Вся правда о многоядерных процессорах. Что такое кодеки и для чего они нужны Компьютер на основе шестиядерных процессоров

Когда вы покупаете новый ноутбук или строите компьютер, процессор является самым важным решением. Но там есть много жаргона, особенно что касается ядер. Какой процессор выбрать: двухъядерный, четырехъядерный, шестиядерный или восьмиядерный. Прочитайте статью чтобы понять, что это на самом деле означает.

Двухъядерный или четырехъядерный, как можно проще

Давайте сделаем все просто. Вот все, что вам нужно знать:

  • Существует только один процессорный чип. У этого чипа может быть одно, два, четыре, шесть или восемь ядер.
  • В настоящее время 18-ядерный процессор - это лучшее, что можно получить на потребительских ПК.
  • Каждое «ядро» является частью чипа, который выполняет обработку. По сути, каждое ядро является центральным процессором (CPU).

Скорость

Теперь простая логика диктует, что больше ядер сделает ваш процессор быстрее в целом. Но это не всегда так. Это немного сложнее.

Больше ядер дают большую скорость только если программа может разделить свои задачи между ядрами. Не все программы предназначены для разделения задач между ядрами. Подробнее об этом позже.

Тактовая частота каждого ядра также является решающим фактором скорости, как и архитектура. Более новый двухъядерный процессор с более высокой тактовой частотой часто превосходит старый четырехъядерный процессор с более низкой тактовой частотой.

Потребляемая мощность

Больше ядер также приводит к более высокому потреблению энергии процессором. Когда процессор включен, он подает питание на все ядра, а не только на задействованные.

Производители чипов стараются снизить энергопотребление и сделать процессоры более энергоэффективными. Но, общее правило гласит что, четырехъядерный процессор будет потреблять больше энергии с вашего ноутбука нежели двухъядерный (и, следовательно, быстрее разряжается аккумулятор).

Выделение тепла

Каждое ядро, влияет на тепло, генерируемое процессором. И опять же, общее правило, больше ядер приводит к более высокой температуре.

Из-за этого дополнительного тепла, производители должны добавить лучшие радиаторы или другие решения для охлаждения.

Цена

Больше ядер не всегда выше цены. Как мы уже говорили ранее, в игру вступают тактовая частота, архитектурные версии и другие соображения.

Но если все остальные факторы одинаковы, тогда больше ядер будет получать более высокую цену.

Все о программном обеспечении

Вот маленький секрет, который производители процессоров не хотят, чтобы вы знали. Речь идет не о том, сколько ядер вы используете, а о том, какое программное обеспечение вы используете на них.

Программы должны быть специально разработаны, чтобы использовать преимущества нескольких процессоров. Такое «многопоточное программное обеспечение» не так распространено, как вы думаете.

Важно отметить, что даже если это многопоточная программа, также важно то, для чего она используется. Например, веб-браузер Google Chrome поддерживает несколько процессов, а также программное обеспечение для редактирования видео Adobe Premier Pro.

Adobe Premier Pro предлагает различные ядра для работы над различными аспектами вашего редактирования. Учитывая многие слои, связанные с редактированием видео, это имеет смысл, так как каждое ядро может работать над отдельной задачей.

Аналогично, Google Chrome предлагает разным ядрам работать на разных вкладках. Но в этом и заключается проблема. После того как вы откроете веб-страницу на вкладке, она обычно статична после этого. Нет необходимости в дальнейшей обработке; остальная часть работы заключается в сохранении страницы в ОЗУ. Это означает, что даже если ядро можно использовать для закладки фона, в этом нет никакой необходимости.

Этот пример Google Chrome представляет собой иллюстрацию того, как даже многопоточное программное обеспечение может не дать вам большой реальный прирост производительности.

Два ядра не удваивают скорость

Итак, допустим, у вас есть правильное программное обеспечение, и все ваше другое оборудование одинаково. Будет ли четырехъядерный процессор в два раза быстрее, чем двухъядерный процессор? Нет.

Увеличение ядер не затрагивает программную проблему масштабирования. Масштабирование до ядер - теоретическая способность любого программного обеспечения назначать правильные задачи на правильные ядра, поэтому каждое ядро вычисляет с оптимальной скоростью. Это не то, что происходит на самом деле.

В действительности задачи разбиваются последовательно (что делает большинство многопоточных программ) или случайным образом. Например, скажем, вам нужно выполнить три задачи, чтобы закончить действие, и у вас есть пять таких действий. Программное обеспечение сообщает ядру 1 решить задачу 1, в то время как ядро 2 решает вторую, ядро 3 третью; между тем, ядро 4 простаивает.

Если третья задача самая сложная и длинная, тогда было бы разумно, чтобы программное обеспечение разделило третью задачу между ядрами 3 и 4. Но это не то, что она делает. Вместо этого, хотя ядро 1 и 2 выполнят задачу быстрее, действие должно будет дождаться завершения ядра 3, а затем вычислить результаты ядер 1, 2 и 3 вместе.

Все это окольный способ сказать, что программное обеспечение, как и сегодня, не оптимизировано, чтобы в полной мере использовать преимущества нескольких ядер. И удвоение ядер не равно удвоению скорости.

Где больше ядер реально помогут?

Теперь, когда вы знаете, что делают ядра и их ограничения в повышении производительности, вы должны спросить себя: «Нужно ли мне больше ядер?» Ну, это зависит от того, что вы планируете с ними делать.

Если вы часто играете в компьютерные игры, то больше ядер на вашем ПК несомненно вам пригодятся. Подавляющее большинство новых популярных игр от крупных студий поддерживают многопоточную архитектуру. Видеоигры по-прежнему в значительной степени зависят от того, какая видеокарта у вас стоит, но многоядерный процессор тоже помогает.

Для любого профессионала, который работает с видео или аудиопрограммами, больше ядер будет полезно. Большинство популярных аудио- и видеомонтажных инструментов используют многопоточную обработку.

Фотошоп и дизайн

Если вы дизайнер, то более высокая тактовая частота и больше кэш-памяти процессора будут увеличиваться скорость лучше, чем больше ядер. Даже самое популярное программное обеспечение для проектирования, Adobe Photoshop, в значительной степени поддерживает однопоточные или слегка поточные процессы. Множество ядер не будет значительным стимулом для этого.

Более быстрый веб-просмотр

Как мы уже говорили, наличие большего количества ядер не означает более быстрый просмотр веб-страниц. В то время как все современные браузеры поддерживают архитектуру многопроцессорных процессов, ядра помогут только в том случае, если ваши фоновые вкладки являются сайтами, для которых требуется большая вычислительная мощность.

Офисные задачи

Все основные приложения Office однопоточные, поэтому четырехъядерный процессор не будет увеличивать скорость.

Нужно ли вам больше ядер?

В целом, четырехъядерный процессор будет работать быстрее, чем двухъядерный процессор для общих вычислений. Каждая программа, которую вы открываете, будет работать на своем собственном ядре, поэтому, если задачи будут разделены, скорости будут лучше. Если вы используете много программ одновременно, часто переключайтесь между ними и назначаете им свои собственные задачи, выбирайте процессор с большим количеством ядер.

Просто знайте это: общая производительность системы - это одна из областей, в которой слишком много факторов. Не ожидайте магического повышения производительности, заменив всего один компонент, даже такой как процессор.

Компания Intel, чтобы остаться лидером процессорного рынка, неуклонно продолжает следовать своей концепции «Тик-Так», примерно раз в два года переводя производство на новый более тонкий техпроцесс («Тик»), а через год представляя новую архитектуру, которая выпускается с помощью уже освоенного техпроцесса («Так»). Так, чуть более года назад миру была представлена архитектура Nehalem для настольных процессоров, наиболее мощные и дорогие из которых используют 45 нм ядро Bloomfield. И вот сейчас пришла пора перевести производство «топовых» процессоров на новый техпроцесс, который, кстати, уже успешно опробован на представленных еще к Новому Году массовых процессорах с ядром Clarkdale. Однако в этих моделях со встроенным графическим ядром только вычислительная часть производилась по 32 нм нормам, а нужно освоить техпроцесс, чтобы выпускать и полноценные процессоры.

И вот, переводя выпуск процессоров с архитектурой Nehalem на 32 нм техпроцесс, в компании Intel решили не просто повторить то же самое, но при меньшем размере элементов и увеличить рабочую частоту, как это, обычно, было ранее. В этот раз обновляемый процессор получил и заметные архитектурные изменения – он стал шестиядерным. Конечно, сама архитектура Nehalem практически не претерпела изменений, а просто новые процессоры с кодовым названием Gulftown включают на два больше фактически таких же вычислительных ядер, как и в Bloomfield.

Параллельно с увеличением числа ядер, в полтора раза был увеличен и объем кэш-памяти третьего уровня, которой теперь составляет 12 МБ. Причем кэш-память L3 по-прежнему работает по технологии Smart Cache, т.е. является цельной и может распределяться динамически между ядрами в зависимости от их потребностей, вплоть до того, что будет захвачена одним наиболее загруженным вычислительным ядром.

Но было произведено и одно небольшое расширение возможностей – наконец-то для «топовых» процессоров была реализована поддержка инструкций ускорения алгоритма шифрования AES, которые уже полгода как реализованы в массовых двухъядерных процессорах с ядром Clarkdale . В остальном ядро Gulftown точно такое же, как и Bloomfield, особенности которого более детально описаны в обзоре процессора Intel Core i7-920 , даже встроенный трехканальный контроллер памяти официально поддерживает работу только с модулями DDR3-1066. Естественно, новые процессоры на ядре Gulftown используют точно такой же процессорный разъем Intel LGA 1366, обмениваются данными с системой используя шину QPI, поддерживают тот же набор фирменных технологий и могут быть установлены в материнские платы на чипсете Intel X58 Express (главное только не забыть предварительно обновить BIOS).

Правда, пока, говоря о новых процессорах на ядре Gulftown во множественном числе, мы подразумеваем всего одну модель , которая имеет очень высокую стоимость и предназначена для энтузиастов. Более доступные массовые модели появятся позднее. Что ж, ожидая пока появятся не такие дорогие шестиядерные процессоры, изучим возможности переведенной на 32 нм техпроцесс, расширенной и немножко обновленной архитектуры Nehalem.

В нашу тестовую лабораторию попал инженерный семпл процессора Intel Core i7-980X Extreme Edition в коробке без полиграфии, хотя сами размеры упаковки полностью соответствуют розничной версии. Причем по габаритам эта коробка стала почти в два раза больше, чем упаковка предыдущих моделей процессоров серии Core i7-900. Все дело в том, что теперь к «топовому» процессору прилагается и соответствующий кулер.

Наконец-то компания Intel пошла навстречу покупателям очень дорогих процессоров серии Extreme Edition, предлагая для них сразу и хорошую фирменную систему охлаждения – Intel DBX-B Thermal Solution. Мы обязательно далее рассмотрим более внимательно эту систему охлаждения и изучим ее возможности. Кроме процессора и кулера внутри коробки покупатель должен будет найти руководство пользователя, гарантийные обязательства и фирменную наклейку.

Перейдем к рассмотрению особенностей технических характеристик процессора Intel Core i7-980X Extreme Edition.

Спецификация:

Маркировка

Процессорный разъем

Тактовая частота, МГц

Множитель

Частота шины, МГц

Объем кэш-памяти L1 (Данные\Инструкции), КБ

Объем кэш-памяти L2, КБ

Объем кэш-памяти L3, MБ

Количество ядер

Поддержка инструкций

MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AES, EM64T

Пропускная способность QPI, ГТ/с

Напряжение питания, В

Рассеиваемая мощность, Вт

Критическая температура, °C

Техпроцесс

Поддержка технологий

Enhanced Halt State (C1E)
Enhanced Intel Speedstep Technology
Hyper-Threading Technology
Execute Disable Bit
Intel Virtualization Technology
Intel Turbo Boost Technology

Спецификация контролера памяти

Максимальный объем памяти, ГБ

Типы памяти

Число каналов памяти

Максимальная пропускная способность, ГБ/c

Поддержка ECC

Изучая спецификацию Intel Core i7-980X Extreme Edition, интересно отметить, что при переходе на новый техпроцесс не было обеспечено увеличение и рабочих частот, т.к. предшествующий самый «топовый» процессор Intel Core i7-975 Extreme Edition работает на точно такой же номинальной частоте 3,33 ГГц. Видимо поэтому Intel Core i7-980X Extreme Edition имеет всего на немного больший модельный номер.

Также обращаем внимание, что в отличие от обычных (не экстремальных) процессоров ряда Intel Core i7-900, процессор Intel Core i7-980X Extreme Edition, как и все Intel Core i7 Extreme Edition, использует более быстрый режим работы шины QPI - 6,4 ГТ/с вместо 4,8 ГТ/с, что должно немного ускорить обмен данными с системой.

На теплораспределительной крышке розничного процессора, в отличие от мало примечательного инженерного семпла, должна будет быть указана модель, номер sSpec, страна-производитель, а также техническая информация:

  • частота – 3,33 ГГц;
  • объем кэш-памяти L3 – 12 МБ;
  • тактовая частота шины QPI – 6,4 ГТ/с;
  • требования совместимости – PCG (Platform Compatibility Guide) 08.

Как и следовало ожидать, количество и расположение согласующих элементов на обратной стороне процессора кардинально отличается от других моделей семейства Intel Core i7-900.

Закончив с внешним осмотром процессора Intel Core i7-980X Extreme Edition, давайте взглянем на него, так сказать, изнутри, воспользовавшись информационной утилитой CPU-Z.

Как видим, утилита вполне корректно визуализирует заявленные технические характеристики и показывает некоторые другие интересные подробности. Кроме увеличившегося числа вычислительных ядер до 6, причем благодаря поддержке технологии Hyper-Threading с возможностью одновременного исполнения до 12 программных потоков, у процессора Intel Core i7-980X Extreme Edition в полтора раза увеличен объем кэш-памяти третьего уровня – до 12 МБ. Очень интересно взглянуть на организацию этой расширенной кэш-памяти.

К сожалению, архитектура кэш-памяти L3 не изменилась – все те же 16 линий ассоциации по 64 байта, как и у моделей с 8 МБ. В таком случае, теоретически, увеличение на 50% объема кэш-памяти привело к ее замедлению на 33% при прочих неизменных параметрах. Кроме того, чтобы уменьшить энергопотребление процессора, и он остался в тепловом пакете до 130 Вт, была немного уменьшена частота работы и напряжение питания для логики Uncore, в том числе и встроенного контроллера памяти. Сразу скажем, что низкоуровневые синтетические тесты отлично фиксируют увеличение латентности кэш-памяти третьего уровня и оперативной памяти, но куда более интересно просмотреть в более практичных и универсальных тестах насколько критично такое небольшое замедление памяти и кэш-памяти при заметном увеличении объема последней, а также добавлении процессору еще двух вычислительных ядер. Этот вопрос мы и постараемся раскрыть в процессе тестирования.

Отдельно следует упомянуть о работе контроллера памяти процессора: официально он поддерживает работу только с трехканальными модулями памяти DDR3 на частоте до 1066 МГц. Ситуацию не изменило даже обновление ядра. Однако не документировано можно использовать процессор Intel Core i7-980X Extreme Edition в связке с модулями памяти DDR3 повышенной частоты начиная от DDR3-1333 и, благодаря свободному делителю, до, наверное, самых быстрых на сегодняшний день DDR3-2533. Последнее мы проверить не смогли, но имеющиеся в тестовой лаборатории модули без проблем запустились на эффективной частоте 1866 МГц.

Заканчивая рассказ о заявленных возможностях процессора Intel Core i7-980X Extreme Edition следует напомнить о поддержке следующих фирменных технологий компании Intel:

    Enhanced Halt State (C1E) отключает некоторые блоки процессора во время его бездействия, тем самым уменьшая энергопотребление и тепловыделение;

    Enhanced Intel Speedstep Technology позволяет уменьшать напряжение питания и тактовую частоту во время низкой нагрузки на процессор;

    Execute Disable Bit – поддержка программно-аппаратного механизма защиты от переполнения буфера, механизма используемого многими вредоносными программами для нанесения ущерба или проникновения в систему;

    Intel Virtualization Technology дает возможность виртуальным машинам получать доступ к аппаратным ресурсам;

    Hyper-Threading Technology – каждое ядро процессора Intel Core i7 поддерживает одновременное выполнение двух программных потоков;

    Intel Turbo Boost Technology – позволяет увеличивать множитель процессора в зависимости от нагрузки, фактически представляет собой функцию динамического разгона, но без заметного увеличения энергопотребления, которое ограничено заявленным тепловым пакетом, и тепловыделения.

При тестировании использовался Стенд для тестирования Процессоров №1

Материнские платы (AMD) ASUS M3A32-MVP DELUXE (AMD 790FX, sAM2+, DDR2, ATX)GIGABYTE GA-MA790XT-UD4P (AMD 790X, sAM3, DDR3, ATX)
Материнские платы (AMD) ASUS F1A75-V PRO (AMD A75, sFM1, DDR3, ATX)ASUS SABERTOOTH 990FX (AMD 990FX, sAM3+, DDR3, ATX)
Материнские платы (Intel) GIGABYTE GA-EP45-UD3P (Intel P45, LGA 775, DDR2, ATX)GIGABYTE GA-EX58-DS4 (Intel X58, LGA 1366, DDR3, ATX)
Материнские платы (Intel) ASUS Maximus III Formula (Intel P55, LGA 1156, DDR3, ATX)MSI H57M-ED65 (Intel H57, LGA 1156, DDR3, mATX)
Материнские платы (Intel) ASUS P8Z68-V PRO (Intel Z68, sLGA1155, DDR3, ATX)ASUS P9X79 PRO (Intel X79, sLGA2011, DDR3, ATX)
Кулеры Noctua NH-U12P + LGA1366 KitScythe Kama Angle rev.B (LGA 1156/1366)ZALMAN CNPS12X (LGA 2011)
Оперативная память 2х DDR2-1200 1024 МБ Kingston HyperX KHX9600D2K2/2G2/3x DDR3-2000 1024 МБ Kingston HyperX KHX16000D3T1K3/3GX
Видеокарты EVGA e-GeForce 8600 GTS 256 МБ GDDR3 PCI-EASUS EN9800GX2/G/2DI/1G GeForce 9800 GX2 1ГБ GDDR3 PCI-E 2.0
Жесткий диск Seagate Barracuda 7200.12 ST3500418AS, 500 ГБ, SATA-300, NCQ
Блок питания Seasonic SS-650JT, 650 Вт, Active PFC, 80 PLUS, 120 мм вентилятор

Выберите с чем хотите сравнить Intel Core i7-980X EE

Как видим, шестиядерный процессор, работающий на частоте 3,33 ГГц, уверенно превосходит по производительности все ранее протестированные нами модели. Но вот сможете ли вы ощутить это увеличение быстродействия, будет сильно зависеть от выполняемых вами задач. Так, в математических, некоторых мультимедийных пакетах и приложениях для трехмерного моделирования можно будет получить заметное на глаз ускорение. А вот в подавляющем большинстве компьютерных игр от использования шестиядерного процессора будет мало толку, хотя и можно будет вполне безболезненно параллельно с игрой запустить какое-то требовательное приложение, например, перекодирование видео или полное сканирование антивирусом.

Реальная польза от шести ядер: Bloomfield vs. Gulftown

При тестировании процессора Intel Core i7-980X Extreme Edition на номинальной частоте мы, к сожалению, не смогли однозначно и полно ответить насколько шестиядерный процессор с увеличенным объемом кэш-памяти третьего уровня превосходит четырехъядерный с почти такой же архитектурой, т.к. сравниваемые модели работали на разных тактовых частотах. Но учитывая, что старшие модели с четырьмя и шестью ядрами работают на одной частоте, то, вполне вероятно, ожидаемые в недалеком будущем более доступные модели на ядре Gulftown будут конкурировать с равными по частоте решениями на ядре Bloomfield. Для проверки этого мы замедлили процессор Intel Core i7-980X Extreme Edition до частоты побывавшего у нас в тестовой лаборатории Intel Core i7-950.

После проведения серии стандартных тестов мы получили вот такой результат:

Тестовый пакет

Результат

Изменение производительности, %

Intel Core i7-950

Intel Core i7-980X @3,06 ГГц

Rendering, CB-CPU

DirectX 9, High, fps

DirectX 10, Very High, fps

Производительность в различных приложениях зависит от множества параметров, в том числе и от особенностей примененных алгоритмов, а также оптимизации для многопоточного исполнения. Наверное, поэтому мы зафиксировали серьезный разброс значений – от небольшого отрицательного результата, вероятнее всего, вследствие плохой оптимизации под исполнение на многоядерных процессорах и большой зависимости от скорости работы кэш-памяти и оперативной памяти, до достаточно внушительного прироста быстродействия почти достигающего теоретические +50% вследствие отлично реализованного алгоритма с поддержкой параллельных вычислений. Но в среднем ядро Gulftown оказалось быстрее Bloomfield всего на ≈12%. Именно такое ускорение системы смогут получить в недалеком будущем среднестатистические пользователи, перешедшие с четырехъядерного процессора на шестиядерный, хотя в профессиональной сфере эффект от замены процессора будет значительно больше.

Использование более быстрой оперативной памяти

Мы уже установили, что далеко не всегда от шестиядерного процессора будет ощутимое ускорение выполнения задач, причем частично виновно в этом и некоторое замедление кэш-памяти третьего уровня и встроенного контроллера памяти. С другой стороны, по крайней мере с Intel Core i7-980X Extreme Edition, в систему можно установить достаточно быстрые модули памяти, превосходящие по скорости «стандартные» DDR3-1333.

Выше мы уже показали, что на практике система стабильно работала с DDR3-1866, хотя такие и более быстрые модули имеют заметно большую стоимость, чем DDR3-1333. Именно поэтому мы не стали проводить эксперименты с использованием однозначно оверклокерских частот для модулей памяти, а ограничились частотой 1600 МГц, на которой работают более доступные и распространенные модули, иногда даже не имеющие радиаторов. Ведь именно DDR3-1600, как нам кажется, будет наиболее актуальна в недалеком будущем, когда в продаже появятся доступные шестиядерные процессоры. Но приведет ли это к заметному ускорению системы?

Тестовый пакет

Результат

Прирост производительности, %

Rendering, CB-CPU

Fritz Chess Benchmark v.4.2, knodes/s

DirectX 9, High, fps

DirectX 10, Very High, fps

Судя по полученным результатам, от использования более быстрых модулей DDR3-1600 в лучшем случае стоит ожидать прироста производительности на 5-7%, хотя в среднем это 1-2%. Даже если воспользоваться более дорогими наборами с агрессивными таймингами, то это не сильно изменит ситуацию. Возможно, именно поэтому официально для процессоров Intel Core i7 под LGA 1366 до сих пор заявлена поддержка только DDR3-1066. Но, все же, если и массовые шестиядерные процессоры будут иметь возможность без разгона работать с модулями памяти быстрее чем DDR3-1333 и последние будут тоже иметь доступную стоимость, то обеспечат некоторое небольшое увеличение быстродействия.

Работа технологии Intel Turbo Boost

Если возможность использования быстрых модулей памяти опциональная, причем для массовых моделей еще и не гарантированна, то поддержкой технологии Intel Turbo Boost будут наделены все процессоры Intel Core i7. Напомним, что технология Intel Turbo Boost обеспечивает интеллектуальную подстройку производительности процессора под нужды пользователя путем замедления незагруженных ядер и некоторого ускорения остальных, причем без заметного увеличения энергопотребления (не выходя за рамки теплового пакета). Таким образом, плохо распараллеленные задачи выполняются чуть быстрее. Кроме того, у Intel Turbo Boost есть режим ускорения за счет увеличения на один шаг множителя, т.е. на 133 МГц всех вычислительных ядер, что в любом случае гарантирует некоторое повышение быстродействия, главное не забыть активировать Intel Turbo Boost в BIOS.

Для шестиядерных процессоров формула ускорений стала иметь вид 1/1/1/1/2/2. То есть при нагрузке на одно или два ядра их частота увеличивается на 2х до 3,6 ГГц, естественно с замедлением остальных, а во всех других случаях процессор станет быстрее на 133 МГц. Однако не стоит забывать, что при этом процессор начнет потреблять немного больше электроэнергии.

Попробуем оценить, какое ускорение получит система после включения технологии Intel Turbo Boost.

Тестовый пакет

Результат

Прирост производительности, %

Intel Turbo Boost OFF

Intel Turbo Boost ON

Rendering, CB-CPU

Fritz Chess Benchmark v.4.2, knodes/s

DirectX 9, High, fps

DirectX 10, Very High, fps

Эффективность включения Intel Turbo Boost в большинстве задач превышает пользу от установки более быстрых модулей памяти, причем для этого не нужно никаких дополнительных затрат, а сама технология будет гарантированной для всех процессоров.

В целом, технологию Intel Turbo Boost можно рекомендовать оставлять всегда включенной, ведь в режиме простоя частота ядер и напряжение питания все равно будут уменьшаться, а небольшое увеличение энергопотребления при нагрузке не станет проблемой даже если вы используете «боксовый» кулер. А в данном случае, благодаря «коробочному» Intel DBX-B Thermal Solution, можно попробовать получить и хорошие результаты разгона.

Разгон Intel Core i7-980X Extreme Edition

Держа в руках процессор со свободным множителем, такой как Intel Core i7-980X Extreme Edition, наиболее простым и доступным способом разгона кажется именно увеличением множителя, хотя это и не самый оптимальный режим. Мы решили опробовать различные варианты, но для начала выяснили, какой результат можно получить, если просто увеличить множитель процессора, естественно, обеспечивая стабильность на повышенной частоте с помощью некоторого увеличения напряжения питания.

Таким простым и удобным способом нам удалось добиться стабильности от Intel Core i7-980X Extreme Edition с множителем х31, т.е. на частоте 4125 МГц, что на почти 24% больше номинальной частоты. Заставить работать процессор с множителем х32 даже при большем напряжении питания ядра, к сожалению, не удалось. Но и +24% должны обеспечить заметное ускорение системы.

Тестовый пакет

Результат

Прирост производительности, %

Номинальная частота

Разогнанный процессор

Rendering, CB-CPU

Fritz Chess Benchmark v.4.2, knodes/s

DirectX 9, High, fps

DirectX 10, Very High, fps

Как видим, в ряде задач рост производительности системы практически прямо пропорционален частоте работы процессора, но в комплексных задачах ускорение не столь велико и в среднем составило только ≈13,5%. В целом, такой результат вполне ожидаем, т.к. многие ресурсоемкие приложения зависимы и от других подсистем компьютера.

Поэтому мы попробовали достичь той же частоты 4,12 ГГц при помощи наращивания опорной частоты, что ведет к ускорению всех шин и встроенного в процессор контроллера памяти, а также самих модулей памяти. Поскольку в данной ситуации увеличилась не только частота вычислительных ядер, но и всех остальных узлов, то можно ожидать заметно большего прироста производительности.

Тестовый пакет

Результат

Прирост производительности, %

Номинальная частота

Разогнанный процессор

Rendering, CB-CPU

Fritz Chess Benchmark v.4.2, knodes/s

DirectX 9, High, fps

DirectX 10, Very High, fps

Теперь увеличение производительности можно будет заметить практически во всех задачах: средний прирост быстродействия составил 18,6%. Таким образом, вполне очевидно, что наличие у процессора свободного множителя только добавляет гибкости при разгоне.

Итогом сравнения различных способов разгона будет вывод, что разгон с помощью множителя является наиболее простым и доступным, но будет более приемлемым при использовании не таких дорогих процессоров со свободным множителем, например, Intel Core i5-655K или Intel Core i7-875K . Профессионалу же, желающему получить максимальную отдачу от разгона очень дорогой модели, от свободного множителя практически никакой пользы, т.к. разгон с помощью увеличения частоты системной шины и всех связанных с нею узлов и компонентов обеспечивает наибольший прирост производительности.

Но при разгоне изменяется и энергопотребление процессора, что обязательно следует учитывать:

Энергопотребление системы

Номинальный режим с включенными технологиями энергосбережения

Номинальный режим при выключенных технологиях энергосбережения

Разгон процессора до 4,2 ГГц при напряжении питания 1,4 В

Простой системы, Вт

Нагрузка с помощью стресс-теста в EVEREST, Вт

Разгон процессора на 26% заметно увеличил энергопотребление процессора, а значит и его тепловыделение. Приятно отметить, что все эти эксперименты мы проводили с помощью идущего в комплекте с процессором кулера Intel DBX-B Thermal Solution.

Комплектная система охлаждения Intel DBX-B Thermal Solution

Как уже было не раз упомянуто на протяжении обзора, особенностью комплектации «топового» шетиядерного процессора является производительный кулер Intel DBX-B Thermal Solution на медных тепловых трубках. Именно такая система охлаждения должна позволить провести эксперименты с разгоном этого процессора. Данный шаг является очень важным, т.к. ранее «экстремальные» процессоры комплектовались обычными простенькими кулерами, которые покупатель достаточно дорогого процессора зачастую просто выбрасывал, докупая достойный процессора кулер. Давайте поближе рассмотрим конструктивные особенности Intel DBX-B Thermal Solution и оценим его эффективность.

Кулер Intel DBX-B Thermal Solution основывается на четырех 6 мм тепловых трубках, которые ускоряют перенос тепла от медного основания к плотному блоку алюминиевых пластин.

Сами тепловые трубки уложены в глубокие желоба в основании, а контакт улучшен с помощью припоя. В большинстве случаев такая конструкция теплосъемника является наиболее оптимальной.

Причем для улучшения эффективности и фиксация ребер произведена с применением термоклея. Это делает конструкцию кулера достаточно качественной и надежной.

Однако радиатор системы охлаждения Intel DBX-B Thermal Solution кажется излишне плотным, т.к. в нем достаточно широкие пластины толщиной 0,5 мм насажены с отступом в 1,0 мм. Такая конструкция потребует от используемого вентилятора возможности создания достаточно большого статического давления, чтобы система оказалась действительно эффективной. Кроме того, малый зазор между пластинами будет способствовать накоплению там пыли, что будет уменьшать со временем эффективность кулера.

Чтобы обеспечить высокую производительность, на радиатор установлен 100 мм вентилятор F10T12MS2Z9 производства NIDEC, девять полупрозрачных лопастей с большим углом атаки которого способны вращаться на скорости до 2600 оборотов в минуту. Причем часть воздушного потока в самом низу проходит под радиатором, обеспечивая вентиляцию «околосокетного» пространства.

Вентилятор имеет 4-контактный разъем питания, т.е. поддерживает динамическое PWM-управление скоростью вращения. Но для точной установки режимов работы на кулере имеется переключатель между тихим и производительным режимами. В тихом режиме вентилятор вращается со скоростью до 1800 об/мин и создает средний уровень шума, не особо выделяя Intel DBX-B Thermal Solution внутри системного блока. В производительном же режиме скорость вращения может увеличиваться до 2600 об/мин и кулер становится очень шумным.

Основание этого «боксового» кулера тоже очень хорошо обработано – отполировано до зеркального состояния. Но форма основания выбрана не совсем оптимально – оно прямоугольное 31х37 мм. В нашей тестовой системе наиболее полный контакт кулера с процессором был только в том случае, когда выброс воздуха происходил в сторону блока питания, что было не совсем оптимально.

Для установки кулера Intel DBX-B Thermal Solution используется пластмассовая упорная пластина, т.е. закрепить систему охлаждения без изъятия материнской платы из системного блока не получится. Для облегчения процесса установки на рамке имеются две липкие полоски, с помощью которых она просто приклеивается к материнской плате, и в процессе прикручивания кулера нет необходимости еще и придерживать рамку. Сама же фиксация системы охлаждения производится с помощью «стационарных» винтов с большой головкой. Таким образом, кулер Intel DBX-B Thermal Solution устанавливается достаточно просто и быстро даже руками, хотя для уверенности в хорошем прижиме к процессору желательно его окончательно зафиксировать с помощью отвертки.

Для оценки эффективности Intel DBX-B Thermal Solution предлагаем сравнить его в одинаковых условиях (разгон процессора Intel Core i7-980X Extreme Edition до 4,1 ГГц при напряжении питания ядра 1,36 В) с несколькими производительными кулерами: Scythe Kama Angle , Noctua NH-U12P , Noctua NH-U12P SE2, Noctua NH-U9B и Noctua NH-U9B SE2 .

В режиме высокой производительности система охлаждения Intel DBX-B Thermal Solution обеспечивает эффективность даже выше, чем некоторые признанные лидеры охлаждения. Однако не всё так радужно – шум при этом заметно выше комфортного уровня. Но если вы проводите эксперименты по разгону, то Intel DBX-B Thermal Solution поможет вам в этом и, вероятнее всего, его заменять вы не захотите. А для постоянной работы уровень разгона можно уменьшить и перевести кулер в тихий режим. Бесшумным он, конечно, не станет, но и так раздражать уже не будет.

Итог

Оценивая возможности самого производительного настольного процессора на сегодняшний день Intel Core i7-980X Extreme Edition начинаешь забывать о различных его особенностях и нюансах, т.к. уровень его производительности, особенно в хорошо оптимизированных для многопоточного исполнения приложениях, впечатляет. И это действительно уверенный шаг в будущее, поскольку Intel Core i7-980X Extreme Edition является и одним из наиболее сложных процессоров на сегодня, а значит компания Intel отлично освоила 32 нм техпроцесс, и вскоре можно ожидать перевода на него и других процессоров, которые окажутся заметно доступнее и будут иметь отличный разгонный потенциал. Однако для того чтобы увеличить количество вычислительных ядер и объем кэш-памяти третьего уровня, оставаясь в тепловом пакете до 130 Вт, пришлось пойти на некоторые жертвы – увеличилась латентность кэш-памяти и уменьшилась скорость работы встроенного контроллера памяти, что может отразиться в некоторых неоптимизированных приложениях. Сгладить этот негативный эффект можно только включением технологии Intel Turbo Boost и использованием скоростных модулей памяти, ну и, конечно же, разгоном. Ведь процессор Intel Core i7-980X Extreme Edition традиционно для серии Extreme Edition имеет очень высокую стоимость и нацелен на состоятельных энтузиастов. Причем в данном случае помочь с экспериментами поможет эффективный «боксовый» кулер Intel DBX-B Thermal Solution на тепловых трубках, который является важным дополнением процессора Intel Core i7-980X Extreme Edition.

ВведениеКомпания Intel давно закрепила за собой звание производителя самых быстрых процессоров для настольных компьютеров. И если про то, какие процессы для компьютеров средней и низшей ценовой категории следует признать наиболее оптимальным выбором на сегодняшний день, можно спорить, в верхней ценовой категории нет даже никакого намёка на выбор. Intel Core i7 - семейство процессоров, достойных альтернатив которому компания AMD предложить не может. По крайней мере, в данный момент, когда до выхода шестиядерных Phenom II, известных также под кодовым именем Thuban, всё ещё остаётся несколько недель. При этом можно говорить о том, что и существующие четырёхъядерные процессоры Phenom II выгоднее: они уступают в производительности Core i7 всего на пару десятков процентов, а стоят при этом в разы дешевле, но положения дел это не меняет. Наиболее требовательные к быстродействию компьютеров энтузиасты готовы переплачивать за высокую производительность, и именно поэтому процессоры Core i7 пользуются немалой популярностью.

Даже в отсутствие прямой конкуренции этот потребительский интерес к производительным и дорогим процессорам толкает компанию Intel на продолжение совершенствования своих дорогих продуктов, которые наращивают тактовые частоты, приобретают микроархитектурные усовершенствования и даже получают увеличенное количество ядер. Главный герой этой статьи –анонсированный недавно представитель семейства Core i7, который стал первым процессором для настольных компьютеров, получившем шесть вычислительных ядер.

Впрочем, следует понимать, что появление шестиядерной модели в линейке Core i7 - это далеко не начало шестиядерной революции. Сегодня Intel готова предложить единственный такой процессор Core i7-980X, относящийся к серии Extreme Edition. А это значит, что пока что шестиядерный CPU - это своего рода демонстрационный продукт, который будет интересен с практической точки зрения лишь для самых обеспеченных энтузиастов, готовых выложить за один только процессор порядка тысячи долларов. Причём, такое положение дел продлится как минимум до осени, когда в дополнение к Core i7-980X может выйти ещё одна, не столь дорогая модель подобного процессора. Впрочем, общая ситуация от этого не поменяется - массового прихода на рынок продуктов с числом ядер, превышающим четыре, ждать придётся ещё очень и очень долго. По крайней мере, если говорить о процессорах авторства Intel. Конечно, определённые коррективы в ситуацию с «общедоступной шестиядерностью» способна внести AMD, которая собирается начать продажи процессоров с шестью вычислительными ядрами средней ценовой категории уже в ближайшее время, но пока что мы не имеем возможности познакомиться с этими продуктами на практике, а потому отложим выводы до более удобного случая.

Для нас же знакомство с Core i7-980X более интересно по другой причине. Это процессор базируется на новом полупроводниковом кристалле Gulftown, объединяющем шесть вычислительных ядер и 12-мегабайтный кэш третьего уровня. Реализация всех этих узлов в монолитном кремниевом кристалле стала возможна благодаря использованию технологического процесса с нормами производства 32 нм. Такой же процесс частично используется и при изготовлении процессоров семейства Clarkdale , но Core i7-980X - это первый продукт, для выпуска которого самый современный техпроцесс применяется от начала и до конца. Таким образом, именно на Core i7-980X должно прослеживаться в полной мере эволюционирование микроархитектуры Nehalem. Недавно же анонсированные процессоры Core i5 и Core i3 оказались в этом плане очень плохим примером. Распределение процессорных блоков по двум полупроводниковым кристаллам, один из которых производится с использованием 45 нм техпроцесса, привело к возникновению дополнительных «узких мест», внёсших негативный вклад в потребительские качества конечных изделий.

Иными словами, Core i7-980X - это то, на что способны в данный момент инженеры Intel при объединении передового техпроцесса с самым современным вариантом микроархитектуры. И именно с этой, скорее теоретической точки зрения Gulftown и интересен. На практике же подобные процессоры в обозримом будущем будут доступны лишь в наиболее дорогих компьютерах, и в массовый рыночный сегмент они в этом году не попадут точно. Да и на 2011 год никаких удешевлённых вариантов Gulftown не запланировано, так как Intel сразу собирается перейти к внедрению следующего поколения микроархитектуры, Sandy Bridge.

Core i7-980X Extreme Edition в подробностях

Несмотря на то, что мы охарактеризовали Core i7-980X как революционный продукт, никаких шокирующих подробностей о его микроархитектуре мы сообщить не можем. Инженеры Intel попросту собрали из своего стандартного Nehalem-конструктора шестиядерный процессор, объединив привычные элементы - вычислительные ядра, L3 кэш, контроллер памяти и контроллер шины QPI. Просто в одном случае этих элементов стало больше - количество ядер возросло до шести, а в другом - увеличился размер элемента - ёмкость L3 кэша выросла до 12 Мбайт. Все же эти составные части поместились на едином кристалле благодаря новому технологическому процессу с нормами производства 32 нм. В результате, несмотря на то, что кристалл Gulftown состоит из 1170 миллионов транзисторов, а это примерно в 1,6 раз больше числа транзисторов в кристалле Bloomfield, его площадь составляет 248 кв. мм против 263 кв. мм у Bloomfield.



Если же посмотреть на фотографию кристалла Gulftown и на размещение на нём различных блоков, напрашивается вывод о том, что перед нами - результат простого перевода частей старого ядра на производство по новому технологическому процессу с минимальными коррективами.



Если не брать в рассмотрение появление двух добавочных ядер, так оно и есть. Сами по себе процессорные ядра и контроллер памяти Core i7-980X полностью аналогичны ядрам и контроллеру памяти процессоров Core i7-900, выпускающихся уже более года. Фактически, разница лишь в технологии производства. Единственное нововведение - появление семи новых инструкций AES-NI , направленных на ускорение работы криптографических алгоритмов. Впрочем, эти инструкции уже знакомы нам по процессорам Clarkdale.

Так что нам остаётся лишь сообщить основные технические характеристики новинки, сопоставив их с характеристиками Core i7-975 - старшего процессора поколения Bloomfield, на смену которому приходит новый шестиядерный флагман.



То, что контроллер памяти и контроллер шины QPI, используемые в Gulftown, не отличаются по характеристикам от соответствующих блоков процессоров Bloomfield, означает, что они могут использоваться в одних и тех же платформах. Контроллер шины PCI Express в Gulftown отсутствует, и за поддержку графической подсистемы отвечает набор логики, в роли которого выступает хорошо знакомый Intel X58 Express.


Исходя из этого вполне логично, что Core i7-980X имеет LGA1366 исполнение и без проблем работает в материнских платах, оснащённых этим разъёмом. Всё что требуется для поддержки нового CPU старыми платами - это обновление BIOS.



Кстати, несмотря на полуторакратное увеличение количества процессорных ядер, Core i7-980X вписывается в тот же самый тепловой пакет, что и его четырёхъядерные предшественники. Причём, переход на более совершенный технологический процесс не повлёк за собой снижение напряжение питания процессора - это хорошо видно по скриншоту CPU-Z.



Тем не менее, Intel снабдила свой шестиядерный процессор новым кулером башенной конструкции, использующим четыре тепловые трубки диаметром 6 мм и двухскоростной вентилятор с крыльчаткой диаметром 100 мм.



Но сделано это не в связи с возросшим тепловыделением, а как ещё один шаг в сторону энтузиастов, которые теперь после покупки процессора серии Extreme Edition вполне могут пользоваться штатной системой охлаждения, обладающей неплохой эффективностью.

L3 кэш и подсистема памяти

Преподнося Gulftown как самый производительный на данный момент процессор, Intel опирается на две его ключевые особенности - увеличенное количество вычислительных ядер и возросший объём кэш-памяти. При этом вполне очевидно, что приложений, способных загрузить работой одновременно шесть процессорных ядер, на данный момент не так уж и много, и большинство из них относится к сфере либо трёхмерного моделирования, либо создания и обработки цифрового контента. Поэтому с точки зрения общеупотребительных применений гораздо важнее другое свойство Gulftown - L3 кэш-память, объём которой доведён до 12 Мбайт. Именно благодаря ей в системах, базирующихся на новом процессоре, рост производительности может быть заметен и в старых, не оптимизированных под многопоточные среды, задачах. Тем более что кэш третьего уровня - общий на все ядра, а значит, в зависимости от характера нагрузки он может монополизироваться одним или несколькими ядрами.

Однако мы хорошо помним, что даже простое увеличение объёма процессорной кэш-памяти всегда влечёт за собой и какие-то негативнее последствия. Так произошло и на этот раз. Так как инженеры Intel не стали трогать логическую организацию L3 кэша, оставив ему 16-канальную ассоциативность, увеличение объёма и необходимость арбитража между возросшим числом ядер привели к 33-процентному повышению его латентности.

Второй фактор, способный негативно сказаться на быстродействии, заключается в том, что в процессорах Gulftown снижена частота Uncore-части, включающей помимо L3 кэша и контроллер памяти. Замедление Uncore инженеры Intel уже практиковали в процессорах Lynnfield, у которых благодаря уменьшению частоты и напряжения L3 кэша и контроллера памяти удалось ощутимо понизить энергопотребление. Аналогичные мотивы двигали разработчиками и на этот раз. Скорость работы подсистемы памяти в платформах, основанных на Gulftown, была принесена в жертву двум дополнительным вычислительным ядрам. В противном случае шестиядерный Core i7-980X просто не вписался бы в установленный для LGA1366 процессоров 130-ваттный тепловой пакет.

В результате, при сравнении характеристик кэш-памяти старших процессоров Gulftown, Bloomfield и Lynnfield, вырисовывается достаточно противоречивая картина.



Вполне естественно, что в скорости работы с кэшем и памятью Gulftown проигрывает своему предшественнику. Величину этого проигрыша можно оценить, например, по результатам Everest Cache & Memory Benchmark. При тестировании мы использовали DDR3-1600 SDRAM с таймингами 9-9-9-24.



Core i7-980X (Gulftown)



Core i7-975 (Bloomfield)


Отличие в практической производительности кэш-памяти сразу бросается в глаза. Bloomfiled выигрывает у Gulftown примерно 33 % в скорости чтения из L3 кэша и 25 % - в его латентности. Уступает новинка и по скорости работы с памятью. Практическая пропускная способность и латентность памяти у шестиядерного процессора оказывается примерно на 15-20 % хуже, чем у его четырёхъядерного предшественника, обладающего аналогичным на первый взгляд трёхканальным контроллером DDR3 SDRAM.

Таким образом, несмотря на большее количество вычислительных ядер и более вместительный кэш, в реальных приложениях Core i7-980X может уступать по быстродействию Core i7-975 - к тому есть вполне объективные предпосылки. Собственно, теперь становится хорошо понятно, почему Intel дал новинке столь небольшой процессорный номер. Ведь новый Gulftown оказывается лучше старого Bloomfield далеко не во всём, причём его слабые стороны никак нельзя назвать несущественными.

Технологии Turbo Boost и Hyper-Threading

Технологии Turbo Boost и Hyper-Threading были введены в самых первых процессорах Bloomfield, и теперь можно с полной уверенностью говорить о том, что они прошли проверку временем и подтвердили свою эффективность. И если Hyper-Threading позволяет увеличить скорость работы системы на многопоточной нагрузке, то технология Turbo Boost играет обратную роль - она помогает поднять быстродействие при загрузке лишь части ядер. Неудивительно, что обе эти технологии оказались перенесены и в новый шестиядерный процессор Gulftown.

При наличии в Core i7-980X шести вычислительных ядер технология Hyper-Threading добавляет этому процессору ещё шесть виртуальных ядер, в результате чего в операционной системе видно сразу аж двенадцать ядер.



При взгляде на этот забавный скриншот возникает вполне резонный вопрос: существуют ли такие приложения, которые способны задействовать все эти ресурсы в полной мере? Кроме того, между всеми ядрами разделяется единая шина памяти, так что не исключён и вариант, когда вычислительные ресурсы будут проводить слишком много времени в ожидании данных, так как пропускной способности шины памяти может не хватать на одновременно работающие ядра. Чтобы развеять все эти сомнения мы провели простой эксперимент - проверили уровень производительности системы в популярном 3D шутере в то время, когда в системе в фоновом режиме работает некоторое количество процессов, задействующих вычислительные мощности и шину памяти. Конкретнее, мы протестировали скорость в Far Cry 2, запуская параллельно несколько копий встроенного в архиватор WinRAR теста производительности (который сам по себе также поддерживает многопоточность). Память во время этих тестов работала в режиме DDR3-1600, а для сравнения с Gulftown аналогичный тест был выполнен в платформах со старшими процессорами семейств Bloomfield и Linnfield.



В целом Gulftown справляется с многопоточной нагрузкой значительно лучше своих четырёхъядерных собратьев. Падение производительности при росте фоновой нагрузки у этого процессора происходит гораздо медленнее, а значит, пропускной способности, предоставляемой трёхканальной подсистемой памяти, в целом хватает при работе в многопоточных средах.

Что же касается технологии Turbo Boost, то её реализация в Core i7-980X несколько разочаровывает. После того, как процессоры Lynnfield для платформы LGA1156 получили возможность в рамках этой технологии увеличивать свою частоту на 667 МГц выше номинала, подобную величину прироста частоты мы ожидали увидеть и в Gulftown. Однако инженеры Intel рассудили по-другому, и в новом шестиядернике технология Turbo Boost оказалась столь же консервативной, как и в Bloomfield. В результате, частота Core i7-980X со штатной частотой 3,33 ГГц может увеличиваться всего на 266 МГц - до 3,6 ГГц. Подробности о частотах старших процессоров в семействах Gulftown, Bloomfield и Linnfield при включении турбо-режима показаны в таблице.



В результате, максимальная частота всех старших процессоров с микроархитектурой Nehalem оказывается одинаковой - она составляет 3,6 ГГц. При этом, согласно официальным данным, Core i7-980X способен поддерживать эту частоту и при загрузке двух вычислительных ядер. Но на практике же, нам удалось наблюдать работу Core i7-980X на частоте 3,6 ГГц исключительно при однопоточной нагрузке, загрузка же работой второго процессорного ядра приводила к снижению частоты до 3,46 ГГц.



Впрочем, необходимо помнить, что возможность разгона процессора в рамках технологии Turbo Boost определяется не только активностью ядер, но и тем, какое энергопотребление демонстрирует процессор в каждый момент времени. Так что невозможность работы Core i7-980X на частоте 3,6 ГГц при двухпоточной нагрузке, вероятно, связана с тем, чем энергопотребление этого процессора в таком режиме выходит за установленные спецификацией рамки.

Как мы тестировали

То, что Core i7-980X - это один из самых скоростных процессоров, сомнений ни у кого нет. Поэтому в тестах производительности для сравнения с ним мы взяли пару самых быстрых четырёхъядерных процессоров Intel серии Core i7 и старший процессор семейства Phenom II X4. В итоге, в состав тестовых систем входил следующий набор комплектующих:

Процессоры:

AMD Phenom II X4 965 (Deneb, 3.4 ГГц, 4 x 512 Кбайт L2, 6 Мбайт L3);
Intel Core i7-980X (Gulftown, 3.33 ГГц, 6 x 256 Кбайт L2, 12 Мбайт L3);
Intel Core i7-975 (Bloomfield, 3.33 ГГц, 4 x 256 Кбайт L2, 8 Мбайт L3);
Intel Core i7-870 (Lynnfield, 2.93 ГГц, 4 x 256 Кбайт L2, 8 Мбайт L3).

Материнские платы:

ASUS P7P55D Premium (LGA1156, Intel P55 Express);
Gigabyte MA790FXT-UD5P (Socket AM3, AMD 790FX + SB750, DDR3 SDRAM);
Gigabyte X58A-UD5 (LGA1366, Intel X58 Express).

Память:

2 x 2 GB, DDR3-1600 SDRAM, 9-9-9-24 (Kingston KHX1600C8D3K2/4GX);
3 x 2 GB, DDR3-1600 SDRAM, 9-9-9-24 (Crucial BL3KIT25664TG1608);

Графическая карта: ATI Radeon HD 5870.
Жёсткий диск: Western Digital VelociRaptor WD3000HLFS.
Блок питания: Tagan TG880-U33II (880 Вт).
Операционная система: Microsoft Windows 7 Ultimate x64.
Драйверы:

Intel Chipset Driver 9.1.1.1025;
ATI Catalyst 10.3 Display Driver.

Производительность

Общая производительность















Тест SYSmark 2007, показывающий производительность систем при исполнении типовых сценариев в реальных приложениях, сразу же выпячивает те недостатки Gulftown, о которых мы говорили выше. В том случае, когда используемые приложения не имеют качественной оптимизации под многоядерные процессорные архитектуры, Core i7-980X может легко отставать от своего предшественника, четырёхъядерного Core i7-975. Именно такая картина и наблюдается в сценариях E-Learning и Productivity - в них более высокий результат показывает не тот процессор, у которого больше ядер, а тот, у которого более быстрый L3 кэш и контроллер памяти. Сценарии же, моделирующие создание и обработку цифрового контента, на первое место ставят Gulftown, что неудивительно, так как приложения, используемые при таком характере деятельности, обычно хорошо умеют распределять нагрузку на несколько вычислительных ядер. Но в результате, общий результат SYSmark 2007 у нового Core i7-980X практически не отличается от результата Core i7-975.

Игровая производительность









Многие современные игры уже могут эффективно задействовать ресурсы двухъядерных процессоров. Некоторые из них способны загружать и четырёхъядерные CPU. Полностью загрузить же работой шестиядерный Gulftown, да к тому же и обладающий поддержкой технологии Hyper-Threading, современным играм явно не под силу. Поэтому отличия в результатах Core i7-980X и Core i7-975 не столь разительны. Гораздо большее значение для игровых приложений имеет другой фактор - увеличенный до 12 Мбайт L3 кэш. Именно благодаря ему новый CPU компании Intel может стать небесполезным приобретением для геймеров.

3DMark Vantage






Популярный тест производительности 3DMark Vantage умеет эффективно загружать любое количество процессорных ядер. Именно поэтому результат Core i7-980X в нём выглядит весьма впечатляюще. Так что новые мировые рекорды в этом тесте теперь будут теперь устанавливаться преимущественно системами на этом процессоре.

Производительность в приложениях



Adobe Photoshop - приложение, оптимизированное под многоядерные архитектуры. Но используют максимальное количество ядер далеко не все операции и фильтры, выполняемые в нём. Поэтому, преимущество шестиядерного процессора оказалось не столь значительным, причём отчасти оно объясняется не столько количеством ядер Gulftown, сколько его увеличенным L3 кэшем.



Перекодирование видео - прекрасно распараллеливаемая задача. Поэтому, здесь новый Core i7-980X с шестью ядрами закономерно демонстрирует более чем 40-процентное превосходство над Core i7-975, у которого всего четыре вычислительных ядра.



Аналогичная картина наблюдается и при нелинейном монтаже видео высокого разрешения в Premiere Pro.



WinRAR тоже может задействовать несколько процессорных ядер, но при увеличении их числа больше трёх прирост производительности становится практически незаметен. Поэтому Core i7-980X и Core i7-975 демонстрируют близкую скорость. И кстати, не даёт видимого эффекта и 12-мегабайтный L3 кэш шестиядерного процессора: его большой объём, к сожалению, нейтрализуется высокой латентностью.



Арифметические вычисления в Excel 2007 могут эффективно распараллеливаться. В результате, наша тестовая задача считается на новом процессоре с большим числом ядер существенно быстрее.



Программная аудиостудия Sonar 8 Producer при финальном сведении треков также работает слегка быстрее в системе с шестиядерным процессором. Преимущество Core i7-980X над Core i7-975 составляет порядка 5 %.



Финальный рендеринг относится к тем типам нагрузки, которые всегда положительно реагируют на увеличение числа вычислительных ядер в системе. Так что как минимум 20-процентное превосходство Core i7-980Х над конкурентами - вполне закономерный результат.

Производительность при однопоточной нагрузке

Для того чтобы посмотреть, как справляются процессоры с однопоточной нагрузкой, мы включили в исследование два дополнительных испытания: вычислительный тест MaxxPi и шахматную программу Fritz, в которой число задействуемых процессорных ядер вручную устанавливалось равным единице. Этот тест представляет интерес потому, что старшие процессоры семейства Core i7 обладают технологией Turbo Boost благодаря которой их тактовая частота при загрузке единственного процессорного ядра выравнивается на отметке 3,6 ГГц.






Как видим, в этих тестах Core i7-980X и Core i7-975 показывают сравнительно близкие результаты с небольшим преимуществом более старого процессора, располагающего более эффективной с точки зрения скорости работы кэш-памятью. Более того, к ним «подтягивается» и Core i7-870, небольшое отставание которого в данном случае обуславливается в основном более низкой пропускной способностью подсистемы памяти.

Энергопотребление

Формально увеличение числа ядер в новом процессоре Core i7-980X не повлекло за собой изменения расчётного тепловыделения. Его совместимость с платформой LGA1366 по TDP обеспечивается как более современным техпроцессом, используемым при выпуске полупроводниковых кристаллов Gulftown, так и снижением частоты и напряжения питания Uncore. В результате, расчётное типичное тепловыделение Core i7-980X, также как и у Core i7-975, равно 130 Ватт.

Тем не менее, для получения более детальной картины мы провели и практическое тестирование энергопотребления. На следующих ниже графиках приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД же самого блока питания в данном случае не учитывается. Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.6.3. Кроме того, для правильной оценки энергопотребления в простое мы активировали все имеющиеся энергосберегающие технологии: C1E, AMD Cool"n"Quiet и Enhanced Intel SpeedStep.



Без нагрузки потребление платформы LGA1366 превышает потребление других платформ вне зависимости от того, какой процессор в ней используется. Объясняется это тем, что набор логики Intel X58 Express отличается весьма «прожорливым» норовом. На долю же потребления самих процессоров в простое приходится не более нескольких Ватт.



Под нагрузкой ситуация выглядит значительно интереснее. Новый шестиядерный процессор оказывается даже экономичнее, чем его четырёхъядерный собрат по имени Core i7-975. Впрочем, 32-нм техпроцесс не творит никаких особенных чудес, и Core i7-980X остаётся весьма энергоёмким устройством: его потребление существенно превышает потребление старших CPU для платформ LGA1156 и Socket AM3. С другой стороны, учитывая, что Gulftown располагает увеличенным в полтора раза вычислительным потенциалом, на новый уровень выходит и эффективность расхода электроэнергии (соотношение производительности и энергопотребления).

Разгон

Перевод производства процессоров на новый технологический процесс обычно влечёт за собой рост частотного потенциала. Core i7-980X - это первый процессор, выпускаемый исключительно с применением техпроцесса с 32-нм нормами. Именно поэтому результаты его разгона вызывают особый интерес.

Единственный доступный на данный момент Gulftown относится к серии Extreme Edition. Это означает, что Intel не фиксирует его множитель, предоставляя пользователю простой путь к разгону. Именно этой возможностью мы и пользовались при проведении наших экспериментов. Для отвода же тепла от процессора во время тестов применялся воздушный кулер Thermalright Ultra-120 eXtreme.

В первую очередь мы попытались установить предел разгона Core i7-980X, достигаемый без увеличения его напряжения питания свыше штатных для нашего экземпляра CPU 1.2 В. Как мы показали в нашем недавнем материале , именно такой разгон является наиболее энергетически эффективным и не приводит к катастрофическому росту энергопотребления и тепловыделения.

Практические испытания показали, что стабильность работы без поднятия процессорного напряжения не теряется при максимальной частоте всего лишь 3,6 ГГц.



К сожалению, эта частота очень близка к штатной и вряд ли может удовлетворить энтузиастов. Поэтому вторая серия экспериментов проводилась уже с увеличением напряжения на CPU до 1,35 В. Тем более, что, как мы знаем на примере Clarkdale, процессоры, выпускаемые по 32-нм технологии, должны откликаться на рост напряжения очень хорошо.

Благодаря повышению напряжения мы смогли добиться стабильной работоспособности процессора при гораздо более высокой частоте - 4,13 ГГц.



Но говоря откровенно, это - не тот результат, который мы надеялись увидеть при разгоне нового Core i7-980X. Получается, что, несмотря на то, что этот процессор выпущен по самому современному технологическому процессу, разгоняется он не лучше, чем CPU годичной давности, построенные на 45 нм полупроводниковых кристаллах. Иными словами, при разгоне без применения специальных средств охлаждения частотный потенциал Gulftown примерно соответствует потенциалу процессоров Bloomfield, предел разгона которых находится в районе 4.0-4.2 ГГц.

Кстати, хочется отметить две особенности, замеченные нами при разгоне Core i7-980X. Во-первых, Gulftown сохраняет сравнительно невысокую температуру даже при увеличении его частоты с поднятием напряжения питания. 60 градусов при максимальной нагрузке - это очень мало на фоне того, при каких температурах обычно работают разогнанные с увеличением напряжения питания процессоры Core i7 семейств Bloomfield. Во-вторых, успешный разгон Gulftown требует достаточно тщательного подбора напряжения, и слишком сильное его повышение приводит к ухудшению результатов разгона. Например, наш экземпляр процессора заработал на частоте 4.13 ГГц при поднятии его напряжения выше номинального на 0,15 В, но при увеличении напряжения на 0,2 В он не смог пройти тесты на стабильность даже на частоте 4,0 ГГц.

Выводы

Несмотря на то, что Gulftown - это не только первый шестиядерный процессор для настольных компьютеров, но и первый CPU, при производстве которого используется исключительно 32-нм техпроцесс, мы бы не стали относить его к продуктам нового поколения. Фактически, Intel предложила нам всё тоже самое, что мы уже видели в процессорах Bloomfield, только на этот раз для представления очередной модели в семействе Core i7 избрано не увеличение тактовой частоты, а добавление вычислительных ядер. Что, учитывая блочное строение процессоров с микроархитектурой Nehalem, - не ахти какое новаторство.

В итоге новый Core i7-980X теоретически обладает в полтора раза более высокой производительностью, что формально позволяет считать его наибыстрейшим процессором для настольных компьютеров. На практике же всё зависит от оптимизации приложений. Как показали тесты, задач, получающих при работе на шестиядерном процессоре соизмеримый выигрыш в производительности, не так уж и много, и относятся они исключительно к созданию и обработке цифрового контента. Получается, что Core i7-980X - это отличный вариант для применения в основе рабочей станции, а не в домашнем компьютере.

Совершенно неудивительно, что выпуская на рынок шестиядерный Gulftown, Intel ограничилась предложением единственной модели стоимостью $999. В обычных условиях использование процессора с шестью вычислительными ядрами имеет не так уж и много смысла, а Gulftown к тому же при определённом стечении обстоятельств может быть медленнее четырёхъядерных предшественников из-за возросшей латентности L3 кэша и заторможенного контроллера памяти. Так что Core i7-980X явно рассчитан на тех высокообеспеченных энтузиастов, кто тянется ко всему новому в первую очередь из-за любопытства, а не основываясь на здравом расчёте. Прагматики же даже после появления Core i7-980X наверняка не потеряют интереса к существующим четрёхъядерным процессорам, производительности которых вполне хватает и для повседневной работы, и для современных 3D-игр. Тем более, что и 32-нм техпроцесс никаких существенных дивидендов не даёт: как показали испытания, Core i7-980X стал лишь незначительно экономичнее четырёхъядерных LGA1366-предшественников, а его разгонный потенциал - и вовсе не превосходит возможностей 45-нм процессоров.

В общем, действительно новаторских процессоров Intel, которые могут стать интересны для широких масс пользователей, придётся ждать как минимум до начала 2011 года, когда микропроцессорный гигант должен вывести на рынок двухъядерные и четырёхъядерные продукты с обновленной микроархитектурой Sandy Bridge, для изготовления которых будет использоваться 32-нм техпроцесс. В отношении же рассмотренной в этой статье новинки так и хочется сказать: «Ничего особенного».

Другие материалы по данной теме


Энергопотребление разогнанных процессоров
Двухъядерные процессоры для LGA1156: Core i5-661, Core i3-540 и Pentium G6950
Процессорозависимость ATI Radeon HD 5870 и CrossFireX

Битва между двумя извечными соперниками - производителями цент­ральных процессоров продолжается. Спустя некоторое время после того, как компания Intel анонсировала новые шестиядерные процессоры серии Intel Core для пользовательского сегмента, компания AMD выпустила свой шестиядерный процессор AMD Phenom II X6, доказав тем самым, что шесть ядер могут стоить не более 300 долл. В новый процессор AMD включено всё самое лучшее от предыдущей серии, а также внедрена новая технология под названием Turbo CORE. О новом процессоре, его технических характеристиках и инновациях, а также результатах тестирования мы и расскажем в этой статье.

Новые процессоры AMD Phenom II X6 основаны на ядре Thuban, а архитектура K10.5 осталась прежней. В отличие от Intel, компания AMD пошла своим путем: увеличив Phenom II X4 на два ядра и превратив его тем самым в Phenom II X6, не увеличила кэш L3 в процессоре. Это позволило уменьшить общее количество транзисторов и не выйти за рамки теплового пакета, не меняя при этом 45-нм технологический процесс.

Новая серия процессоров AMD Phenom II X6 сегодня предлагает пользователю на выбор четыре шестиядерных процессора с поддержкой новой технологии Turbo CORE. Первая и самая слабая модель - AMD Phenom II X6 1035T (2,6 ГГц с повышением до 3,0 ГГц), далее идет AMD Phenom II X6 1055T, имеющая тактовую частоту 2,8 ГГц с возможностью повышения частоты отдельных ядер до 3,2 ГГц в режиме Turbo CORE. Процессор AMD Phenom II X6 1075T имеет тактовую частоту 3 ГГц с возможностью повышения до 3,4 ГГц при включении режима Turbo CORE. Последний процессор этой линейки - AMD Phenom II X6 1090T - являлся самым производительным процессором AMD в пользовательском сегменте рынка на момент написания статьи. Его номинальная тактовая частота составляет 3,2 ГГц с повышением до 3,6 ГГц. Он поставляется с разблокированным множителем, что позволяет разгонять его до высоких частот. Во Всемирной сети ходят слухи о планах выпуска более мощного процессора AMD Phenom II X6 1095T, которые пока ничем не подтверждаются.

Процессор AMD Phenom II X6 1090T

AMD Phenom II X6 1090T основан на ядре Thuban, которое используется в четырехъядерных процессорах Phenom II X4, но при этом новый процессор дополнен технологией AMD Turbo CORE. По своим техническим данным эта функция является антиподом технологии Cool’and’Quiet, которая понижает тактовую частоту ядер процессора при отсутствии нагрузки на них. Новая технология позволяет повысить тактовую частоту активных ядер процессора (не более трех), если остальные ядра (три и более) не загружены. При этом коэффициент повышения частоты выбран таким образом, чтобы процессор при работе не выходил за рамки пакета TDP. Этакий аналог технологии TurboBoost, которую компания Intel применяет в своих процессорах. И если у Intel технология TurboBoost более прозрачна (ее работу можно увидеть с помощью любой системной утилиты мониторинга процессора, например CPU-Z), то у процессоров AMD с Turbo CORE выявить повышение частоты можно только с помощью специальной утилиты AMD OverDrive. В отличие от Intel, в процессорах AMD Phenom II X6 нет никаких специальных управляющих микросхем, в реальном времени отслеживающих температуру процессора и потребляемый ими ток. Принцип работы технологии Turbo CORE довольно прост: как только в энергосберегающем состоянии со сниженной в рамках технологии Cool’and’Quiet до 800 МГц частотой оказываются три или более процессорных ядра, процессор поднимает частоту активных ядер на 400 МГц, то есть множитель увеличивается на два. При этом для обеспечения стабильности работы на повышенной частоте напряжение питания процессора автоматически увеличивается с 1,3 до 1,475 В (в нашем тестировании). Согласно анонсу компании AMD, новая технология Turbo CORE будет применяться и в следующих процессорах этой и других линеек процессоров Phenom II X4. То есть компания делает ставку на эту технологию, поскольку, по заявлению AMD, она позволяет получить прирост производительности приложений, не поддерживающих многоядерность. Это весьма обширный сегмент программного обеспечения, ведь до сих пор полноценную поддержку многоядерности обеспечивают не более 30% программ. Остальные либо применяют ее неэффективно, либо им хватает всего одного ядра. Вообще, поддержка распараллеливания - это тема отдельной статьи, а потому не будем отвлекаться. Отметим только, что внедрение технологий TurboBoost и Turbo CORE процессорными гигантами говорит о многом. Технические характеристики процессора AMD Phenom II X6 1090T приведены в табл. 1 .

Нельзя обойти вниманием и анонс новой платформы AMD Leo, которая должна стать продолжением платформы Dragon, сочетающей в себе самый высокопроизводительный процессор, высокопроизводительную видеоподсистему и самый функциональный чипсет AMD. Новая платформа должна вобрать в себя шестиядерный процессор AMD Phenom II X6, видеокарту(ы) серии AMD Radeon HD5800 и набор системной логики AMD 890FX. Пока официального анонса этой платформы не было.

Но вернемся к рассматриваемому процессору. Модель AMD Phenom II X6 1090T поступила в нашу тестовую лабораторию в виде инженерного образца, поэтому пока не ясно, в какой упаковке она будет поставляться конечному пользователю. Внешний вид процессора остался прежним, обновилась только надпись - AMD Phenom X6.

Для того чтобы посмотреть, как работает технология Turbo CORE, была установлена последняя версия утилиты AMD OverDrive 3.2.1. Для нагрузки ядер процессора использовалась собственная разработка нашей лаборатории, которая применяется при тестировании кулеров. Процессор нагружался постепенно несколькими потоками. При запуске одного, двух или трех потоков нагрузки утилита OverDrive отображала весьма интересный результат (рис. 1).

В отличие от процессоров Intel, где каждый поток направляется отдельному ядру, в этой модели применен другой подход. Каждый поток равномерно распределяется между ядрами процессора, то есть сначала часть кода выполняется на одном ядре, затем на другом и т.д. В результате достигается плавный нагрев процессора, а тактовая частота всех без исключения ядер варьируется от 800 МГц до 3,645 ГГц. Такая картина работы наблюдается при нагрузке на процессор одного, двух или трех потоков.

При увеличении до четырех потоков (рис. 2) технология Turbo CORE отключается, а таковая частота всех без исключения ядер процессора становится штатной - 3,2 ГГц. Сегодня сложно сказать, насколько оправдан такой подход при реализации данной технологии.

Методика тестирования

Для тестирования этого процессора нам была предоставлена системная плата Gigabyte 890GPA-UD3H, основанная на последнем наборе системной логики AMD 890GX. Поскольку данная плата, как и все современные модели, поддерживает память DDR3, в нее было установлено два модуля памяти Kingston KVR1333D3N8K2, каждый объемом 1 Гбайт. В качестве операционной системы была использована 32-битная версия Microsoft Windows 7. Методика тестирования этого процессора ничем не отличается от той, что подробно изложена в статье «Новая версия тестового скрипта ComputerPress Benchmark Script v.8.0» и опубликована в ноябрьском номере журнала за прошлый год. В табл. 2 приведено время выполнения тестовых задач в секундах для собранного стенда и референсного ПК, используемого нами для сравнения. Кроме того, с помощью утилит из набора для тестирования кулеров для процессоров AMD Phenom II X6 1090T был протестирован в режиме стрессовой нагрузки для определения его температурных показателей. Отметим, что при тестировании использовался штатный кулер для процессоров AMD.

Результаты тестирования

Исходя из приведенных в табл. 2 результатов тестирования, можно утверждать, что данный процессор имеет на 33% меньшую производительность, чем референсная сис­тема. Красным цветом выделены поля, где процессор отстает более чем на минуту при выполнении задания, а зеленым - те тесты, в которых результат нового процессора приближается к референсным значениям. Напомним, что в качестве референсного ПК мы использовали стенд на основе процессора Inte Core Extreme I7-965 и платы Gigabyte GA-EX58-UD7. По нашей классификации полученный результат можно охарактеризовать как вполне ожидаемый. Поскольку компания AMD уже достаточно давно ведет политику разработки процессоров среднего и бюджетного класса, ожидать очень высокой производительности от нового процессора не стоит. Однако компания AMD решилась на немаловажный шаг навстречу пользователям, сделав шестиядерные процессоры доступными при их достаточно высокой производительности. Как видно из табл. 2, в большинстве тестов новый процессор проигрывает своему конкуренту. Однако в тесте Adobe Soundbooth CS4 при редактировании аудиопотока этот процессор опередил Intel Core Extreme I7-965.

Что касается тестов тепловыделения, то здесь новый процессор может приятно поразить пользователя. При работе в режиме простоя всех ядер температура процессора не превышала отметки 25 °С. В режиме максимальной загрузки всех ядер температура повысилась всего на 20 °C и стабилизировалась на отметке 45 °C. Это очень достойный результат, учитывая шесть ядер процессора в совокупности с технологическим процессом 45 нм.

Выводы

По сравнению с предыдущими высокопроизводительными моделями Phenom II X4 прошлого поколения новинка имеет ряд важных преимуществ. Первое - это, безусловно, два дополнительных ядра, что дает определенный прирост в производительности при работе с многопоточными приложениями. Второй плюс - это небольшое энергопотребление и тепловыделение для 45-нм технологического процесса. Третьим преимуществом, несомненно, является внедрение новой технологии Turbo CORE, которая способна увеличить производительность процессора при работе с однопоточными приложениями. Однако самое важное достоинство новых процессоров AMD - это ценовая политика компании, которая продолжает делать доступными для пользователей недорогие, технологичные, но в то же время производительные процессоры. Официально рекомендуемая стоимость самой производительной модели Phenom II X6 1090T установлена в пределах до 300 долл. - это означает, что многоядерная архитектура будет доступна пользователю, как никогда ранее.

До недавнего времени процессоры Intel развивались по проверенной временем системе Tick-Tock (тик-так), то есть по принципу маятника: на каждом "тик" на свет появляется новая, значительно переработанная архитектура, а на каждом "так" имеющаяся архитектура переводится на новый, более прогрессивный техпроцесс. Intel планирует и дальше придерживаться этого подхода, однако маятник колеблется не совсем равномерно, а потому периодически появляются некоторые "промежуточные" решения. Одним из таких продуктов является рассматриваемый нами процессор Intel Core i7 980X, который представляет архитектуру Nehalem, переводимую в рамках очередного "так" на 32-нм техпроцесс. Но в данном случае ход маятника немного отличается от обычного - переход на новый техпроцесс чаще всего дает возможность увеличить рабочую частоту процессора, но Intel выбрала другой путь и увеличила число ядер до шести. Итак, Intel Core i7 980X- первый шестиядерный процессор для настольных компьютеров, попавший в нашу тестовую лабораторию. Рассмотрим подробнее его архитектуру.

⇡ Архитектура

Процессор Intel Core i7 980X принадлежит к семейству Gulftown и является его первым и пока единственным представителем процессоров этого семейства. Принципиальных отличий от архитектуры семейства Bloomfield, на которой основаны все остальные процессоры для платформы LGA1366, в архитектуре Intel Gulftown нет. Можно считать, что Core i7 980X представляет собой тот же Bloomfield, работающий на частоте 3,33 ГГц, с увеличенным на 4 Мб кэшем третьего уровня и изготовленный в рамках 32-нм техпроцесса. Однако есть и некоторые существенные отличия.

Во-первых, благодаря технологии Intel HyperThreading, данный шестиядерный процессор может обрабатывать до двенадцати потоков данных, что на целых четыре больше, чем все остальные процессоры Core i7.

Во-вторых, Core i7 980X получил новый набор инструкций AES-NI (Advanced Encryption Standart New Instructions), состоящий из двенадцати разных инструкций, призванных ускорить все приложения, активно использующие алгоритм AES. Набор инструкций AES-NI уже используется в процессорах Clarkdale, но это первое решение для платформы LGA1366 с этим набором инструкций. Их добавление позволит значительно увеличить производительность процессора в таких задачах, как шифрование, VoIP, интернет-брандмауэры и других приложениях, активно использующих шифрование. На остальные приложения наличие AES-NI не окажет практически никакого эффекта.

В-третьих, увеличенный до 12 Мб кэш третьего уровня может положительно сказаться на производительности в играх и других приложениях, использующих большие объемы кэш-памяти. При этом остальные приложения могут несколько и потерять в производительности, так как увеличение объема кэш-памяти также привело к увеличению задержек - частота шины Uncore в новом процессоре снижена с 3,2 ГГц до 2,6 ГГц.

Наконец, в-четвертых, перевод процессора на 32-нм техпроцесс с применением транзисторов с металлическим затвором положительно сказался на его физических размерах: кристалл Gulftown имеет площадь 248 мм², в то время как кристалл четырехъядерных Bloomfield характеризуется площадью 263 мм², а кристалл Lynnfield - и вовсе 296 мм². Уменьшение норм техпроцесса должно положительно сказаться на тепловыделении процессора и его разгонном потенциале. Число транзисторов в Core i7 980X составляет 1,17 миллиарда - это первый процессор для домашних компьютеров, в котором число транзисторов преодолело планку в один миллиард.

В остальном, Core i7 980X похож на Core i7 975: одинаковая частота шины QPI, составляющая 6,4 ГТ/с, то есть 25,6 Гб/с, аналогичный встроенный контроллер памяти, позволяющий работать с памятью DDR3 1333 в трехканальном режиме. Оба процессора работают на одинаковой частоте и обладают разблокированным множителем, значение которого может меняться в интервале от 12 до 60 (в номинале - 25, в режиме Turbo Boost - 27).

⇡ Система охлаждения

Многие покупатели топовых процессоров Intel сильно удивлялись, вынимая из коробки с процессором за несколько десятков тысяч рублей простенький алюминиевый радиатор с радиально-расходящимися ребрами и маленьким шумным вентилятором. Штатные системы охлаждения Intel практически не менялись от процессора к процессору, разве что высота ребер увеличивалась. С выпуском Core i7 980X впервые за многие годы Intel сменила подход к штатному охлаждению процессоров и укомплектовала новинку намного более серьезным кулером, получившим название Intel DBX-B Thermal Solution.

Новый кулер представляет собой радиатор башенной конструкции с четырьмя тепловыми трубками, проходящими через медное основание. С одной из сторон располагается вентилятор диаметром 100 мм с прозрачной крыльчаткой и синей подсветкой. Рассмотрим кулер немного подробнее.

Сам радиатор состоит из алюминиевых ребер средней толщины, причем расстояние между ними очень мало - вентиляторам с низкими оборотами будет сложно продуть такую конструкцию. Четыре тепловых трубки диаметром 6 мм аккуратно запаяны в ложбинках основания - технологии прямого контакта тепловых трубок с самим процессором, конечно, нет, но в этом нет и необходимости. Сверху радиатор прикрыт крышкой с выступами для тепловых трубок, на которой размещен логотип Intel.

Крыльчатка вентилятора является наиболее странным местом кулера: ее лопасти имеют слабо загнутую форму, при этом она не заключена в рамку. В результате, лишь малая часть воздушного потока отправляется непосредственно в радиатор, зато обдув околопроцессорного пространства материнской платы находится на высоте.

Обработка основания кулера находится на среднем уровне: оно не зеркальное, но и без отчетливых неровностей. При этом основание немного выпуклое, что обеспечивает хороший контакт с крышкой процессора в середине, где и находится сам кристалл. Такое решение малоэффективно при условии идеально ровной крышки процессора, но в нашем случае она оказалась немного вогнутой, и тут выпуклость основания кулера пришлась очень кстати.

Intel DBX-B thermal Solution крепится к материнской плате при помощи четырех винтов с удобными головками, которые легко заворачивать пальцами. На заднюю сторону материнской платы устанавливается пластина из мягкого пластика, в которую и вкручиваются винты. Несмотря на не слишком удобное расположение винтов (до головок двух из них приходится тянуться) и на хлипкую конструкцию пластины, такое крепление - это огромный шаг вперед по сравнению со всеми предыдущими версиями креплений.

В верхней части радиатора расположен двухпозиционный переключатель. Буква "S" означает Silence, в то время как буква "P" - Performance. В первом из режимов вентилятор вращается со скоростью примерно 800-900 об/мин, а во втором - около 1800 об/мин. И если в режиме Silence вентилятор можно назвать среднешумным, то в режиме Performance он очень громкий: его шум перекрывает и вентилятор блока питания, и видеокарты, и звук от головок жесткого диска. Синюю подсветку крыльчатки отключить нельзя, но она не слишком яркая и глаза не режет.

В целом, несмотря на огромное количество недоработок, кулер Intel DBX-B намного превосходит все предыдущие системы охлаждения, которыми комплектовались процессоры Intel. К сожалению, он предназначен только для процессоров Gulftown - остальные процессоры будут комплектоваться старыми кулерами. Посмотрим, на что новая система охлаждения способна в действии - попробуем разогнать процессор.

Максимальная частота, на которой нам удалось загрузить систему при использовании воздушного охлаждения, составила почти 4,5 ГГц. На этой частоте даже получалось пройти некоторые тесты, однако стабильности не наблюдалось. Поэтому частоту пришлось снизить до 4,2 ГГц - при такой частоте все тесты исправно проходились, а процессор с установленным на нем кулером Intel DBX-B Thermal Solution не прогревался выше 65 градусов Цельсия. Однако при попытке проверить стабильность процессора в утилите OCCT, процессор Core i7 980X со штатным кулером все же прогревался до 85 градусов, а система в итоге выдавала синий экран. Несмотря на это, будем считать работу процессора на такой частоте условно стабильной, ведь нагрузки, создаваемые утилитой OCCT LinPack, в реальных приложениях не встречаются.

⇡ Температура и энергопотребление

Перейдем к тестам производительности процессора и сравним его результаты с результатами других процессоров Intel последнего поколения, но для начала оценим энергопотребление системы.

Конфигурация тестового стенда:

Процессоры Intel Core i7 980X 3,33 GHz
Intel Core i7 920 2,66 GHz
Intel Core i7 870 2,93 GHz
Системы охлаждения Intel DBX-B Thermal Solution для Core i7 980X
Titan Fenrir для Core i7 920 и Core i7 870
Материнские платы Asus Rampage II Extreme
MSI P55-GD65, Socket LGA1156
ASUS P6T Deluxe Palm OS Edition, Socket LGA 1366
Оперативная память 3x 1GB Apacer DDR-3 2000 MHz (9-9-9-24-2T) @ 1333 MHz (7-7-7-24-1T)
2x 2 GB Corsair XMS 2 @ 1066 MHz (5-5-5-15-2T)
Жесткие диски Seagate Barracuda 7200.10 750 Gb
Samsung SpinPoint SP750
Видеокарта NVIDIA GeForce GTX 295, драйверы WHQL 186.18
Блок питания Hiper M730

На штатных частотах наш тестовый стенд вместе с процессором Core i7 980X потреблял всего 185 Вт, что совсем неплохо для компьютера с самым мощным десктопным процессором и двухчиповой видеокартой. Под нагрузкой при помощи утилиты OCCT энергопотребление системы значительно возросло и составило 297 Вт - это только за счет процессора, ведь тест OCCT LinPack не нагружает видеокарту.

Разгон с повышением напряжения на процессоре до 1,35 В не сильно влияет на энергопотребление системы в простое - оно составляет 192 Вт, а вот под нагрузкой энергопотребление вырастает до 344 Вт - почти на 50 Вт больше, чем без разгона.



Понравилась статья? Поделиться с друзьями: