Исследовательская работа "компьютерная графика". Понятие компьютерной графики. Основные этапы развития История создания компьютерной графики

Компьютерная графика насчитывает в своем развитии не более десятка лет, а ее коммерческим приложениям - и того меньше. Андриесван Дам считается одним из отцов компьютерной графики, а его книги - фундаментальными учебниками по всему спектру технологий, положенных в основу машинной графики. Также в этой области известен Айвэн Сазерленд, чья докторская диссертация явилась теоретической основой машинной графики.

До недавнего времени экспериментирование по использованию возможностей интерактивной машинной графики было привилегией лишь небольшому количеству специалистов, в основном ученые и инженеры, занимающиеся вопросами автоматизации проектирования, анализа данных и математического моделирования. Теперь же исследование реальных и воображаемых миров через «призму» компьютеров стало доступно гораздо более широкому кругу людей.

Такое изменение ситуации обусловлено несколькими причинами. Прежде всего, в результате резкого улучшения соотношения стоимость / производительность для некоторых компонент аппаратуры компьютеров. Кроме того, стандартное программное обеспечение высокого уровня для графики стало широкодоступным, что упрощает написание новых прикладных программ, переносимых с компьютеров одного типа на другие.

Следующая причина обусловлена влиянием, которое дисплеи оказывают на качество интерфейса - средства общения между человеком и машиной, - обеспечивая максимальные удобства для пользователя. Новые, удобные для пользователя системы построены в основном на подходе WYSIWYG (аббревиатура от английского выражения «Whatyouseeiswhatyouget» - «Что видите, то и имеете»), в соответствии с которым изображение на экране должно быть как можно более похожим на то, которое в результате печатается.

Большинство традиционных приложений машинной графики являются двумерными. В последнее время отмечается возрастающий коммерческий интерес к трехмерным приложениям. Он вызван значительным прогрессом в решении двух взаимосвязанных проблем: моделирования трехмерных сцен и построения как можно более реалистичного изображения. Например, в имитаторах полета особое значение придается времени реакции на команды, вводимые пилотом и инструктором. Чтобы создавалась иллюзия плавного движения, имитатор должен порождать чрезвычайно реалистичную картину динамически изменяющегося «мира» с частотой как минимум 30 кадров в секунду. В противоположность этому изображения, применяемые в рекламе и индустрии развлечений, вычисляют автономно, нередко в течение часов, с целью достичь максимального реализма или произвести сильное впечатление.

Развитие компьютерной графики, особенно на ее начальных этапах, в первую очередь связано с развитием технических средств и в особенности дисплеев:

  • - произвольное сканирование луча;
  • - растровое сканирование луча;
  • - запоминающие трубки;
  • - плазменная панель;
  • - жидкокристаллические индикаторы;
  • - электролюминисцентные индикаторы;
  • - дисплеи с эмиссией полем.

Произвольное сканирование луча. Дисплейная графика появилась, как попытка использовать электроннолучевые трубки (ЭЛТ) с произвольным сканированием луча для вывода изображения из ЭВМ. Как пишет Ньюменпо-видимому, первой машиной, где ЭЛТ использовалась в качестве устройства вывода была ЭВМ Whirlwind-I (Ураган-I), изготовленная в 1950г. в Массачусетском технологическом институте. С этого эксперимента начался этап развития векторных дисплеев (дисплеев с произвольным сканированием луча, каллиграфических дисплеев). На профессиональном жаргоне вектором называется отрезок прямой. Отсюда и происходит название «векторный дисплей».

При перемещении луча по экрану в точке, на которую попал луч, возбуждается свечение люминофора экрана. Это свечение достаточно быстро прекращается при перемещении луча в другую позицию (обычное время послесвечения - менее 0.1 с). Поэтому, для того чтобы изображение было постоянно видимым, приходится его перевыдавать (регенерировать изображение) 50 или 25 раз в секунду. Необходимость перевыдачи изображения требует сохранения его описания в специально выделенной памяти, называемой памятью регенерации. Само описание изображения называется дисплейным файлом. Понятно, что такой дисплей требует достаточно быстрого процессора для обработки дисплейного файла и управления перемещением луча по экрану.

Обычно серийные векторные дисплеи успевали 50 раз в секунду строить только около 3000-4000 отрезков. При большем числе отрезков изображение начинает мерцать, так как отрезки, построенные в начале очередного цикла, полностью погасают к тому моменту, когда будут строиться последние.

Другим недостатком векторных дисплеев является малое число градаций по яркости (обычно 2-4). Были разработаны, но не нашли широкого применения двух-трехцветные ЭЛТ, также обеспечивавшие несколько градаций яркости.

В векторных дисплеях легко стереть любой элемент изображения - достаточно при очередном цикле построения удалить стираемый элемент из дисплейного файла.

Текстовый диалог поддерживается с помощью алфавитно-цифровой клавиатуры. Косвенный графический диалог, как и во всех остальных дисплеях, осуществляется перемещением перекрестия (курсора) по экрану с помощью тех или иных средств управления перекрестием - координатных колес, управляющего рычага (джойстика), трекбола (шаровой рукоятки), планшета и т.д. Отличительной чертой векторных дисплеев является возможность непосредственного графического диалога, заключающаяся в простом указании с помощью светового пера объектов на экране (линий, символов и т.д.). Для этого достаточно с помощью фотодиода определить момент прорисовки и, следовательно, начала свечения люминофора любой части требуемого элемента.

Первые серийные векторные дисплеи за рубежом появились в конце 60-х годов.

Растровое сканирование луча.

Прогресс в технологии микроэлектроники привел к тому, с середины 70-х годов подавляющее распространение получили дисплеи с растровым сканированием луча.

Запоминающие трубки.

В конце 60-х годов появилась запоминающая ЭЛТ, которая способна достаточно длительное время (до часа) прямо на экране хранить построенное изображение. Следовательно, не обязательна память регенерации и не нужен быстрый процессор для выполнения регенерации изображения. Стирание на таком дисплее возможно только для всей картинки в целом. Сложность изображения практически не ограничена. Разрешение, достигнутое на дисплеях на запоминающей трубке, такое же, как и на векторных или выше - до 4096 точек.

Текстовый диалог поддерживается с помощью алфавитно-цифровой клавиатуры, косвенный графический диалог осуществляется перемещением перекрестия по экрану обычно с помощью координатных колес.

Появление таких дисплеев с одной стороны способствовало широкому распространению компьютерной графики, с другой стороны представляло собой определенный регресс, так как распространялась сравнительно низкокачественная и низкоскоростная, не слишком интерактивная графика.

Плазменная панель.

В 1966г. была изобретена плазменная панель, которую упрощенно можно представить как матрицу из маленьких разноцветных неоновых лампочек, каждая из которых включается независимо и может светиться с регулируемой яркостью. Ясно, что системы отклонения не нужно, не обязательна также и память регенерации, так как по напряжению на лампочке можно всегда определить горит она ли нет, т.е. есть или нет изображение в данной точке. В определенном смысле эти дисплеи объединяют в себе многие полезные свойства векторных и растровых устройств. К недостаткам следует отнести большую стоимость, недостаточно высокое разрешение и большое напряжение питания. В целом эти дисплеи не нашли широкого распространения.

Жидкокристаллические индикаторы. Дисплеи на жидкокристаллических индикаторах работают аналогично индикаторам в электронных часах, но, конечно, изображение состоит не из нескольких сегментов, а из большого числа отдельно управляемых точек. Эти дисплеи имеют наименьшие габариты и энергопотребление, поэтому широко используются в портативных компьютерах несмотря на меньшее разрешение, меньшую контрастность и заметно большую цену, чем для растровых дисплеев на ЭЛТ.

Электролюминисцентные индикаторы. Наиболее высокие яркость, контрастность, рабочий температурный диапазон и прочность имеют дисплеи на электролюминисцентных индикаторах. Благодаря достижениям в технологии они стали доступны для применения не только в дорогих высококлассных системах, но и в общепромышленных системах. Работа таких дисплеев основана на свечении люминофора под воздействием относительно высокого переменного напряжения, прикладываемого к взаимноперпендикулярным наборам электродов, между которыми находится люминофор.

Дисплеи с эмиссией полем. Дисплеи на электронно-лучевых трубках, несмотря на их относительную дешевизну и широкое распространение, механически непрочны, требуют высокого напряжения питания, потребляют большую мощность, имеют большие габариты и ограниченный срок службы, связанный с потерей эмиссии катодами. Одним из методов устранения указанных недостатков, является создание плоских дисплеев с эмиссией полем с холодных катодов в виде сильно заостренных микроигл.

Таким образом, стартовав в 1950г., компьютерная графика к настоящему времени прошла путь от экзотических экспериментов до одного из важнейших, всепроникающих инструментов современной цивилизации, начиная от научных исследований, автоматизации проектирования и изготовления, бизнеса, медицины, экологии, средств массовой информации, досуга и кончая бытовым оборудованием.

1. Компьютерная графика - область деятельности, в которой компьютеры используются в качестве инструмента, как для создания изображений, так и для обработки визуальной информации, полученной из реального мира.

Конечным продуктом компьютерной графики является изображение. Это изображение может использоваться в различных сферах, например, оно может быть техническим чертежом, иллюстрацией с изображением детали в руководстве по эксплуатации, простой диаграммой, архитектурным видом предполагаемой конструкции или проектным заданием, рекламной иллюстрацией или кадром из мультфильма.

В компьютерной графике рассматриваются следующие задачи:

1. Представление изображения в компьютерной графике;

2. Подготовка изображения к визуализации;

3. Создание изображения;

4. Осуществление действий с изображением.

2. История развития компьютерной графики началось уже в 20 веке и продолжается сегодня. Не секрет то, что именно графика способствовала быстрому росту быстродействию компьютеров.

1940-1970гг. – время больших компьютеров (эра до персональных компьютеров). Графикой занимались только при выводе на принтер. В этот период заложены математические основы. Особенности: пользователь не имел доступа к монитору, графика развивалась на математическом уровне и выводилась в виде текста, напоминающего на большом расстоянии изображение. Графопостроители появились в конце 60-х годов и практически были не известны.

1971-1985гг. – появились персональные компьютеры, т.е. появился доступ пользователя к дисплеям. Роль графики резко возросла, но наблюдалось очень низкое быстродействие компьютера. Программы писались на ассемблере. Появилось цветное изображение. Особенности: этот период характеризовался зарождением реальной графики.

1986-1990гг. – появление технологии Multimedia (Мультимедиа). К графике добавились обработка звука и видеоизображения, общение пользователя с компьютером расширилось. Особенности: появление диалога пользователя с персональным компьютером; появление анимации и возможности выводить цветное изображение.

1991г.-наше время – появление графики нашего дня VirtualReality. Появились датчики перемещения, благодаря которым компьютер меняет изображения при помощи сигналов посылаемых на него. Появление стереоочков (монитор на каждый глаз), благодаря высокому быстродействию которых, производится имитация реального мира. Замедление развития этой технологии из-за опасения медиков, т.к. благодаря VirtualReality можно очень сильно нарушить психику человека, благодаря мощному воздействию цвета на неё.

3. Научная графика - первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять полученные результаты, производили их графическую обработку, строили графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства - графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге. Современная научная компьютерная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.

Деловая графика - область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчётная документация, статистические сводки - вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.

Конструкторская графика используется в работе инженеров-конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трёхмерные изображения.

Иллюстративная графика - это произвольное рисование и черчение на экране компьютера. Пакеты иллюстративной графики относятся к прикладному программному обеспечению общего назначения. Простейшие программные средства иллюстративной графики называются графическими редакторами.

Художественная и рекламная графика - ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации. Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этих графических пакетов является возможность создания реалистических изображений и «движущихся картинок». Получение рисунков трёхмерных объектов, их повороты, приближения, удаления, деформации связано с большим объёмом вычислений. Передача освещённости объекта в зависимости от положения источника света, от расположения теней, от фактуры поверхности, требует расчётов, учитывающих законы оптики.

Компьютерная анимация - это получение движущихся изображений на экране дисплее. Художник создает на экране рисунки начального и конечного положения движущихся объектов, все промежуточные состояния рассчитывает и изображает компьютер, выполняя расчёты, опирающиеся на математическое описание данного вида движения. Полученные рисунки, выводимые последовательно на экран с определённой частотой, создают иллюзию движения.

Мультимедиа - это объединение высококачественного изображения на экране компьютера со звуковым сопровождением. Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, развлечений.

Лекция №2. Виды компьютерной графики. Графические редакторы.

1) Виды КГ.

2) Графические редакторы.

3) Основные понятия КГ.

1. Существует несколько разновидностей КГ:

Двумерная графика,

Трехмерная (3D) графика.

Двумерная компьютерная графика классифицируется по типу представления графической информации, и следующими из него алгоритмами обработки изображений. Обычно, компьютерную графику разделяют на:

Векторную

Растровую,

Фрактальную.

Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

Растровую графику применяют при разработке электронных (мультимедийных) и полиграфических изданий. Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Для этой цели сканируют иллюстрации, подготовленные художником на бумаге, или фотографии. В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. В Интернете пока применяются только растровые иллюстрации. В растровой графике тоже существуют линии, но там они рассматриваются как комбинации точек. Для каждой точки линии отводится одна или несколько ячеек памяти (чем больше цветов могут иметь точки, тем больше ячеек им выделяется). Соответственно, чем длиннее растровая линия, тем больше памяти она занимает.

В векторной графике основным элементом изображения является линия, при этом не важно, прямая это линия или кривая. Объем памяти, занимаемый линией, не зависит от размеров линии, поскольку линия представляется в виде формулы, а точнее говоря, в виде нескольких параметров. Чтобы ни делали с этой линией, меняются только ее параметры, хранящиеся в ячейках памяти. Количество же ячеек остается неизменным для любой линии. Все, что есть в векторной иллюстрации, состоит из линий. Простейшие объекты объединяются в более сложные, например, объект четырехугольник можно рассматривать как четыре связанные линии, а объект куб еще более сложен: его можно рассматривать либо как двенадцать связанных линий, либо как шесть связанных четырехугольников. Из-за такого подхода векторную графику часто называют объектно-ориентированной графикой.

Объекты векторной графики хранятся в памяти в виде набора параметров, но надо помнить о том, что на экран все изображения все равно выводятся в виде точек. Перед выводом на экран каждого объекта программа производит вычисления координат экранных точек в изображении объекта, поэтому векторную графику иногда называют вычисляемой графикой. Аналогичные вычисления производятся и при выводе объектов на принтер.

Программные средства для работы с векторной графикой, наоборот, предназначены для создания иллюстраций и в меньшей степени для их обработки. Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах. Оформительские работы, основанные на применении шрифтов и простейших геометрических элементов, решаются средствами векторной графики проще. Имеются примеры высокохудожественных произведений, созданных средствами векторной графики, но они скорее исключение, чем правило.

Фрактальная графика, как и векторная, основана на математических вычислениях. Однако базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям. Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Фрактальную графику чаще используют в развлекательных программах.

Трёхмерная графика (3D) и анимация. Трёхмерная графика оперирует с объектами в трехмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх.

В трехмерной компьютерной графике все объекты обычно представляются как набор поверхностей или частиц. Минимальную поверхность называют полигоном. В качестве полигона обычно выбирают треугольники. Всеми визуальными преобразованиями в 3D-графике управляют матрицы.

2. Графический редактор - программа, позволяющая создавать и редактировать изображения с помощью компьютера. Существует два вида графических редакторов: растровые и векторные. К растровым относятся Paint, Adobe Photoshop, Photostyler, GIMP и др.

Ряд растровых редакторов, например, Paint, ориентирован непосредственно на процесс рисования. В них акцент сделан на использование удобных инструментов рисования и на создание новых художественных инструментов и материалов.

Некоторый класс растровых графических редакторов предназначен не для создания изображений «с нуля», а для обработки готовых рисунков с целью улучшения их качества и реализации творческих идей. К таким программам, в частности, относятся Adobe Photoshop, Photostyler, GIMP и др.

Векторные графические редакторы позволяют проделывать очень сложные трансформации формы рисунка, сжатия и растяжения, любые изменения размера, преобразования контуров. В них легко сочетать изображения с разного рода надписями, произвольным образом размещенными. Но для обработки фотоизображений они непригодны. Используют их при изготовлении всех видов эмблем, товарных знаков, в книжной, журнальной и рекламной вёрстке любой сложности, для создания чертежей и проектов. Растровые программы используют, когда надо обрабатывать сканированные изображения, рисунки, фотографии. Основной упор делается на ретуширование изображений, коррекцию цветов, подбор цветов, подбор оптимального контраста, яркости, чёткости, на разного, составление коллажей. Но с формой объектов они работают плохо.

К простейшим векторным графическим редакторам относятся Kompas, Auto Cad, Adobe Illustrator, CorelDraw и др.

Научная графика

Первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять или представить полученные результаты, производили их графическую обработку (строили графики, диаграммы, чертежи рассчитанных конструкций). Первые графики на машине получали в режиме символьной печати.

Деловая графика

Деловая графика - область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчетная документация, статистические сводки - вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.

Конструкторская графика

Используется в работе инженеров-конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трехмерные изображения. Этот вид компьютерной графики является обязательным элементом САПР.

Иллюстративная графика

Произвольное рисование и черчение с помощью компьютера. Пакеты иллюстративной графики относятся к прикладному программному обеспечению общего назначения. Простейшие программные средства иллюстративной графики называются графическими редакторами.

Стала популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации и т.д. Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этих графических пакетов является возможность создания реалистических изображений и "движущихся картинок".

Получение рисунков трехмерных объектов, их повороты, приближения, удаления, деформации связано с большим объемом вычислений. Передача освещенности объекта в зависимости от положения источника света, от расположения теней, от фактуры поверхности, требует расчетов, учитывающих законы оптики.

Компьютерная анимация

Получение движущегося изображения на экране дисплея. Есть много программных продуктов, в которых художник создает на экране рисунки начального и конечного положения движущихся объектов, все промежуточные состояния рассчитывает и изображает компьютер, выполняя расчеты, опирающиеся на математическое описание данного вида движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.

Мультимедиа - это объединение высококачественного изображения на экране монитора со звуковым сопровождением. Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, кино, развлечений и т.д.

Графика для Интернета

Появление глобальной сети Интернет привело к тому, что компьютерная графика стала неотъемлемой частью в ней. Все больше совершенствуются способы передачи визуальной информации, разрабатываются более совершенные графические форматы, ощутимо желание использовать трехмерную графику, анимацию, весь спектр мультимедиа.

История развития компьютерной графики

Исторически первыми интерактивными системами считаются системы автоматизированного проектирования (САПР) . Пример: AutoCAD, КОМПАС и т.п.
Сейчас становятся все более популярными геоинформационные системы (ГИС) . Это относительно новая для массовых пользователей разновидность систем интерактивной компьютерной графики.
Типичными для любой ГИС являются такие операции - ввод и редактирование объектов с учетом их расположения на поверхности Земли, формирование разнообразных цифровых моделей, запись в базы данных, выполнение разнообразных запросов к базам данных. Важной операцией является анализ с учетом пространственных, топологических отношений множества объектов, расположенных на некоторой территории.

Виды компьютерной графики

Компьютерная графика - раздел информатики, который изучает средства и способы создания и обработки графических изображений при помощт компьютерной техники. Несмотря на то, что для работы с компьютерной графикой существует множество классов программного обеспечения, различают четыре вида компьютерной графики. Это растровая графика, векторная графика, трёхмерная и фрактальная графика. Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

Растровую графику применяют при разработке электронных (мультимедийных) и полиграфических изданий. Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют отсканированные иллюстрации, подготовленные художником на бумаге, или фотографии. В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. Соответственно, большинство графических редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображений, сколько на их обработку. В Интернете применяют растровые иллюстрации в тех случаях, когда надо передать полную гамму оттенклв цветного изображения.

Программные средства для работы с векторной графикой наоборот предназначены, в первую очередь, для создания иллюстраций и в меньшей степени для их обработки. Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах. Оформительские работы, основанные на применении шрифтов и простейших геометрических элементов, решаются средствами векторной графики намного проще. Существуют примеры высокохудожественных произведений, созданных средствами векторной графики, но они скорее исключение, чем правило, поскольку художественная подготовка иллюстраций средствами векторной графики чрезвычайно сложна.

Трёхмерная графика широко используется в инженерном программировании, компьютерном моделировании физических объектов и процессов, в мультипликации, кинемотографии и компьютерных играх.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Фрактальную графику редко применяют для создания печатных или электронных документов, но ее часто используют в развлекательных программах.

Растровая графика

Основным (наименьшим) элементом растрового изображения является точка. Если изображение экранное, то эта точка называется пикселом. Каждый пиксел растрового изображения имеет свойства: размещение и цвет. Чем больше количество пикселей и чем меньше их размеры, тем лучше выглядит изображение. Большие объемы данных - это основная проблема при использовании растровых изображений. Для активных работ с большеразмерными иллюстрациями типа журнальной полосы требуются компьютеры с исключительно большими размерами оперативной памяти (128 Мбайт и более). Разумеется, такие компьютеры должны иметь и высокопроизводительные процессоры. Второй недостаток растровых изображений связан с невозможностью их увеличения для рассмотрения деталей. Поскольку изображение состоит из точек, то увеличение изображения приводит только к тому, что эти точки становятся крупнее и напоминают мозаику. Никаких дополнительных деталей при увеличении растрового изображения рассмотреть не удается. Более того, увеличение точек растра визуально искажает иллюстрацию и делает её грубой. Этот эффект называется пикселизацией.

Векторная графика

Как в растровой графике основным элементом изображения является точка, так в векторной графике основным элементом изображения является линия (при этом не важно, прямая это линия или кривая). Разумеется, в растровой графике тоже существуют линии, но там они рассматриваются как комбинации точек. Для каждой точки линии в растровой графике отводится одна или несколько ячеек памяти (чем больше цветов могут иметь точки, тем больше ячеек им выделяется). Соответственно, чем длиннее растровая линия, тем больше памяти она занимает. В векторной графике объем памяти, занимаемый линией, не зависит от размеров линии, поскольку линия представляется в виде формулы, а точнее говоря, в виде нескольких параметров. Что бы мы ни делали с этой линией, меняются только ее параметры, хранящиеся в ячейках памяти. Количество же ячеек остается неизменным для любой линии.

Линия - это элементарный объект векторной графики. Все, что есть в векторной иллюстрации, состоит из линий. Простейшие объекты объединяются в более сложные, например объект четырехугольник можно рассматривать как четыре связанные линии, а объект куб еще более сложен: его можно рассматривать либо как двенадцать связанных линий, либо как шесть связанных четырехугольников. Из-за такого подхода векторную графику часто называют объектно-ориентированной графикой. Мы сказали, что объекты векторной графики хранятся в памяти в виде набора параметров, но не надо забывать и о том, что на экран все изображения все равно выводятся в виде точек (просто потому, что экран так устроен). Перед выводом на экран каждого объекта программа производит вычисления координат экранных точек в изображении объекта, поэтому векторную графику иногда называют вычисляемой графикой. Аналогичные вычисления производятся и при выводе объектов на принтер. Как и все объекты, линии имеют свойства. К этим свойствам относятся: форма линии, ее толщина, цвет, характер линии (сплошная, пунктирная и т.п.). Замкнутые линии имеют свойство заполнения. Внутренняя область замкнутого контура может быть заполнена цветом, текстурой, картой. Простейшая линия, если она не замкнута, имеет две вершины, которые называются узлами. Узлы тоже имеют свойстьа, от которых зависит, как выглядит вершина линии и как две линии сопрягаются между собой.

История компьютерной графики в СССР началась практически одновременно с её рождением в США. В эту подборку вошли некоторые факты из этой истории. Мы надеемся, что подборка будет расширяться и дополняться.

Мы будем очень признательны за любые исторические факты о компьютерной графике и зрении в России и с большим удовольствием впишем их в летопись. Присылайте информацию на наш адрес contact@сайт

1964

Первая компьютерная визуализация

В Институте прикладной математики, г. Москва, Ю.М. Баяковским и Т.А. Сушкевич продемонстрирован первый опыт практического применения машинной графики при выводе на характрон последовательности кадров, образующих короткий фильм с визуализацией обтекания цилиндра плазмой.


1968

Первый отечественный растровый дисплей

В ВЦ АН СССР, на машине БЭСМ-6 установлен первый отечественный растровый дисплей, с видеопамятью на магнитном барабане весом 400 кг.

Первая дипломная работа по машинной графике в Московском университете
Фолкер Хаймер. Транслятор и интерпретатор для программного языка L^6.
Рассматривается реализация языка L^6, предложенного Кеннетом Ноултоном для решения некоторых задач анимации.
Первый в мире мультфильм, нарисованный компьютером.

Сделан из последовательности распечаток, выполненных на перфоленте с помощью машины БЭСМ-4. Этот мультфильм в своё время был большим прорывом в области компьютерного моделирования, ибо картинка не просто нарисована, а получена решением уравнений, задающих движение кошки.

1970

Выпущен первый обзор по машинной графике, представленный затем как доклад на Вторую Всесоюзную конференцию по программированию (ВКП-2).
Штаркман В.С., Баяковский Ю.М. Машинная графика . Препринт ИПМ АН СССР, 1970.
По-видимому, это первая публикация на русском языке, в которой появилось словосочетание машинная графика.

1971

Первые кинофильмы с использованием компьютера
В ИПМ для машины SDS-910 был разработан набор подпрограмм, позволяющих снимать кинофильмы, установлена камера для покадровой фиксации изображений, выводимых на экран дисплея. С помощью этой системы осуществлялась визуализация поведения шагающего робота, а также моделирование гравитационного взаимодействия галактик.


1972

Первая библиотека графических программ Графор
Первая версия библиотеки позволяла выводить на графопостроитель, а затем и на дисплей, графические примитивы (отрезок прямой, дуга окружности, алфавитно-цифровые символы) и на их базе строить графики функций. В дальнейшем библиотека пополнилась программами аффинных преобразований, штриховки, экранирования, аппроксимации и сплайн-интерполяции, программами визуализации двумерных функций (поверхности и карты изолиний), программами геометрических построений. Графор был реализован на большинстве существующих в то время в Советском Союзе ЭВМ и операционных систем с выводом практически на все имеющиеся графопостроители и графические дисплеи. Этап создания классической графической библиотеки на Фортране завершился в 1985 г. изданием книги Графор. Графическое расширение Фортрана (авторы - Ю.М.Баяковский, Т.Н.Михайлова, В.А.Галактионов; тираж - 40 тыс. экз.).

Защищена первая диссертация в СССР по машинной графике
Список нескольких диссертаций приводится ниже:

  • Карлов Александр Андреевич
    Вопросы математического обеспечения дисплея со световым карандашом и его использование в задачах экспериментальной физики
    Дубна, 1972
  • Грин Виктор Михайлович
    Программное обеспечение для работы с трехмерными объектами на графических терминалах
    Новосибирск, 1973
  • Баяковский Юрий Матвеевич
    Анализ методов разработки графического обеспечения ЭВМ
    Москва, 1974
  • Злотник Евгений Матвеевич
    Разработка и исследование комплекса технических средств и методики проектирования оперативной графической системы
    Минск, 1974
  • Лысый Семен Тимофеевич
    G1 - Геометрическая система программного обеспечения ЭВМ
    Кишинев, 1976
  • Пигузов Сергей Юрьевич
    Разработка и исследование средств графического взаимодействия геофизика с ЭВМ при обработке данных сейсморазведки
    Москва, 1976

1976

На русском языке издана книга У.Ньюмена, Р.Спрулла Основы интерактивной машинной графики (под редакцией В.А.Львова).

1977

Первая встреча графиков

В сентябре 1977 года в Новосибирске состоялась первая встреча графиков. Событие было заявлено как "региональная конференция", но собралось достаточно представительное сообщество, получилась Всесоюзная. Часть докладов была отобрана для публикации в журнале Автометрия, что и произошло в 1978 году.

1979

Первая всесоюзная конференция по машинной графике прошла в Новосибирске в сентябре.

Список следующих конференций:


  • Новосибирск, 1981 г. (
  • Всесоюзная конференция по проблемам машинной графики
    и цифровой обработки изображений
    Владивосток, 24-26 сентября 1985 г.
  • IV Всесоюзная конференция по машинной графике
    Протвино, 9-11 сентября 1987 г.
  • V Всесоюзная конференция по машинной графике "Машинная графика 89"
    Новосибирск, 31 октября-2 ноября 1989 г.

Первый полутоновой цветной растровый дисплей Гамма-1.

Первую пригодную к активному использованию в кино и телевидении дисплейную станцию “Гамма” создали в Институте прикладной физики в новосибирском академгородке Владимир Сизых, Петр Вельтмандер, Алексей Бучнев, Владимир Минаев и др. Разрешение первой станции было 256×256×6 бит, и затем непрерывно увеличивалось. Дисплейная станция Гамма 7.1 обеспечивала разрешение 1024*768 для прогрессивной развертки монитора 50Гц и имела объём видеопамяти 1Мб. Во второй половине 1980-х гг. “Гамма”, выпускавшаяся серийно, поставлялась и успешно эксплуатировалась государственными телецентрами страны.

1981 год

Выход графического пакета Атом.

Разработка пакета была инициирована Ю.М.Баяковским. За основу была взята пропагандируемая им тогда Core System (Каминский, Клименко, Кочин).

1983

Первый спецкурс по машинной графике.

Ю.М. Баяковский начал читать годовой спецкурс по машинной графике для студентов факультета Вычислительной математики и кибернетики Московского государственного университета. С 1990 г. курс читается как обязательный для студентов второго года обучения.

1985 год

Первый доклад принят на Eurographics 1985

"Пробили окно в графическую Европу" - первый доклад из СССР принят на конференцию Eurographics 1985. Однако, поскольку Перестройка ещё не началась, то докладчикам не разрешили выехать из СССР, и первый раз советская делегация посетила конференцию только в 1988 году.

1986 год

Пакет Атом-85 выходит в ЦЕРН.

Графический пакет Атом-85 выпущен в ЦЕРН, где активно использовался (наравне с Графором) для задач иллюстративной графики (Клименко, Кочин, Самарин).

1990

Организована первая российская компания компьютерной графики «Драйв». Конференция SciVis

В 1989 году, Александр Пекарь, Сергей Тимофеев и Владимир Соколов организовали студию компьютерной графики на ВПТО “Видеофильм”, которая спустя год стала первой самостоятельной компанией компьютерной графики, переместившись из-под крыла “Видеофильма” в Центральный павильон ВДНХ.

Также в 1990 году прошла первая конференция по SciVis, куда меня пригласил Грег Нильсон (пока без доклада), но уже в следующем году 1991 на 1-м Семинаре из серии SciVis-Dagstuhl нами был представлен доклад о визуализации в Физике высоких энергий.

1991

В феврале в Москве прошла первая международная конференция по компьютерной графике и зрению ГрафиКон"91
Первая конференции ГрафиКон была организована Академией наук СССР в лице Института прикладной математики имени М.В. Келдыша АН СССР, Союзом Архитекторов СССР и некоторыми другими организациями при содействии и поддержке международной ассоциации ACM Siggraph (США). Среди американских гостей были руководители компаний мировой величины, уже вошедшие в историю компьютерной графики, как например, Эд Кэтмулл , президент компании "Pixar" , сделавший с Джорджем Лукасом Звездные войны. Свои доклады (переведенные и изданные организаторами конференции на русском языке) представили также Джон Ласситер из "Pixar", который накануне (в 1989 г.) получил первый в истории Оскар на компьютерную анимацию (фильм "Tin Toy", показанный на конференции), а также легендарный Джим Кларк , создатель компании "Silicon Graphics" долгие годы бывшей законодателем мод в области профессиональных графических станций.
Первым российским лауреатом на международном конкурсе PRIX ARS ELECTRONICA в номинации Computer Animation стал коллектив из Новосибирска.


<<Фильм Тень был сделан рабочей группой (Борис Мазурок, Сергей Михаев, Александр Черепанов ) под моим руководством на специализированной трехмерной системе визуализации Альбатрос , основное назначение которой обучение космонавтов и летчиков. Система Альбатрос была разработана в Институте автоматики и электрометрии Сибирского отделения Академии наук СССР.>> Борис Долговесов.

<< ... Moving on to more conventional 3D animation there was "Shadow" from the USSR (commended). Although done on a pretty unsophisticated system, this showed what a bit of humour and good observation of human movement is capable of.>> A.J.Mitchell, The birth of a new art .

Цитируется книга DER PRIX ARS ELECTRONICA. International Compendium of the Computer Arts. Hannes Leopoldseder . - Linz - VERITAS-Verlag, 1991.

1993

Проведен первый фестиваль компьютерной графики и анимации АНИГРАФ"93.

В 1992 году Владимиром Лошкарёвым, руководителем фирмы “Joy Company”, занимающейся продвижением на российский рынок пакетов графических программ и оборудования, была организована первая научно-практическая конференция по компьютерной графике. Тогда и пришла идея фестиваля, сочетающего в себе и техническую сторону, и коммерцию, и чистое творчество. Фестиваля АНИГРАФ был организован при участии ВГИКа, сопредседателем оргкомитета стал Сергей Лазарук (проректор по научной и творческой работе ВГИКа). На выставке были представлены все крупнейшие производители графических станций. На творческом конкурсе было представлено более 50 работ.

К сожалению, до десятилетнего юбилея фестиваль не дожил, и был закрыт как коммерчески несостоятельный.

Первый Российский мультфильм с трёхмерной компьютерной графикой.

Новосибирская студия "Альбатрос" создала первый отечественный мультфильм с трёхмерной компьютерной графикой "Миша - первое плавание" , который в 1993 году был в прокате на Российском ТВ,

1994

Первая компьютерная графика в отечественном кино.

В фильме "Утомленные солнцем" эпизод с шаровой молнией был подготовлен компанией “Render Club”.

1996

Первые попытки собрать и систематизировать исторические факты.
Timour Paltashev . Russia: Computer Graphics -- Between the Past and the Future . Computer Graphics, vol.30, No. 2, May 1996. Special issue: Computer Graphics Around the World .
Yuri Bayakovsky . Russia: Computer Graphics Education Takes Off in the 1990"s . Computer Graphics, Vol. 30, No. 3, August 1996. Special issue: Computer Graphics Education -- Worldwide Effort

2000 год

Спецвыпуск журнала Computer&Graphics Vol.24 "Computer Graphics in Russia."

2001 год

Появление виртуальной реальности в России.

В Протвино прошла первая конференция из серии VEonPC с демонстрацией созданной группой Станислава Клименко в кооперации с Мартином Гебелем (ИМК, С.Августин) первой в России установки виртуальной реальности.

2003

Первая конференция разработчиков компьютерных игр КРИ-2003.
21 и 22 марта 2003 года в Московском Государственном Университете состоялась первая международная Конференция Разработчиков компьютерных Игр (КРИ) в России, организованная DEV.DTF.RU - ведущим специализированным ресурсом в Рунете для игровых разработчиков и издателей. КРИ 2003 впервые в истории российской игровой индустрии собрала для обмена опытом и обсуждения самых различных проблем практически всех профессионалов отрасли. В КРИ 2003 приняло участие около 40 компаний из России, а также ближнего и дальнего зарубежья, действующих как в сфере разработки, так и издания игрового ПО, а общее число посетителей конференции, по различным оценкам, составило от 1000 до 1500 человек.

2006

Первая практическая конференция по компьютерной графике и анимации CG Event -2006.

Вдохновленные конференцией SIGGRAPH, автором книги "Понимая Maya" Сергей Цыпцын и создателем сайта cgtalk.ru Александр Костин была организована первая практическая конференция по компьютерной графике CG Event, ставшая идейной наследницей фестиваля АНИГРАФ. В первой же CG Event участвовало более 500 человек, и в последующем количество участников только росло.

Ссылки:

  1. Энциклопедия отечественного кино. http://www.russiancinema.ru/template.php?dept_id=3&e_dept_id=5&e_chr_id=416&e_chrdept_id=2&chr_year=1993
  2. «Бюджетный 3D». Компьютерра. http://www.computerra.ru/video/287273/
  3. Первые шаги цифрового телевидения в СССР

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Понятие и виды компьютерной графики. Применение спецэффектов в кинематографе. История развития компьютерной графики. Изменение частоты киносъемки с помощью спецэффектов. Виды компьютерной графики как способ хранения изображения на плоскости монитора.

    реферат , добавлен 16.01.2013

    Методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов. Области применения компьютерной графики. Особенности научной, деловой, конструкторской и художественной графики. Графическая система компьютера.

    презентация , добавлен 03.02.2017

    Компьютерная графика - область информатики, занимающаяся проблемами получения различных изображений. Виды компьютерной графики: растровая, векторная, фрактальная. Программы для создания компьютерной анимации, область применения, форматы хранения.

    реферат , добавлен 16.03.2010

    Ознакомление с понятием компьютерной графики. Области применения конструкторской и рекламной графики, компьютерной анимации. Рассмотрение преимущества графической визуализации бизнес-процессов. Особенности кольцевой, биржевой и лепестковой диаграмм.

    реферат , добавлен 02.02.2016

    Компьютерная графика как область информатики, занимающаяся проблемами получения различных изображений на компьютере. Области применения компьютерной графики. Двумерная графика: фрактальная, растровая и векторная. Особенности трёхмерной графики.

    реферат , добавлен 05.12.2010

    Сферы применения машинной графики. Виды компьютерной графики. Цветовое разрешение и цветовые модели. Программное обеспечение для создания, просмотра и обработки графической информации. Графические возможности текстовых процессоров, графические редакторы.

    контрольная работа , добавлен 07.06.2010

    Основные понятия и задачи, решаемые компьютерной графикой. Характеристика и разновидности компьютерной графики. Цветовые модели RGB, CMYK, HSB. Графические форматы растровых и векторных изображений. Особенности шелкографии, трёхмерная графика и анимация.

    курсовая работа , добавлен 20.02.2012

    Основные виды компьютерной графики. Достоинства и недостатки векторной графики. Сущность понятия "коэффициент прямоугольности пикселей". Математическая основа фрактальной графики. Сущность понятий "фрактал", "фрактальная геометрия", "фрактальная графика".

    контрольная работа , добавлен 13.07.2010



Понравилась статья? Поделиться с друзьями: