редактор, реализованный на компьютере. Также программу можно назвать первым графическим интерфейсом, причём она являлась таковой ещё до появления самого термина.

В середине 1960-х гг. появились разработки в промышленных приложениях компьютерной графики. Так, под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертёжную машину. В 1964 году General Motors представила систему автоматизированного проектирования DAC-1, разработанную совместно с IBM.

В 1968 году группой под руководством Константинова Н. Н. была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4, выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм «Кошечка», который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер. Существенный прогресс компьютерная графика испытала с появлением возможности запоминать изображения и выводить их на компьютерном дисплее.

См. также


Wikimedia Foundation . 2010 .

  • Свидригайло Ольгердович
  • Рука

Книги

  • Программирование для Microsoft Windows 8 , Петцольд Чарльз. Шестое издание этой легендарной книги пришлось ждать почти 15 лет! В своем новом труде Чарльз Петцольд, известный автор и один из пионеров Windows-программирования, рассказывает о разработке…


Понравилась статья? Поделиться с друзьями: