Отношение активной мощности к реактивной. Формула для полной мощности. Потребитель находит возможность платить меньше

В отличии от сетей постоянного тока, где мощность имеет выражение и не изменяется во времени, в сетях переменного тока это не так.

Мощность в цепи переменного тока также есть переменной величиной. На любом участке цепи в любой момент времени t она определяется как произведение мгновенных значений напряжения и тока.

Рассмотрим, что представляет активная мощность

В цепи с чисто активным сопротивлением она равна:

Если принять и тогда выйдет:

Исходя из выражений выше — активная энергия состоит из двух частей — постоянной и переменной , которая меняется с двойной частотой. Среднее ее значение


График Р(ωt)

Отличие реактивной мощности от активной

В цепи, где есть реактивное сопротивление (возьмем для примера индуктивное) значение мгновенной мощности равно:

Соответственно и в итоге получим:

Данное выражение показывает, что реактивная энергия содержит только переменную часть, которая изменяется с двойной частотой, а ее среднее значение равно нулю


График q(ωt)

Если ток и напряжение имеют синусоидальную форму и сеть содержит элементы типа R-L или R-C, то в таких сетях кроме преобразования энергии в активном элементе R вдобавок еще и изменяется энергия электрического и магнитного полей в реактивных элементах L и C.

В таком случае полная мощность сети будет равна сумме:

Что такое полная мощность на примере простой R-L цепи

Графики изменения мгновенных значений u,i:


Графики изменения мгновенных значений u,i:

φ — фазовый сдвиг между током и напряжением

Уравнение для S примет следующий вид

Подставим вместо и заменим амплитудные значения на действующие:

Значение S рассматривается как сумма двух величин , где

И — мгновенные активные и реактивные мощности на участках R-L.


Графики p,q,s:

Как видим из графика, наличие индуктивной составляющей повлекло за собой появление отрицательной части в полной мощности (заштрихованная часть графика), что снижает ее среднее значение. Это происходит из-за фазового сдвига, в какой-то момент времени ток и напряжение находятся в противофазе, поэтому появляется отрицательное значение S.

Итоговые выражения для действующих значений:

Активная составляющая сети выражается в ваттах (Вт), а реактивная в вольт-амперах реактивных (вар).

Полная мощность сети S, обусловлена номинальными данными генератора. Для генератора она обусловлена выражением:

Для нормальной работы генератора ток в обмотках и напряжение на зажимах не должны превышать номинальные значения I н, U н . Для генератора значения P и S одинаковы, однако все-таки на практике условились S выражать в вольт-амперах (ВА).

Также энергию сети можно выразить через каждую составляющую отдельно:

Где S, P, Q – соответственно активное, реактивное и полное сопротивление сети. Они образуют треугольник мощностей:

Треугольник мощностей с преобладающей индуктивной нагрузкой

Если вспомнить теорему Пифагора, то из прямоугольного треугольника можно получить такое выражение:

Реактивная составляющая в треугольнике является положительной (Q L), когда ток отстает от напряжения, и отрицательной (Q C), когда опережает:


Треугольник мощностей с преобладающей емкостной нагрузкой

Для реактивной составляющей сети справедливо алгебраическое выражение:

Из чего следует что индуктивная и емкостная энергия взаимозаменяемы. То есть если вы хотите уменьшить влияние индуктивной части цепи, вам необходимо добавить емкость, и наоборот. Ниже пример данной схемы:

Схема компенсации реактивной составляющей

Векторная диаграмма показывает влияние конденсатора на cosφ. Как видно, что при включении конденсатора cosφ 2 > cosφ 1 и I л
Векторная диаграмма

Связь между полной и реактивной энергии выражается:

сosφ – это коэффициент мощности. он показывает какую долю от полной энергии составляет активная энергия. Чем ближе он к 1, тем больше полезной энергии потребляется из сети.

Выводы о трех составляющих цепи переменного тока

В отличии от цепей постоянного тока, цепи переменного напряжения имеют три вида мощности – активная, реактивная, полная. Активная энергия, как и в цепях постоянного тока, выполняет полезную работу. Реактивная – не выполняет ничего полезного, а только снижает КПД сети, греет провода, грузит генератор. Полная – сумма активной и реактивной, она равна мощности сети. Индуктивная составляющая реактивной энергии может быть скомпенсирована емкостной. На практике в промышленности это реализовано в виде .

Специфика сети переменного тока приводит к тому, что в фиксированный момент времени синусоиды напряжения и тока на приемнике совпадают только в случае так называемой активной нагрузки, полностью переводящей ток в тепло или механическую работу. Практически это всевозможные электронагревательные приборы, лампы накаливания, в каком-то приближении электродвигатели и электромагниты под нагрузкой и звуковоспроизводящая аппаратура. Ситуация полностью меняется, если нагрузка, не создающая механической работы, обладает большой индуктивностью при малом сопротивлении. Это характерный случай электродвигателя или трансформатора на холостом ходу.

Подключение подобного потребителя к источнику постоянного тока привело бы к , здесь же ничего особенного с сетью не случится, но мгновенный ток будет отставать от мгновенного напряжения примерно на четверть периода. В случае же чисто емкостной нагрузки (если в розетку вставить конденсатор), ток на нем будет, наоборот, на ту же четверть периода опережать напряжение.

Реактивные токи

Практически такое несовпадение тока и напряжения, не производя на приемнике полезной работы, создает в проводах дополнительные, или, как принято их называть, реактивные токи, которые в особо неблагоприятных случаях могут привести к разрушительным последствиям. При меньшей величине это явление все равно требует расходовать излишний металл на более толстую проводку, повышать мощность питающих генераторов и трансформаторов электроэнергии. Поэтому экономически оправдано устранять в сети реактивную мощность всеми возможными способами. При этом следует учитывать суммарную реактивную мощность всей сети, при том, что отдельные элементы могут обладать значительными значениями реактивной мощности.

Реактивная электроэнергия

С количественной стороны влияние реактивной электроэнергии на работу сети оценивается косинусом угла потерь, который равен отношению активной мощности к полной. Полная мощность считается как векторная величина, которая зависит от сдвига фаз между током и напряжением на всех элементах сети. В отличие от активной мощности, которую, как и механическую измеряют в ваттах, полную мощность измеряют в вольт-амперах, так как эта величина присутствует только в электрической цепи. Таким образом, чем ближе косинус угла потерь к единице, тем полнее используется и мощность, вырабатываемая генератором.

Основные пути снижения реактивной мощности - взаимная компенсация сдвигов фаз, создаваемых индуктивными и емкостными приемниками и использование приемников с малым углом потерь.

В квартирах и частных домах установлен один электросчетчик, по которому производится расчет оплаты за потребленную энергию. Упрощенно считается, что в быту используется только ее активная составляющая, хотя это не совсем так. Современное жилище насыщено устройствами, в схемах которых присутствуют элементы, сдвигающие фазу. Однако реактивная мощность, которую потребляют бытовые приборы, несравнимо меньше, чем у промышленных предприятий, поэтому при расчете оплаты ею традиционно пренебрегают.

Нагрузка индуктивная и емкостная

Если взять обычный нагревательный прибор или электрическую лампочку, то мощность, указанная в соответствующей надписи на колбе или табличке-шильдике, будет соответствовать произведению величин тока, проходящего через это устройство, и напряжения сети (у нас это 220 Вольт). Ситуация меняется, если прибор содержит трансформатор, другие элементы, содержащие или конденсаторы. Эти детали обладают особыми свойствами, график протекающего в них тока отстает или опережает синусоиду питающего напряжения - другими словами, происходит сдвиг фазы. Идеальная емкостная нагрузка сдвигает вектор на -90, а индуктивная - на +90 градусов. Мощность в этом случае становится результатом не только произведения тока на напряжение, добавляется некий поправочный коэффициент. К чему это приводит?

Геометрическое отражение процесса

Из школьного курса геометрии всем известно, что гипотенуза длиннее любого из катетов в прямоугольном треугольнике. Если активная, реактивная и полная мощность образуют его стороны, то токи, потребляемые катушкой и емкостью, будут находиться под прямым углом к резистивной составляющей, но с направлениями в противоположные стороны. При сложении (или, если угодно, вычитании, они разнознаковые) величин суммарный вектор, то есть полная реактивная мощность, в зависимости от того, какой характер нагрузки преобладает в схеме, будет направлен вверх или вниз. По его направлению можно судить, какой характер нагрузки преобладает.

Реактивная мощность при векторном сложении с активной составляющей даст полную величину потребляемой мощности. Она графически изображается как гипотенуза треугольника мощности. Чем более эта линия будет полого располагаться по отношению к оси абсцисс, тем лучше.

Косинус фи

Теория и практика

Все теоретические выкладки имеют ценность тем большую, чем применимее они на практике. Картина на любом развитом промышленном предприятии следующая: большая часть электроэнергии потребляется двигателями (синхронными, асинхронными, однофазными, трехфазными) и прочими машинами. А ведь есть еще и трансформаторы. Вывод простой: в реальных производственных условиях преобладает реактивная мощность индуктивного характера. Следует отметить, что на предприятиях устанавливают не один электросчетчик, как в домах и квартирах, а два, один из которых активный, а другой - несложно догадаться какой. И за перерасход напрасно «гоняемой» по линиям электропередач энергии соответствующие органы беспощадно штрафуют, так что администрация кровно заинтересована в том, чтобы произвести расчет реактивной мощности и принять меры к ее снижению. Ясно, что без электрической емкости при решении этой задачи не обойтись.

Компенсация по теории

Расчет производится по формуле:

  • C = 1 / (2πFX), где X - полное реактивное сопротивление всех включенных в сеть устройств; F - частота напряжения питания (у нас - 50 Hz);

Вроде бы - чего проще? Перемножить «X» и число «пи» на 50 да поделить. Однако все несколько сложнее.

А как на практике?

Формула несложна, но определить и рассчитать X не так-то просто. Для этого нужно взять все данные об устройствах, узнать их реактивное сопротивление, причем в векторном виде, и уже тогда… На самом деле, никто этим не занимается, кроме студентов на лабораторных работах.

Определить реактивную мощность можно и иначе, при помощи специального прибора - фазометра, указывающего косинус фи, или сравнив показания ваттметра, амперметра и вольтметра.

Осложняется дело тем, что в условиях реального производственного процесса величина нагрузки постоянно меняется, так как одни машины в процессе работы включаются, другие, напротив, отключаются от сети, как того требует технологический регламент. Соответственно, необходимы постоянные меры по отслеживанию ситуации. Во время ночных смен работает освещение, зимой в цехах может осуществляться нагрев воздуха, а летом - его охлаждение. Так или иначе, но компенсация реактивной мощности производится на основе теоретических расчетов с большой долей практических замеров cos φ.

Подключая и отключая конденсаторы

Наиболее простой и очевидный способ решить проблему - посадить возле фазометра специального работника, который бы включал или выключал нужное количество конденсаторов, добиваясь минимальной величины отклонения стрелки от единицы. Так вначале и делали, но практика показала, что пресловутый человеческий фактор не всегда позволяет добиваться нужного эффекта. В любом случае компенсация реактивной мощности, имеющей чаще всего индуктивный характер, производится подключением электрической емкости соответствующей величины, но делать это лучше в автоматическом режиме, иначе нерадивый работник может подвести родное предприятие под крупный штраф. Опять же, труд этот квалифицированным назвать нельзя, автоматизации он вполне поддается. Простейшая схема включает оптическую электронную пару из излучателя и приемника света. Стрелка перекрыла минимальное значение - значит, нужно добавить емкости.

Автоматика и интеллектуальные алгоритмы

В настоящее время есть системы, позволяющие надежно удерживать cos φ в пределах от 0,9 до 1. Так как подключение конденсаторов в них происходит дискретно, то идеального результата добиться невозможно, но экономический эффект автоматический компенсатор реактивной мощности все равно дает очень хороший. В основе работы этого прибора лежат интеллектуальные алгоритмы, обеспечивающие работу сразу после включения, чаще всего даже без дополнительных настроек. Технологические достижения в области вычислительной техники позволяют добиваться равномерного подключения всех ступеней конденсаторных батарей для того, чтобы избежать преждевременного выхода из строя одной или двух из них. Время срабатывания также минимизировано, а дополнительные дроссели снижают величину перепада напряжения во время переходных процессов. Современный питанием предприятия обладает соответствующей эргономической компоновкой, которая создает условия для быстрой оценки оператором ситуации, а в случае аварии или выхода из строя он получит немедленный тревожный сигнал. Цена такого шкафа немалая, но заплатить за него стоит, пользу он приносит.

Устройство компенсатора

Обычный компенсатор реактивной мощности представляет собой металлический шкаф стандартных размеров с панелью контроля и управления на лицевой панели, обычно открываемой. В нижней части его располагаются наборы конденсаторов (батареи). Такое расположение обусловлено простым соображением: электрические емкости довольно тяжелые, и вполне логично стремление сделать конструкцию более устойчивой. В верхней части, на уровне глаз оператора, находятся необходимые контрольные приборы, в том числе и фазоуказатель, при помощи которого можно судить о величине коэффициента мощности. Имеется также различная индикация, в том числе и аварийная, органы управления (включения и выключения, перехода на ручной режим и проч.). Оценку сравнения показаний измерительных датчиков и выработку управляющих воздействий (подключение конденсаторов нужного номинала) выполняет схема, основой которой служит микропроцессор. Исполнительные устройства работают быстро и бесшумно, они, как правило, построены на мощных тиристорах.

Примерный расчет конденсаторных батарей

На относительно небольших предприятиях реактивная мощность цепи может примерно оцениваться по количеству подключенных устройств с учетом их фазосдвигающих характеристик. Так, обычный асинхронный электродвигатель (главный «работяга» фабрик и заводов) при нагрузке, равной половине его обладает cos φ, равным 0,73, а люминесцентный светильник - 0,5. Параметр контактного сварочного аппарата колеблется в пределах от 0,8 до 0,9, дуговая печь работает с косинусом φ, равным 0,8. Таблицы, имеющиеся в распоряжении практически каждого главного энергетика, содержат сведения о практически всех видах промышленного оборудования, и предварительная установка компенсации реактивной мощности может производиться при помощи них. Однако такие данные служат лишь базой, на основании которой необходимо вносить коррективы, добавляя или отключая конденсаторные батареи.

В масштабах страны

Может сложиться впечатление о том, что всю заботу о параметрах электросетей и равномерности нагрузки на нее государство возложило на фабрики, заводы и прочие промышленные предприятия. Это не так. Энергосистема страны контролирует сдвиг фаз в общегосударственном и региональном масштабе, прямо на выходе своего особого товара из электростанций. Другой вопрос в том, что компенсация реактивной составляющей осуществляется не подключением конденсаторных батарей, а иным методом. Для обеспечения качества отпускаемой потребителям энергии в роторных обмотках регулируется ток подмагничивания, что в синхронных генераторах не составляет большой проблемы.

и является суммой двух величин, одна из которых постоянна во времени, а другая пульсирует с двойной частотой.

Среднее значение p(t) за период Т называется активной мощностью и полностью определяется первым слагаемым уравнения (5.1):

Активная мощность ха-рактеризует энергию, расходуемую необратимо источником в единицу времени на производство полезной работы потребителем. Активная энергия, потребляемая электроприёмниками, преобразуется в другие виды энергии : механическую, тепловую, энергию сжатого воздуха и газа и т. п.

Среднее значение от второго слагаемого мгновенной мощности (1.1) (пульсирует с двойной частотой) за время Т равно нулю, т. е. на ее создание не требуется каких-либо материальных затрат и поэтому она не может совершать полезной ра-боты. Однако ее присутствие указывает, что между источником и приемником происходит обратимый процесс обмена энергией. Это возможно, если имеются элементы, способные накапливать и отдавать электромагнитную энергию - емкость и индуктивность . Эта составляющая характеризует реактивную мощность.

Полную мощность на зажимах приемника в комп-лексной форме можно представить следующим образом:

. (5.2)

Единица измерения полной мощности S = UI - ВА.

Реактивная мощность - величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями (обменом) энергии между источником и приемником. Для синусоидального тока она равна произведению действующих значений тока I и напряжения U на синус угла сдвига фаз между ними: Q = UI sinφ. Единица измерения - ВАр.

Реактивная мощность не связана с полезной работой ЭП и расходуется только на создание переменных электромагнитных полей в электродвигателях, трансформаторах, аппаратах, линиях и т. д.

Для реактивной мощности приняты такие понятия, как генерация, потребление, передача, потери, баланс. Считается, что если ток отстает по фазе от напряжения (индуктивный характер нагрузки), то реактивная мощ-ность потребляется и имеет положительный знак, а если ток опережает напряжение (емкостный характер нагрузки), то реактивная мощность ге-нерируется и имеет отрицательное значение.


Основными потребителями реактивной мощности на промышленных предприятиях являются асинхронные двигатели (60-65 % общего потреб-ления), трансформаторы (20-25 %), вентильные преобразователи, реакторы, воздушные электрические сети и прочие приемники (10 %).

Передача реактивной мощности загружает электрические сети и установленное в ней оборудование, уменьшая их пропускную способность. Реактивная мощность генерируется синхронными генераторами электростанций, синхронными компенса-торами, синхронными двигателями (регулирование током возбуждения), батареями конденсаторов (БК) и линиями электропередачи.

Реактивная мощность, вырабатываемая емкостью сетей, имеет следующий порядок величин: воздушная линия 20 кВ генерирует 1 кВАр на 1 км трехфазной линии; подземный кабель 20 кВ - 20 кВАр/км; воздушная линия 220 кВ - 150 кВАр/км; подземный кабель 220 кВ - 3 МВАр/км.

Коэффициент мощности и коэффициент реактивной мощности.

Векторное представление величин, характеризующих состояние сети, приводит к представлению реактивной мощности Q вектором, перпендикулярным вектору активной мощности Р (рис. 5.2). Их векторная сумма дает полную мощность S .

Рис. 5.1. Треугольник мощностей

Согласно рис. 5.1 и (5.2) следует, что S 2 = Р 2 + Q 2 ; tgφ = Q/P; cosφ = P/S.

Основным нормативным показателем, характе-ризующим реактивную мощность, ранее был коэффициент мощности cosφ. На вводах, питающих промышленное предприятие, средневзвешенное значение этого коэффициента должно было находиться в пределах 0,92-0,95. Однако выбор соотношения P/S в качестве нормативного не дает четкого представления о динамике изменения реального значения реактивной мощности. Например, при изменении коэффициента мощности от 0,95 до 0,94 реактивная мощность изменяется на 10 %, а при изменении этого же коэффициента от 0,99 до 0,98 приращение реактивной мощности составляет уже 42 %. При расчетах удобнее оперировать соотношением tgφ = Q/P , которое называют коэффициентом реактивной мощности.

Предприятиям, у которых присоединенная мощность более 150 кВт (за исключением «бытовых» потребителей), определены предельные значения коэффициента реактивной мощности , потребляемой в часы больших суточных нагрузок электрической сети - с 7 до 23 часов (Приказ Министерства промышленности и энергетики РФ от 22.02.2007 г. № 49 «О порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии »).

Предельные значения коэффициентов реактивной мощности (tgφ) нормируются в зависимости от положения точки (напряжения) присоединения потребителя к сети. Для напряжения сети 100 кВ tgφ = 0,5; для сетей 35, 20, 6 кВ - tgφ = 0,4 и для сети 0,4 кВ - tgφ = 0,35.

Введение новых директивных документов по компен-сации реактивной мощности было направлено на повышение эффективности работы всей системы электроснабжения от генераторов энергосистемы до приемников электроэнергии.

С введением коэффициента реактивной мощности стало возможным представлять потери активной мощности через активную или реактивную мощности: Р = (P 2 /U 2) R (l + tg 2 φ).

Угол между векторами мощностей Р и S соответствует углу φ между векторами активной составляющей тока I а и полного тока I , который, в свою очередь, представляет собой векторную сумму активного тока I а, находящегося в фазе с напряжением, и реактивного тока I р, находящегося под углом 90° к нему. Это расположение токов является расчетным приемом, связанным с разложением на активную и реактивную мощности, которое можно считать естественным.

Большинство потребителей нуждаются в реактивной мощности, поскольку они функционируют благодаря изменению магнитного поля . Для наиболее употребительных двигателей в нормальном режиме работы можно привести следующие примерные значения tgφ.

В момент пуска двигателей требуется значительное количество реактивной мощности, при этом tgφ = 4-5 (cosφ = 0,2-0,24).

Синхронные машины обладают способностью потреблять или выдавать реактивную мощность в зависимости от степени возбуждения.

В синхронных генераторах и двигателях размеры цепей возбуждения ограничивают возможность поставки реактивной мощности до максимальных значений tgφ = 0,75 (cosφ = 0,8) или до tgφ = 0,5 (cosφ = 0,9) (табл. 5.1).

Синхронные двигатели, выпускаемые отечественной промышленностью, рассчитаны на опережающий коэффициент мощности (cosφ = 0,9) и при номинальной активной нагрузке P ном и напряжении U ном могут вырабатывать номинальную реактивную мощность Q ном ≈ 0,5P ном.

При недогрузке СД по активной мощности β = P/P ном < 1 возможна перегрузка по реактивной мощности α = Q /Q ном > 1.

Преимуществом СД, используемым для компенсации реактивной мощности, по сравнению с КБ является возможность плавного регулирования генерируемой реактивной мощности. Недостатком является то, что активные потери на генерирование реактивной мощности для СД больше, чем для КБ.

Дополнительные активные потери в обмотке СД, вызываемые генерируемой реактивной мощностью в пределах изменения cosφ от 1 до 0,9 при номинальной активной мощности СД, равной P ном, кВт:

Р ном = Q 2 ном R /U 2 ном,

где Q ном - номинальная реактивная мощность СД, кВ Ар; R - сопротивление одной фазы обмотки СД в нагретом состоянии, Ом; U ном - номинальное напряжение сети, кВ.

В системах электроснабжения промышленных предприятий КБ компенсируют реактивную мощность базисной (основной) части графиков нагрузок, а СД снижают пики нагрузок графика.

Таблица 5.1

Зависимости коэффициента перегрузки по реактивной мощности синхронных двигателе й

Синхронные компенсаторы.

Разновидностью СД являются синхронные компенсаторы (СК), которые представляют собой СД без нагрузки на валу. В настоящее время выпускается СК мощностью выше 5000 кВ?Ар. Они имеют ограниченное применение в сетях промышленных предприятий. Для улучшения показателей качества напряжения у мощных ЭП с резкопеременной, ударной нагрузкой (дуговые печи, прокатные станы и т. п.) используются СК.

Статические тиристорные компенсирующие устройства.

В сетях с резкопеременной ударной нагрузкой на напряжении 6-10 кВ рекомендуется применение не конденсаторных батарей, а специальных быстродействующих источников реактивной мощности (ИРМ), которые должны устанавливаться вблизи таких ЭП. Схема ИРМ приведена на рис. 5.2. В ней в качестве регулируемой индуктивности используются индуктивности LR и нерегулируемые ёмкости С 1-С 3.

Рис. 5.2. Быстродействующие источники реактивной мощности

Регулирование индуктивности осуществляется тиристорными группами VS , управляющие электроды которых подсоединены к схеме управления. Достоинствами статических ИРМ являются отсутствие вращающихся частей, относительная плавность регулирования реактивной мощности, выдаваемой в сеть, возможность трёх- и четырёхкратной перегрузки по реактивной мощности. К недостаткам относится появление высших гармоник, которые могут возникнуть при глубоком регулировании реактивной мощности.

За счет дополнительных потерь мощности в сети, вызванных потреблением реактивной мощности, увеличивается общее потребление электроэнергии. Поэтому снижение перетоков реактивной мощности является одной из основных задач эксплуатации электрических сетей.

В настоящее время взаимоотношения энергоснабжающих организаций и потребителей электроэнергии рассматриваются широким кругом лиц неэнергетического образования (коммерческие менеджеры, юристы и другие специалисты). Использование понятия реактивная мощность (реактивная энергия) в практике денежных расчетов между поставщиками и потребителями электроэнергии и наличие отдельных счетчиков активной и реактивной энергии вызывает у многих представление о поставке потребителям двух видов продукции. Это не так. По электрической сети не передаются электроны разного цвета - красные активной энергии и голубые реактивной. Так что же такое реактивная мощность и реактивная энергия?

Рассмотрим в самом простом виде свойства переменного тока. Переменный ток называют так не в том смысле, что его значение изменяется в процессе потребления энергии. Оно может оставаться и постоянным. Под переменным током в узком смысле понимают периодический ток, мгновенные значения которого в течение каждого небольшого периода (для переменного тока частоты 50 Гц это 1/50 доля секунды) проходят цикл изменения от минимального до максимального значения, и наоборот. Графически этот цикл отображается синусоидой. Переменным в этом смысле является и напряжение. В целом же для цепей, в которых и напряжение, и ток циклически изменяются, используется термин «цепи переменного тока».

В цепях переменного тока существует много элементов, которые разделены воздушными промежутками - обмотки высокого и низкого напряжения трансформаторов или статор и ротор вращающейся машины (двигателя и генератора) не имеют электрической связи между собой. Тем не менее электрическая энергия передается через это воздушное пространство, являющееся фактически непроводящим ток диэлектриком. Это происходит в связи с возникновением под действием переменного тока переменного магнитного поля в индуктивности, а под действием переменного напряжения - переменного электрического поля в емкости (в комбинации — электромагнитного поля). Полям, как известно, воздух не преграда. Переменное магнитное поле, образуемое одной из разделенных обмоток, постоянно пересекает своими магнитными линиями витки другой обмотки, наводя в ней электродвижущую силу. Ее величина такова, что вся мощность первичной обмотки переходит на вторичную обмотку. В конденсаторе те же самые функции осуществляет электрическое поле.

Магнитное и электрическое поля существуют вокруг любого проводника, который находится под напряжением и по которому идет ток. Теоретически можно передать мощность по воздуху с одной из параллельно проложенных линий на другую. Правда, чтобы передать существенную мощность, линии должны быть длиной в сотни тысяч километров. Для переброски через воздушные промежутки большой мощности в устройстве приемлемого размера нужно сильное магнитное поле, сконцентрированное в небольшом пространстве. Это достигается обматыванием вокруг металлического сердечника (ярма) многочисленных витков, расположенных близко друг к другу, и применением для изготовления сердечников специальной стали, обеспечивающей большую взаимоиндукцию.

Электромагнитная энергия непосредственно преобразуется в тепловую, механическую, химическую и другие виды полезной работы в элементах, обладающих активным сопротивлением, обозначаемым R. В элементах, представляющих собой индуктивность L и емкость С, электромагнитная энергия на половине периода запасается, а на второй половине периода возвращается в источник. При этом синусоида тока, создающего магнитное поле, всегда на четверть периода (90 эл. градусов) отстает от синусоиды напряжения, а синусоида тока, создающего электрическое поле, опережает.

Сопротивления таких элементов связаны с индуктивностью и емкостью и частотой f соотношениями: X L = 2πfL и X С = 1/2πfС. Из этих соотношений видно, что эти сопротивления существуют только в цепях переменного тока, а в цепях постоянного тока (f = 0) X L превращается в 0 (короткое замыкание), а X С — в бесконечность (разрыв цепи). В связи с возвратным характером их действия эти сопротивления называют реактивными, а ток, обусловленный обменной электромагнитной энергией, — реактивным током. Так как реактивный ток сдвинут относительно активного на 90°, то естественно, что полный ток определяется как корень квадратный из суммы квадратов активного и реактивного тока.

Прохождение через сеть «сдвинутого» тока можно сравнить с продвижением людей через проход, пропускная способность которого составляет, например, 10 человек одновременно. При этом в восьми рядах люди все время идут в одном направлении, а в двух рядах одни и те же люди то идут, то возвращаются. В результате число людей, перешедших на другую сторону, следует считать исходя из пропускной способности восемь человек, а проход все время загружен десятью рядами. Аналогична ситуация и с пропускной способностью электрической сети. Разница лишь в том, что активная и реактивная составляющие тока складываются не арифметически, а в квадрате, поэтому реактивная составляющая в меньшей степени занимает сечение. Для полноты сравнения можно считать, что два ряда людей ходят боком и потому занимают меньше места.

Полупериоды запасания и возврата электромагнитной энергии индуктивностью и емкостью сдвинуты на 180° (у первой ток сдвинут на -90°, а у второй на +90°), то есть они находятся в противофазе. Поэтому при наличии рядом сопротивлений X L = X С обменная часть электромагнитной энергии не возвращается в источник, а эти элементы постоянно обмениваются ею между собой. Уже должна возникнуть мысль, а не поставить ли у потребителя электроэнергии, в сетях которого полно индуктивностей, емкость? И пусть они обмениваются между собой этой частью электромагнитной энергии, разгрузив от нее сеть и предоставив ей возможность передавать только ту часть электромагнитной энергии, которая преобразуется в полезную работу? Эта операция и называется компенсацией реактивной мощности (КРМ).

Реактивная энергия не выполняет никакой работы в том смысле, что она не может, как активная энергия, превращаться в тепловую или механическую энергию. Так как в физике понятия энергии и работы тождественны, то, строго говоря, словосочетание «реактивная энергия» физически бессмысленно. Тем не менее, применение на практике этого условного понятия удобно. Раз уж возникает дополнительный ток, названный реактивным, то его произведение на напряжение вроде бы по-другому как мощностью не назовешь, а интегрирование мощности по времени формально называется энергией. Более того, сдвинув на 90° обмотку электрического счетчика, можно заставить его считать произведение на напряжение только тока, сдвинутого на 90°, - появляется наглядное подтверждение существования реактивной энергии (счетчик ведь показывает!).

Реактивный ток не только отнимает у активного тока часть пропускной способности сети, но и на его прохождение по проводам затрачивается определенная часть активной энергии , так как потери мощности ΔР = 3I²R, где I - полный ток. Счетчик активной энергии (по большому счету только ее и можно назвать энергией, поэтому он называется просто счетчик электроэнергии) покажет одно и то же значение и при наличии, и при отсутствии реактивной составляющей тока. Поэтому только по его показаниям нельзя правильно оценить режимы линий передачи электроэнергии (в приведенном выше примере счетчик будет показывать движение восьми рядов, полностью игнорируя два двигающихся туда и обратно). Для оценки же режима сети необходимо знать обе составляющие. Активная и реактивная составляющие полного тока по-разному влияют на напряжение в точках потребления энергии. Потери напряжения от передачи активной составляющей тока в подавляющей степени определяются сопротивлением R, а реактивной — сопротивлением X L . В элементах линий электропередачи обычно X L >> R, поэтому прохождение по сети реактивного тока приводит к гораздо большему снижению напряжения, чем активного тока той же величины.

Итак, в сети переменного тока нет ничего, кроме циклически изменяющихся мгновенных значений тока и напряжения, циклы которых сдвинуты относительно друг друга на некоторую часть периода. При графическом изображении их в виде векторов говорят, что они сдвинуты на некоторый угол φ. Поэтому анекдотический ответ студента на экзамене, что три провода нужны потому, что по первому передается напряжение, по второму ток, а по третьему cos φ, можно считать более близким к истине, чем представление о поставке потребителям двух видов продукции.



Понравилась статья? Поделиться с друзьями: