Архитектура вычислительных систем. SMP и MPP-архитектуры. Гибридная архитектура (NUMA). Организация когерентности многоуровневой иерархической памяти. Архитектурные решения многопроцессорных систем

SMP архитектура - cимметричная многопроцессорная архитектура. Главной особенностью систем с архитектурой SMP является наличие общей физической памяти, разделяемой всеми процессорами.

SMP-система строится на основе высокоскоростной системной шины, к слотам которой подключаются функциональные блоки трех типов:

●процессоры (ЦП),

● оперативная память (ОП),

● подсистема ввода/вывода (I/O).

Память является способом передачи сообщений между процессорами. Все вычислительные устройства при обращении к ОП имеют равные права и одну и ту же адресацию для всех ячеек памяти. Последнее обстоятельство позволяет эффективно обмениваться данными с другими вычислительными устройствами. SMP-система работает под управлением единой ОС (либо UNIX-подобной, либо Windows). ОС автоматически распределяет процессы по процессорам, возможна и явная привязка. SMP-архитектура используется в cерверах и рабочих станциях на базе процессоров Intel, AMD, Sun, IBM, HP, и др.

Принципы организации:

SMP-система состоит из нескольких однородных процессоров и массива общей памяти. Каждая операция доступа к памяти интерпретируется как транзакция по шине процессоры-память. Слово "равноправный" означает, что каждый процессор может делать все, что любой другой. Каждый процессор имеет доступ ко всей памяти, может выполнять любую операцию ввода/вывода, прерывать другие процессоры и т.д. В SMP каждый процессор имеет по крайней мере одну собственную кэш-память.

Когерентность кэшей поддерживается аппаратными средствами.

Достоинства:

· Простота и универсальность для программирования. Архитектура SMP не накладывает ограничений на модель программирования, используемую при создании приложения: обычно используется модель параллельных ветвей, когда все процессоры работают абсолютно независимо друг от друга - однако, можно реализовать и модели, использующие межпроцессорный обмен. Использование общей памяти увеличивает скорость такого обмена, пользователь также имеет доступ сразу ко всему объему памяти.

· Легкость в эксплуатации. Как правило, SMP-системы используют систему охлаждения на воздушном кондиционировании, что облегчает их обслуживание.

· Относительно невысокая цена.

· Неявно производимая аппаратурой SMP пересылка данных между кэшами является наиболее быстрым и самым дешевым средством коммуникации в любой параллельной архитектуре общего назначения.

· Готовность. В симметричном мультипроцессоре отказ одного из компонентов не ведет к отказу системы, поскольку любой из процессоров в состоянии выполнять те же функции, что и другие.

Недостатки:

SMP-cистемы плохо масштабируемы:

1.Системная шина имеет ограниченную пропускную способность и ограниченное число слотов.

2.В каждый момент времени шина способна обрабатывать только одну транзакцию, вследствие чего возникают проблемы разрешения конфликтов при одновременном обращении нескольких процессоров к одним и тем же областям общей физической памяти.

В реальных системах эффективно можно использовать не более 8-16-32 процессоров.

Применение:

SMP часто применяется в науке, промышленности, бизнесе, где программное обеспечение специально разрабатывается для многопоточного выполнения. В то же время большинство потребительских продуктов, таких как текстовые редакторы и компьютерные игры, написаны так, что они не могут получить много пользы от SMP- систем. В случае игр это зачастую связано с тем, что оптимизация программы под SMP-системы приведёт к потере производительности при работе на однопроцессорных системах, которые занимают большую часть рынка.

Примеры компьютеров с SMP-архитектурой:

HP 9000 (до 32 процессоров), Sun HPC 100000 (до 64 проц.), Compaq AlphaServer (до 32 проц.), Sun SPARC Enterprise T5220
2.8. MPP архитектура. История развития. Основные принципы. Концепция, архитектура и характеристики суперкомпьютера Intel Paragon.

Массово-параллельная архитектура (Massive Parallel Processing) - класс архитектур параллельных вычислительных систем. Особенность архитектуры состоит в том, что память физически разделена. Система строится из отдельных узлов, содержащих процессор, локальный банк ОП, коммуникационные процессоры или сетевые адаптеры, иногда - жесткие диски и/или другие устройства ввода/вывода.

Доступ к банку ОП данного узла имеют только процессоры из этого же узла. Узлы соединяются специальными коммуникационными каналами. Пользователь может определить логический номер процессора, к которому он подключен, и организовать обмен сообщениями с другими процессорами. На машинах MPP используются два варианта работы операционной системы:

● В одном полноценная ОС работает только на управляющей машине, а на каждом узле функционирует сильно урезанный вариант ОС, обеспечивающий работу расположенной в нем ветви параллельного приложения.

● Во втором варианте на каждом модуле работает полноценная, чаще всего UNIX-подобная ОС, устанавливаемая отдельно.


5. СИММЕТРИЧНЫЕ МУЛЬТИПРОЦЕССОРНЫЕ СИСТЕМЫ

5.1. Отличительные признаки и преимущества симметричных

мультипроцессорных систем

Для класса симметричных мультипроцессорных (SMP – symmetric multiprocessor ) систем характерны следующие отличительные признаки:

    наличие двух или более одинаковых или близких по характеристикам процессоров;

    процессоры имеют доступ к общей памяти, к которой они подсоединены или через общую системную магистраль, или через другой механизм обеспечения взаимодействия, но в любом случае время доступа к ресурсам памяти со стороны любого процессора примерно одинаково;

    процессоры имеют доступ к общим средствам ввода–вывода либо через один и тот же канал, либо через раздельные каналы;

    все процессоры способны выполнять одинаковый набор функций (отсюда и определение симметричная система);

    весь комплекс управляется общей операционной системой, которая обеспечивает взаимодействие между процессорами и программами на уровне заданий, файлов и элементов данных.

Первые четыре признака в этом списке в дальнейших комментариях вряд ли нуждаются. Что касается пятого признака, то в нем проявляется наиболее важное отличие SMP–систем от кластерных систем, в которых взаимодействие между компонентами осуществляется, как правило, на уровне отдельных сообщений или полных файлов. В SMP–системе возможен обмен информацией между компонентами и на уровне отдельных элементов данных и, таким образом, можно организовать более тесное взаимодействие между процессами. В SMP–системе распределение процессов или потоков задач между отдельными процессорами возлагается на операционную систему.

Наиболее существенные преимущества SMP–систем перед однопроцессорными состоят в следующем.

Повышение производительности. Если отдельные задачи приложения могут выполняться параллельно, система, располагающая множеством процессоров, будет работать быстрее, чем система с одним процессором того же типа.

Надежность. Поскольку все процессоры в SMP–системе однотипны и могут выполнять одни и те же задачи, в случае отказа одного из них запланированную для него задачу можно передать другому процессору. Следовательно, отказ одного из процессоров не приведет к потере работоспособности всей системы.

Возможность функционального наращивания. Пользователь может повысить производительность системы, включив в ее состав дополнительные процессоры.

Производство однотипных систем разной производительности. Изготовитель компьютеров может предложить клиентам гамму систем с одинаковой архитектурой, но разной стоимостью и производительностью, отличающихся количеством процессоров.

Нужно отметить, что все эти преимущества чаще всего являются потенциальными и далеко не всегда на практике их удается реализовать.

Очень привлекательной для пользователей особенностью SMP–систем является ее прозрачность. Операционная система берет на себя все заботы по распределению задач между отдельными процессорами и синхронизации их работы.

5.2. Структурная организация SMP –систем

На рис. 5.1 показана обобщенная блок–схема мультипроцессорной системы.

Рис. 5.1. Обобщенная схема мультипроцессорной системы

В составе системы имеется два процессора или больше, каждый из которых располагает всем комплектом необходимых узлов – устройством управления, АЛУ, регистрами и блоком кэша. Каждый процессор имеет доступ к главной памяти системы и устройствам ввода–вывода через некоторую подсистему взаимодействия. Процессоры могут обмениваться данными и сообщениями через главную память (для этого в ней выделяется отдельная область связи). Кроме того, в системе может поддерживаться и возможность непосредственного обмена сигналами между отдельными процессорами. Часто общая память организована таким образом, что процессоры могут одновременно обращаться к ее разным блокам. В некоторых вариантах систем процессоры располагают блоками локальной памяти и собственными каналами ввода–вывода помимо ресурсов общего пользования.

Варианты структурной организации мультипроцессорных систем можно классифицировать следующим образом:

    системы с общей или разделяемой во времени магистралью;

    системы с многопортовой памятью;

    системы с центральным устройством управления.

5.2.1. Системы с общей магистралью

Использование общей магистрали в режиме разделения времени – это самый простой способ организации совместной работы процессоров в SMP–системе (рис. 5.2). Структура магистрали и интерфейс практически те же, что и в однопроцессорной системе. В составе магистрали предусматриваются линии данных, адреса и управляющих сигналов. Для упрощения работы механизма прямого доступа к памяти со стороны модулей ввода–вывода принимаются следующие меры.

Адресация организуется таким образом, что по коду адреса можно различать модули при определении источников и приемников данных.

Арбитраж. Любой модуль ввода–вывода может временно стать задатчиком магистрали. Арбитр с помощью некоторого механизма приоритетов обеспечивает разрешение конфликтов при появлении конкурирующих запросов на управление магистралью.

Разделение времени. Когда один из модулей получает право управления магистралью, остальные модули блокируются и должны, если в том есть необходимость, приостановить выполнение операций и ожидать, пока им будет предоставлен доступ к магистрали.

Эти функции, обычные для однопроцессорных систем, можно без особых изменений использовать и в мультипроцессорной системе. Основное отличие в том, что в борьбе за право доступа к блоку памяти принимают участие не только модули ввода–вывода, но и процессоры.


Рис. 5.2. Организация SMP системы с общей магистралью

Магистральная структура связей имеет несколько преимуществ по сравнению с другими подходами к реализации подсистемы взаимодействия.

Простота. Этот вариант – самый простой, поскольку физический интерфейс, схема адресации, механизм арбитража и логика разделения ресурсов магистрали остаются, по существу, такими же, как и в однопроцессорной системе.

Гибкость . Систему с магистральной организацией связей довольно просто переконфигурировать, добавив в нее новые процессоры.

Надежность. Магистраль является пассивной средой, и отказ любого подключенного к ней устройства не приводит к потере работоспособности системы в целом.

Основной недостаток системы с общей магистралью – ограниченная производительность. Все операции доступа к главной памяти должны проходить по единственному пути – через общую магистраль и, следовательно, быстродействие системы ограничено длительностью цикла магистрали. Частично с этой проблемой позволяет справиться оснащение каждого процессора собственным блоком кэш–памяти, что снижает количество обращений к главной памяти. Как правило, применяется двухуровневая организация кэша: кэш уровня L1 размещается в БИС процессора (внутренний кэш), а кэш уровня L2 – внешний.

Однако применение кэш–памяти в мультипроцессорной системе порождает проблему согласованности или информационной целостности кэшей отдельных процессоров.

5.2.2. Системы с многопортовой памятью

Использование в SMP–системах многопортовой памяти позволяет организовать прямое обращение каждого процессора и модуля ввода–вывода к общему массиву информации, независимо от всех других (рис. 5.3). При этом каждый модуль памяти должен быть оснащен логической схемой разрешения возможных конфликтов. Для этого чаще всего портам назначаются определенные приоритеты. Как правило, электрический и физический интерфейс каждого порта идентичен и по отношению к устройству, подключенному к этому порту; модуль памяти можно рассматривать как однопортовый. Поэтому в схеме процессора или модуля ввода–вывода практически не нужно проводить никаких изменений для подключения к многопортовой памяти.


Рис. 5.3. Схема многопортовой памяти

Существенно усложняется только схема блока общей памяти, но это окупается повышением производительности системы в целом, поскольку каждый процессор имеет свой канал для доступа к информации совместного пользования. Другое преимущество систем с такой организацией - возможность выделения областей памяти для исключительного использования определенным процессором (или группой процессоров). Это упрощает создание системы защиты информации от несанкционированного доступа и хранения программ восстановления в областях памяти, недоступных для модификации другими процессорами.

Есть еще один существенный момент при работе с многопортовой памятью. При обновлении информации в кэше любого процессора необходимо выполнять сквозную запись в главную память, поскольку не существует иного способа оповестить другие процессоры о внесении изменений в данные.

5.2.3. Системы с центральным устройством управления

Центральное устройство управления организует раздельные потоки данных между независимыми модулями – процессорами, памятью и модулями ввода–вывода. Контроллер может запоминать запросы и выполнять функции арбитра и распределителя ресурсов. На него также возлагаются функции передачи информации о состоянии, управляющих сообщений и оповещения процессоров об изменении информации в кэшах.

Поскольку все логические функции, связанные с координацией работы компонентов системы, реализуются в одном центральном устройстве управления, интерфейсы процессоров, памяти и модулей ввода–вывода остаются практически неизменными. Это обеспечивает системе почти такую же гибкость и простоту, как и при использовании общей магистрали. Основной недостаток такого подхода – существенное усложнение схемы устройства управления, которое потенциально может привести к снижению производительности.

Структура с центральным устройством управления в свое время была широко распространена при построении многопроцессорных вычислительных комплексов на базе больших машин. В настоящее время они встречаются очень редко.

5.3. SMP –системы на базе больших вычислительных машин

5.3.1. Структура SMP –системы на базе больших

вычислительных машин

В большинстве SMP–систем персонального пользования и рабочих станций для организации взаимодействия между компонентами используется системная магистраль. В комплексах на базе больших компьютеров (мейнфреймов) применяется альтернативный подход. Блок–схема подобного комплекса представлена на рис. 5.4. В семейство входят компьютеры разных классов – от однопроцессорных с единственной платой главной памяти до высокопроизводительных систем с десятком процессоров и четырьмя блоками главной памяти. В конфигурацию также включены дополнительные процессоры, которые выполняют функции модулей ввода–вывода. Основные компоненты вычислительных комплексов на базе больших вычислительных машин следующие.

Процессор ПР - CISC–микропроцессор, в котором управление обработкой наиболее часто используемых команд реализовано аппаратно, а остальные команды выполняются с помощью микропрограмм. В состав БИС каждого ПР входит кэш уровня L1 объемом 64 Кбайт, в котором хранятся и команды, и данные.

Кэш уровня L 2 объемом 384 Кбайт. Блоки кэша L2 объединены по два в кластеры, причем каждый кластер поддерживает работу с тремя процессорами и обеспечивает доступ ко всему адресному пространству основной памяти.

Адаптер переключения магистрали - BSN (bus switching network adapter ), который организует связь блоков кэша L2 с одним из четырех блоков главной памяти. В состав BSN входит и кэш уровня L3 объемом 2 Мбайт.

Одноплатный блок главной памяти объемом 8 Гбайт. В состав ком-плекса входят четыре таких блока, обеспечивая общий объем главной памяти 32 Гбайт.

В этой структуре есть несколько особенностей, на которых стоит остановиться подробнее:

    переключаемая подсистема взаимосвязей;

    совместно используемый кэш уровня L2;

    кэш уровня L3.


Рис.5.4. Блок–схема SMP–системы на базе больших машин

5.3.2. Переключаемая подсистема взаимосвязей

В SMP–системах персонального пользования и рабочих станциях общепринятой является структура с единственной системной магистралью. В этом варианте магистраль может стать со временем узким местом, препятствующим дальнейшему наращиванию системы – добавлению в нее новых компонентов. Проектировщики SMP–систем на базе больших машин попытались справиться с этой проблемой двумя способами.

Во–первых, они разделили подсистему главной памяти на четыре одноплатных блока, оснастив каждый из них собственным контроллером, который способен с высокой скоростью обрабатывать запросы к памяти. В результате суммарная пропускная способность канала доступа к памяти увеличилась вчетверо.

Во–вторых, связь между каждым процессором (фактически, между его кэшем уровня L2) и отдельным блоком памяти реализована не в форме магистрали совместного пользования, а, скорее, в форме двухточечного соединения – каждая связь подключает группу из трех процессоров через кэш L2 к модулю BSN. В свою очередь, BSN выполняет функцию переключителя, который объединяет пять каналов связи (четыре с кэшами L2 и один с блоком памяти) – связывает четыре физических канала в одну логическую магистраль передачи данных. Таким образом, сигнал, поступающий по любому из четырех каналов, подключенных к кэшам L2, дублируется по остальным трем каналам, и тем самым обеспечивается информационная целостность кэшей.

Не смотря на то, что в системе имеется четыре отдельных блока памяти, каждый процессор и каждый блок кэша L2 оснащен только двумя физическими портами, через которые они связываются с подсистемой главной памяти. Такое решение выбрано, потому что каждый блок кэша L2 может хранить данные только из половины всего адресного пространства памяти. Для обслуживания запросов ко всему адресному пространству используется пара блоков кэша, и каждый процессор должен иметь доступ к обоим блокам в паре.

5.3.3. Совместное использование блоков кэша уровня L 2

В типовой структуре SMP–системы каждый процессор имеет собственные блоки кэша (как правило, двух уровней). В последние годы все больший интерес у разработчиков систем вызывает концепция совместного использования блоков кэша уровня L2. В ранней версии SMP–системы на базе большой машины использовались 12 блоков кэша L2, каждый из которых "находился в распоряжении" одного определенного процессора. В более поздних версиях блоки кэшей L2 используются совместно несколькими процессорами. Это было сделано исходя из следующих соображений.

В новых версиях используются процессоры, быстродействие которых увеличилось вдвое по сравнению с процессорами первой версии. Если при этом оставить прежнюю структуру блоков кэша, поток информации через подсистему магистрали значительно возрастет. В то же время перед конструкторами была поставлена задача в максимальной степени использовать готовые блоки, разработанные для старой версии. Если не модернизировать подсистему магистрали, то блоки BSN в новой версии могут стать со временем узким местом.

Анализ типичных приложений, выполняемых в системе, показал, что достаточно большая часть команд и данных совместно используется разными процессорами.

Поэтому разработчики новой версии системы рассмотрели вариант совместного использования одного или нескольких блоков кэша L2 несколькими процессорами (при этом по–прежнему каждый процессор имеет собственный внутренний блок кэша уровня L1). На первый взгляд идея совместного использования кэша L2 выглядит малопривлекательной, поскольку процессор дополнительно должен добиваться права доступа к нему, а это может повлечь за собой снижение производительности. Но если значительная часть данных и команд, находящихся в кэше, нужна нескольким процессорам, то кэш совместного пользования сможет скорее повысить пропускную способность системы, чем снизить ее. Данные, которые нужны нескольким процессорам, будут найдены в кэше совместного пользования быстрее, чем если их придется передавать через подсистемы магистрали.

Разработчики новой версии системы просматривали также и вариант включения в систему единственного кэша большого объема, совместно используемого всеми процессорами. Хотя такая структура системы и сулила еще большее повышение производительности, от нее пришлось отказаться, поскольку в этом варианте требовалась полная переделка всей существующей организации связей. Анализ потоков данных в системе показал, что внедрение совместного использования блоков кэша, связанных с каждым из имеющихся BSN, уже позволит добиться весьма ощутимого повышения производительности системы. При этом, по сравнению с кэшами индивидуального пользования, значительно увеличивается процент попадания при обращении к кэшу и, соответственно, снижается количество обращений к главной памяти.

5.3.4. Кэш уровня L 3

Еще одна особенность SMP–системы на базе большой машины – включение в ее структуру кэша третьего уровня, L3. Кэш L3 входит в состав каждого блока BSN и, следовательно, является буфером между кэшами L2 и одним из блоков главной памяти. Применение этого кэша позволяет уменьшить задержку поступления данных, которые отсутствуют в кэшах L1 и L2. Если эти данные ранее потребовались какому–либо из процессоров, то они присутствуют в кэше L3 и могут быть переданы новому процессору. Время извлечения данных из кэша L3 меньше времени обращения к блоку главной памяти, что и обеспечивает выигрыш в быстродействии.

В табл. 5.1 показаны данные, полученные при исследовании производительности типичной SMP–системы на базе IBM S/390 . Показатель "задержка доступа" характеризует время, необходимое для извлечения данных процессором в случае, если они присутствуют в том или ином структурном элементе подсистемы памяти. При запросе процессором новой информации в 89% случаев она отыскивается в его собственном кэше L1. В остальных 11% случаев приходится обращаться к кэшам следующих уровней или к блоку главной памяти. В 5% случаев необходимая информация отыскивается в кэше L2 и т.д. Только в 3% случаев приходится в конце концов обращаться к блоку главной памяти. Без кэша третьего уровня этот показатель был бы в два раза больше.

Таблица 5.1

Показатели эффективности элементов подсистемы памяти

в SMP–системе на базе IBM S/390

Подсистема памяти

Задержка доступа (циклов работы

процессора)

Процент попаданий

Главная память

5.4. Информационная целостность кэшей и протокол MESI

5.4.1. Способы решения проблемы информационной

целостности

В современных вычислительных системах стало нормой использование блоков кэша одного или двух уровней, связанных с каждым процессором. Такая организация позволяет добиться высокой производительности системы, но порождает проблему информационной целостности данных в кэшах разных процессоров. Суть ее состоит в том, что в кэшах разных процессоров возможно хранение копий одних и тех же данных из главной памяти. Если при этом некоторый процессор обновляет какой–либо из элементов таких данных в своей копии, то копии, с которыми имеют дело остальные процессоры, становятся недостоверными, как и содержимое главной памяти. Возможно применение двух вариантов методики дублирования внесенных изменений в главной памяти:

Обратная запись (write back ). В этом варианте процессор вносит изменения только в содержимое своего кэша. Содержимое строки переписывается в главную память, когда возникает необходимость очистить измененную строку кэша для приема нового блока данных.

Сквозная запись (write through ). Все операции записи в кэш сразу же дублируются в главной памяти, не дожидаясь момента, когда нужно будет заменить содержимое соответствующей строки кэша. В результате можно всегда быть уверенным в том, что в оперативной памяти хранится самая свежая, а значит, в любой момент времени достоверная, информация.

Очевидно, что применение методики обратной записи может привести к нарушению информационной целостности данных в кэшах, поскольку до тех пор, пока обновленные данные не будут переписаны в главную память, кэши остальных процессоров будут содержать недостоверные данные. Даже при применении методики сквозной записи информационная целостность не гарантируется, поскольку внесенные изменения нужно дублировать не только в главной памяти, но и во всех блоках кэша, содержащих первоначальные копии этих данных.

системМетодические указания

Университет Кафедра компьютерных измерительных систем и метрологии ________________________________________________ И Н Ф О Р М А Т И К А Архитектура вычислительных систем . Основные подсистемы персонального компьютера...


Рис. 3.1.

Память служит, в частности, для передачи сообщений между процессорами, при этом все вычислительные устройства при обращении к ней имеют равные права и одну и ту же адресацию для всех ячеек памяти. Поэтому SMP - архитектура называется симметричной. Последнее обстоятельство позволяет очень эффективно обмениваться данными с другими вычислительными устройствами. SMP -система строится на основе высокоскоростной системной шины ( SGI PowerPath, Sun Gigaplane, DEC TurboLaser), к слотам которой подключаются функциональные блоки типов: процессоры (ЦП), подсистема ввода/вывода ( I/O ) и т. п. Для подсоединения к модулям I/O используются уже более медленные шины ( PCI , VME64 ). Наиболее известными SMP -системами являются SMP -cерверы и рабочие станции на базе процессоров Intel ( IBM , HP, Compaq, Dell, ALR, Unisys, DG, Fujitsu и др.) Вся система работает под управлением единой ОС (обычно UNIX-подобной, но для Intel-платформ поддерживается Windows NT). ОС автоматически (в процессе работы) распределяет процессы по процессорам, но иногда возможна и явная привязка.

Основные преимущества SMP -систем:

  • простота и универсальность для программирования. Архитектура SMP не накладывает ограничений на модель программирования, используемую при создании приложения: обычно используется модель параллельных ветвей, когда все процессоры работают независимо друг от друга. Однако можно реализовать и модели, использующие межпроцессорный обмен. Использование общей памяти увеличивает скорость такого обмена, пользователь также имеет доступ сразу ко всему объему памяти. Для SMP-систем существуют довольно эффективные средства автоматического распараллеливания;
  • простота эксплуатации. Как правило, SMP-системы используют систему кондиционирования, основанную на воздушном охлаждении, что облегчает их техническое обслуживание;
  • относительно невысокая цена.

Недостатки:

  • системы с общей памятью плохо масштабируются.

Этот существенный недостаток SMP -систем не позволяет считать их по -настоящему перспективными. Причиной плохой масштабируемости является то, что в данный момент шина способна обрабатывать только одну транзакцию, вследствие чего возникают проблемы разрешения конфликтов при одновременном обращении нескольких процессоров к одним и тем же областям общей физической памяти . Вычислительные элементы начинают друг другу мешать. Когда произойдет такой конфликт , зависит от скорости связи и от количества вычислительных элементов. В настоящее время конфликты могут происходить при наличии 8-24 процессоров. Кроме того, системная шина имеет ограниченную (хоть и высокую) пропускную способность (ПС) и ограниченное число слотов. Все это очевидно препятствует увеличению производительности при увеличении числа процессоров и числа подключаемых пользователей. В реальных системах можно задействовать не более 32 процессоров. Для построения масштабируемых систем на базе SMP используются кластерные или NUMA -архитектуры. При работе с SMP -системами используют так называемую парадигму программирования с разделяемой памятью (shared memory paradigm ).

MPP-архитектура

MPP (massive parallel processing) – массивно-параллельная архитектура . Главная особенность такой архитектуры состоит в том, что память физически разделена. В этом случае система строится из отдельных модулей, содержащих процессор, локальный банк операционной памяти (ОП), коммуникационные процессоры (рутеры) или сетевые адаптеры , иногда – жесткие диски и/или другие устройства ввода/вывода. По сути, такие модули представляют собой полнофункциональные компьютеры (см. рис.3.2). Доступ к банку ОП из данного модуля имеют только процессоры (ЦП) из этого же модуля. Модули соединяются специальными коммуникационными каналами. Пользователь может определить логический номер процессора, к которому он подключен, и организовать обмен сообщениями с другими процессорами. Используются два варианта работы операционной системы (ОС) на машинах MPP -архитектуры. В одном полноценная операционная система (ОС) работает только на управляющей машине (front-end), на каждом отдельном модуле функционирует сильно урезанный вариант ОС, обеспечивающий работу только расположенной в нем ветви параллельного приложения. Во втором варианте на каждом модуле работает полноценная UNIX-подобная ОС, устанавливаемая отдельно.


Рис. 3.2.

Главным преимуществом систем с раздельной памятью является хорошая масштабируемость : в отличие от SMP -систем, в машинах с раздельной памятью каждый процессор имеет доступ только к своей локальной памяти , в связи с чем не возникает необходимости в потактовой синхронизации процессоров. Практически все рекорды по производительности на сегодня устанавливаются на машинах именно такой архитектуры, состоящих из нескольких тысяч процессоров (

Классификация архитектур по параллельной обработке данных

Чтобы дать более полное представление о многопроцессорных КС, помимо высокой производительности необходимо назвать и другие отличительные особенности. Прежде всего, это необычные архитектурные решения, направленные на повышение производительности (работа с векторными операциями, организация быстрого обмена сообщениями между процессорами или организация глобальной памяти в многопроцессорных системах и др.).

Понятие архитектуры высокопроизводительной системы является достаточно широким, поскольку под архитектурой можно понимать и способ параллельной обработки данных, используемый в системе, иорганизацию памяти, итопологию связи между процессорами, и способ исполнения системой арифметических операций. Попытки систематизировать все множество архитектур впервые были предприняты в конце 60-х годов и продолжаются по сей день.

В 1966 г. М.Флинном (Flynn) был предложен чрезвычайно удобный подход к классификации архитектур КС. В его основу было положено понятие потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. Соответствующая система классификации основана на рассмотрении числа потоков инструкций и потоков данных и описывает четыре архитектурных класса :

1) SISD (Single Instruction Single Data)2) MISD (Multiple Instruction Single Data)3) SIMD (Single Instruction Multiple Data)4) MIMD (Multiple Instruction Multiple Data)

SISD (single instruction stream / single data stream) – одиночный поток команд и одиночный поток данных. К этому классу относятся последовательные компьютерные системы, которые имеют один центральный процессор, способный обрабатывать только один поток последовательно исполняемых инструкций. В настоящее время практически все высокопроизводительные системы имеют более одного центрального процессора, однако каждый из них выполняет несвязанные потоки инструкций, что делает такие системы комплексами SISD-систем, действующих на разных пространствах данных. Для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка. В случае векторных систем векторный поток данных следует рассматривать как поток из одиночных неделимых векторов. Примерами компьютеров с архитектурой SISD могут служить большинство рабочих станций Compaq, Hewlett-Packard и Sun Microsystems.

MISD (multiple instruction stream / single data stream) – множественный поток команд и одиночный поток данных. Теоретически в этом типе машин множество инструкций должно выполняться над единственным потоком данных. До сих пор ни одной реальной машины, попадающей в данный класс, создано не было. В качестве аналога работы такой системы, по-видимому, можно рассматривать работу банка. С любого терминала можно подать команду и что-то сделать с имеющимся банком данных. Поскольку база данных одна, а команд много, то имеем дело с множественным потоком команд и одиночным потоком данных.


SIMD (single instruction stream / multiple data stream) – одиночный поток команд и множественный поток данных. Эти системы обычно имеют большое количество процессоров, от 1024 до 16384, которые могут выполнять одну и ту же инструкцию относительно разных данных в жесткой конфигурации. Единственная инструкция параллельно выполняется над многими элементами данных. Примерами SIMD-машин являются системы CPP DAP, Gamma II и Quadrics Apemille. Другим подклассом SIMD-систем являются векторные компьютеры. Векторные компьютеры манипулируют массивами сходных данных подобно тому, как скалярные машины обрабатывают отдельные элементы таких массивов. Это делается за счет использования специально сконструированных векторных центральных процессоров. Когда данные обрабатываются посредством векторных модулей, результаты могут быть выданы на один, два или три такта частотогенератора (такт частотогенератора является основным временным параметром системы). При работе в векторном режиме векторные процессоры обрабатывают данные практически параллельно, что делает их в несколько раз более быстрыми, чем при работе в скалярном режиме. Примерами систем подобного типа являются, например, компьютеры Hitachi S3600.

MIMD (multiple instruction stream / multiple data stream) – множественный поток команд и множественный поток данных. Эти машины параллельно выполняют несколько потоков инструкций над различными потоками данных. В отличие от упомянутых выше многопроцессорных SISD-машин, команды и данные связаны, потому что они представляют различные части одной и той же задачи. Например, MIMD-системы могут параллельно выполнять множество подзадач с целью сокращения времени выполнения основной задачи. Большое разнообразие попадающих в данный класс систем делает классификацию Флинна не полностью адекватной. Действительно, и четырехпроцессорный SX-5 компании NEC, и тысячепроцессорный Cray T3E попадают в этот класс. Это заставляет использовать другой подход к классификации, иначе описывающий классы компьютерных систем. Основная идея такого подхода может состоять, в следующем. Будем считать, что множественный поток команд может быть обработан двумя способами: либо одним конвейерным устройством обработки, работающем в режиме разделения времени для отдельных потоков, либо каждый поток обрабатывается своим собственным устройством. Первая возможность используется в MIMD-компьютерах, которые обычно называют конвейерными или векторными, вторая – в параллельных компьютерах. В основе векторных компьютеров лежит концепция конвейеризации, т.е. явного сегментирования арифметического устройства на отдельные части, каждая из которых выполняет свою подзадачу для пары операндов. В основе параллельного компьютера лежит идея использования для решения одной задачи нескольких процессоров, работающих сообща, причем процессоры могут быть как скалярными, так и векторными.

Классификация архитектур КС нужна для того, чтобы понять особенности работы той или иной архитектуры, но она не является достаточно детальной, чтобы на нее можно было опираться при создании многопроцессорных КС, поэтому следует вводить более детальную классификацию, которая связана с различными архитектурами ЭВМ и с используемым оборудованием.

SMP (symmetric multiprocessing) – симметричная многопроцессорная архитектура. Главной особенностью систем с архитектурой SMP является наличие общей физической памяти, разделяемой всеми процессорами.

Рисунок 2.1 - Схематический вид SMP-архитектуры

Память служит, в частности, для передачи сообщений между процессорами, при этом все вычислительные устройства при обращении к ней имеют равные права и одну и ту же адресацию для всех ячеек памяти. Поэтому SMP-архитектура называется симметричной. Последнее обстоятельство позволяет очень эффективно обмениваться данными с другими вычислительными устройствами. SMP-система строится на основе высокоскоростной системной шины (SGI PowerPath, Sun Gigaplane, DEC TurboLaser), к слотам которой подключаются функциональные блоки типов: процессоры (ЦП), подсистема ввода/вывода (I/O) и т. п. Для подсоединения к модулям I/O используются уже более медленные шины (PCI, VME64). Наиболее известными SMP-системами являются SMP-cерверы и рабочие станции на базе процессоров Intel (IBM, HP, Compaq, Dell, ALR, Unisys, DG, Fujitsu и др.) Вся система работает под управлением единой ОС (обычно UNIX-подобной, но для Intel-платформ поддерживается Windows NT). ОС автоматически (в процессе работы) распределяет процессы по процессорам, но иногда возможна и явная привязка.

Преимущества SMP-систем:

а) простота и универсальность для программирования. Архитектура SMP не накладывает ограничений на модель программирования, используемую при создании приложения: обычно используется модель параллельных ветвей, когда все процессоры работают независимо друг от друга. Однако можно реализовать и модели, использующие межпроцессорный обмен. Использование общей памяти увеличивает скорость такого обмена, пользователь также имеет доступ сразу ко всему объему памяти. Для SMP-систем существуют довольно эффективные средства автоматического распараллеливания;

б) простота эксплуатации. Как правило, SMP-системы используют систему кондиционирования, основанную на воздушном охлаждении, что облегчает их техническое обслуживание;

в) относительно невысокая цена.

Недостатки SMP-систем :

а) системы с общей памятью плохо масштабируются. Этот существенный недостаток SMP-систем не позволяет считать их по-настоящему перспективными. Причиной плохой масштабируемости является то, что в данный момент шина способна обрабатывать только одну транзакцию, вследствие чего возникают проблемы разрешения конфликтов при одновременном обращении нескольких процессоров к одним и тем же областям общей физической памяти. Вычислительные элементы начинают друг другу мешать. Когда произойдет такой конфликт, зависит от скорости связи и от количества вычислительных элементов. В настоящее время конфликты могут происходить при наличии 8-24 процессоров. Кроме того, системная шина имеет ограниченную (хоть и высокую) пропускную способность (ПС) и ограниченное число слотов. Все это очевидно препятствует увеличению производительности при увеличении числа процессоров и числа подключаемых пользователей. В реальных системах можно задействовать не более 32 процессоров.

Для построения масштабируемых систем на базе SMP используются кластерные или NUMA-архитектуры. При работе с SMP-системами используют так называемую парадигму программирования с разделяемой памятью (shared memory paradigm).

UMA – Uniform Memory Access

5. SMP-архитектура используется в cерверах и РС на базе процессоров Intel, AMD, Sun, IBM, HP

(+) : простота, «отработанность» базовых принципов

(-) : весь обмен м/д процессором и памятью осущ. по 1 шине – узкое горлышко арх-ры – ограничение производительности, масштабируемости.

Пример:

MPP – архитектура: Massive parallel processing

Система с массовым параллелизмом. В основе лежал транспьютер – мощный универсальный процессор, особенностью которого было наличие 4 линков (коммуникационные каналы связи). Каждый линк состоит из двух частей, служащих для передачи информации в противоположных направлениях, и используется для соединения транспьютеров между собой и подключения внешних устройств. Архитектура: множество узлов, каждые узел – ОП+ЦП

Классическая МРР-архитектура: каждый узел соединен с 4 узлами по каналу «точка-точка».

Пример: Intel Peragon

Кластерная архитектура

Реализация объединения машин, представляющегося единым целым для ОС, системного ПО, прикладных программами пользователей.

Типы кластеров

  1. Системы высокой надежности/готовности (High Availability Systems, HA).
  2. Системы для высокопроизводительных вычислений (High Performance, HP, Compute clusters).
  3. Многопоточные системы.
  4. Load-balancing clusters. (распределение вычислительной нагрузки)

Пример: архитектура кластера theHIVE

5. NUMA архитектура Non Uniform Memory Access – неоднородный доступ к памяти

Каждый процессор имеет доступ к своей и к чужой памяти (для доступа в чужую память используется коммутационная сеть или даже проц чужого узла). Доступ к памяти чужого узла может поддерживаться аппаратно: спец. контроллеры.



- : дорого, плохая масштабируемость.

Сейчас: NUMA осущ доступ к чужой памяти программно.

Вычислительная система NUMA состоит из набора узлов (содержит один или несколько процессоров, на нем работает единственная копия ОС), которые соединены между собой коммутатором либо быстродействующей сетью.

Топология связей разбивается на несколько уровней. Каждый из уровней предоставляет соединения в группах с небольшим числом узлов. Такие группы рассматриваются как единые узлы на более высоком уровне.

ОП физически распределена, но логически общедоступна.

В зависимости от пути доступа к элементу данных, время, затрачиваемое на эту операцию, может существенно различаться.

Примеры конкретных реализаций: cc-NUMA, СОМА, NUMA-Q

Пример: HP Integrity SuperDome

Упрощенные блок-схемы SMP (а) и MPP (б)

  1. Пять основных архитектур высокопроизводительных ВС, их краткая характеристика, примеры. Сравнение кластерной архитектуры и NUMA.

В кластере каждый процессор имеет доступ только в своей памяти, в NUMA не только к своей, но и к чужой (для доступа в чужую память используется коммутационная сеть и процессор чужого узла).

  1. SMP архитектура. Принципы организации. Достоинства, недостатки. Масштабируемость в «узком» и «широком» смысле. Область применения, примеры ВС на SMP.

SMP архитектура (symmetric multiprocessing) - cимметричная многопроцессорная архитектура. Главной особенностью систем с архитектурой SMP является наличие общей физической памяти, разделяемой всеми процессорами.

1. SMP-система строится на основе высокоскоростной системной шины, к слотам которой подключаются функциональные блоки трех типов: процессоры (ЦП), оперативная память (ОП), подсистема ввода/вывода (I/O).

2. Память является способом передачи сообщений между процессорами.

3. Все вычислительные устройства при обращении к ОП имеют равные права и одну и ту же адресацию для всех ячеек памяти.



4. Последнее обстоятельство позволяет очень эффективно обмениваться данными с другими вычислительными устройствами.

5. SMP используется в cерверах и рабочих станциях на базе процессоров Intel, AMD, Sun, IBM, HP.

6. SMP-система работает под управлением единой ОС (либо UNIX-подобной, либо Windows). ОС автоматически (в процессе работы) распределяет процессы по процессорам, но иногда возможна и явная привязка.

Принципы организации:

SMP система состоит из нескольких однородных процессоров и массива общей памяти.

Один из часто используемых в SMP архитектурах подходов для формирования масштабируемой, общедоступной системы памяти, состоит в однородной организации доступа к памяти посредством организации масштабируемого канала память-процессоры.

Каждая операция доступа к памяти интерпретируется как транзакция по шине процессоры-память.

В SMP каждый процессор имеет по крайней мере одну собственную кэш-память (а возможно, и несколько). Можно сказать, что SMP система - это один компьютер с несколькими равноправными процессорами.

Когерентность кэшей поддерживается аппаратными средствами.

Все остальное - в одном экземпляре: одна память, одна подсистема ввода/вывода, одна операционная система.

Слово "равноправный" означает, что каждый процессор может делать все, что любой другой. Каждый процессор имеет доступ ко всей памяти, может выполнять любую операцию ввода/вывода, прерывать другие процессоры.

Масштабируемость:

В «узком» смысле: возможность подключения аппаратных средств в некоторых пределах (процессоры, память, интерфейсы).

В «широком» смысле: линейный рост показателя производительности при увеличении аппаратных средств.

Достоинства:

Простота и универсальность для программирования. Архитектура SMP не накладывает ограничений на модель программирования, используемую при создании приложения: обычно используется модель параллельных ветвей, когда все процессоры работают абсолютно независимо друг от друга - однако, можно реализовать и модели, использующие межпроцессорный обмен. Использование общей памяти увеличивает скорость такого обмена, пользователь также имеет доступ сразу ко всему объему памяти.

Легкость в эксплуатации. Как правило, SMP-системы используют систему охлаждения, основанную на воздушном кондиционировании, что облегчает их техническое обслуживание.

Относительно невысокая цена.

Преимущество, связанное с параллелизмом. Неявно производимая аппаратурой SMP пересылка данных между кэшами является наиболее быстрым и самым дешевым средством коммуникации в любой параллельной архитектуре общего назначения. Поэтому при наличии большого числа коротких транзакций (свойственных, например, банковским приложениям), когда приходится часто синхронизовать доступ к общим данным, архитектура SMP является наилучшим выбором; любая другая архитектура работает хуже.

Архитектура SMP наиболее безопасна. Из этого не следует, что передача данных между кэшами желательна. Параллельная программа всегда будет выполняться тем быстрее, чем меньше взаимодействуют ее части. Но если эти части должны взаимодействовать часто, то программа будет работать быстрее на SMP.

Недостатки:

SMP-cистемы плохо масштабируемы:

1. Системная шина имеет ограниченную (хоть и высокую) пропускную способность и ограниченное число слотов, так называемое «узкое горлышко».

2. В каждый момент времени шина способна обрабатывать только одну транзакцию, вследствие чего возникают проблемы разрешения конфликтов при одновременном обращении нескольких процессоров к одним и тем же областям общей физической памяти. Когда произойдет такой конфликт, зависит от скорости связи и от количества вычислительных элементов.

Все это препятствует увеличению производительности при увеличении числа процессоров и числа подключаемых пользователей. В реальных системах эффективно можно использовать не более 8-16-32 процессоров.

Область применения: для работы с банковскими приложениями

Пример: Архитектура Sun Fire T2000. Архитектура UltraSPARC T1.

  1. SMP архитектура. Совершенствование и модификация SMP архитектуры. SMP в современных многоядерных процессорах. Когерентность КЭШа.

SMP архитектура (symmetric multiprocessing) - cимметричная многопроцессорная архитектура. Главной особенностью систем с архитектурой SMP является наличие общей физической памяти, разделяемой всеми процессорами.

Совершенствование и модификация SMP:

Пример: Архитектура QBB серверных систем серии GS DEC

С целью увеличения производительности шины произведена попытка убрать шину, но оставить общий доступ к памяти --> переход и замена общей шины локальным коммутатором (или системой коммутаторов): каждый процессор в каждый момент времени скоммутирован с 4 банками памяти.

Каждый проц работает с каким-то банком памяти,

Переключается на другой банк памяти

Начинает работу с другим банком памяти.



Понравилась статья? Поделиться с друзьями: