Такое принтер и как работает. Как работает принтер? Как работает современный струйный принтер

Принтер является основным компонентом вывода, осуществляющим постоянное копирование данных на бумаге. Существует множество разновидностей принтеров с различными скоростями, возможностями и ценой.

Некоторые работают медленно, но воспроизводят текст так же четко, как и тот, что вы сейчас читаете; другие работают быстро, но смазывают печать, а третьи лучше всего приспособлены для иллюстраций.
Принтеры, в которых используются молоточки как в печатной машинке, через чернильную ленту ударяющие по бумаге, называются контактными. В неконтактных принтерах молоточки не используются. К примеру, устройство струйной печати выстреливает по бумаге капельками чернил, а в лазерном принтере применяются световые лучи, как в фотокопировальной машине. Но наибольшее распространение получили контактные принтеры.
В некоторых контактных принтерах, называемых посимвольными, каждый символ - буква, цифра или знак препинания - отдельно отпечатывается через чернильную ленту. Такие машины печатают чисто, но медленно, и могут печатать только символы, установленные производителями. Другая разновидность принтеров, матричные принтеры, используются большинством частных лиц и офисов. Это недорогая, относительно быстро печатающая машина. Она печатает не символами, а набором маленьких иголок (справа), каждая из которых печатает одну тбчку. Символ образуется, когда набор иголок надавливает на чернильную ленту по мере движения печатной головки вдоль бумаги. Эти скоростные иголки не просто печатают 300 символов в секунду, они могут использоваться для печатания на нескольких языках.

Контактный матричный принтер

Чернильная лента проходит между булавкой и печатной головкой; головка двигается по бумаге, печатая по мере продвижения. Когда строка заканчи вается, мотор поворачивает платен, и бумага продвигается на одну строку.

Иглы в ряд .

Иглы печатной головки ударяют по чернильной ленте, отпечатывая на бумаге точки. Печатная головка выдвигает только те иглы, которые необходимы для требуемого символа.

Внутри печатной головки .

Печатная головка снабжена семью иглами, расположенными вертикально, каждая из которых прикреплена к своему молоточку. Иглы надвигаются и отступают сотни раз в секунду при помощи электромагнитов. Каждый раз печатная головка продвигается на ширину одной точки и должна сделать пять движений, чтобы напечатать одну букву.

Хранение данных в буфере
Компьютер может посылать данные со значительно большей скоростью, чем принтер в состоянии их печатать. Поэтому принтер оборудован временной памятью, называемой еще буфером, где данные хранятся до напечата ния. Буфер увеличивает скорость принтера, позволяя ему печатать в двух направлениях. Отпечатав одну строку слева направо, головка принтера смещается вниз на одну строку и начинает печатать справа налево, вместо того чтобы вернуться на левый край.

Изобретение струйных принтеров позволило получать полноцветную печать, не выходя из дома. Причем настолько качественную, что даже фотоотпечатки обладают разрешением, присущим обычным фотографиям. А стоимость подобных устройств позволяет приобрести будущую мини-лабораторию в любую квартиру. Будущему пользователю не помешает знать устройство и принцип работы струйного принтера.

Открытие, которое позже легло в основу струйной печати, обнаружил французский ученый Феликс Саварт еще в 1833 году. Явление основывалось на том, что, когда капельки жидкости проходят через минимально узкое отверстие, они будут иметь одинаковые размер и консистенцию.

На практике его применили только в 1951 году в лаборатории компании Сименс , где была выявлена одинаковая консистенция капелек в измеряющем напряжение аппарате. А через десятилетие стенфордские ученые представили метод, согласно которому одинаковые и равноудаленные капли попадали на поверхность при помощи электрического заряда. Таким образом из них формировалось напряжение, а неиспользованные частички с зарядом возвращались обратно в устройство коллектора. Так была изобретена струйная печать.

За последние десять лет технология струйных принтеров поражает своим прогрессом. Если раньше это была печать цветных текстов, геометрических фигур и простых логотипов, то сейчас на струйном принтере реально распечатать высококачественные художественные изображения.

Все современные струйные принтеры – цветные, черно-белых вариантов сегодня просто не выпускают . А будучи цветными, они делятся уже на классы:

  • Color;

  • Photo.

В первом случае устройство работает в четырехцветном режиме, а уже фотоагрегаты используют шесть и более цветов.

Что же внутри

Как же выглядит устройство струйного принтера? Основной элемент – печатающая головка (в её изготовление заложено 80% цены аппарата). Именно сюда поступает красящее вещество, предварительно проходя через дюзы. Нет повода для беспокойства, ничего не выльется – отверстия слишком малы, да и саму краску удержит поверхностное притяжение. Непосредственно под «дырками» находятся небольшие полости, куда краска будет стекаться из емкостей.

Возможно решение, когда головка идет вместе с картриджем, а, значит, должна быть заменена вместе с ним. А есть варианты, в которых головки установлены в аппарате без возможности замены.

Сама головка вместе с отсеками для чернил закреплена на каретке. Именно эта деталь совершает движения вперед-назад поперек листа бумаги и обеспечивает попадание на него краски.

Конструкция принтера такова, что после получения задания лист попадает в печатный отсек. Далее он будет перемещаться внутри благодаря специальному продвигающему его механизму (валик продвигает мотор). Бумага будет дополнительно прижата к листу специальными валиками. В некоторых устройствах есть возможность двусторонней печати – в этом случае печать идет одновременно на двух сторонах листа бумаги.

Как работает современный струйный принтер

Принтеры работают при помощи микроскопических капель чернил с несколькими цветами. Принцип работы струйного принтера похож на матричные агрегаты, но здесь вместо иголок применяются дюзы, через которые на лист бумаги и поступает в капельном виде краска. Размер каждой капли – несколько десятых микрон в диаметре (что существенно тоньше даже обычного человеческого волоса). Только под микроскопом можно увидеть множество мини-точек, из которых состоит изображение.

Капельки поступают на бумагу посредством выдавливания. И здесь у разных производителей используются разные технологии печати.


У каждой из этих технологий есть и свои плюсы и минусы.

  1. Термотехнология связана с высокими температурами. Это вызывает на образование нагарного слоя и способствует выходу из строя печатающей головки.
  2. Пьезоэлемент наиболее дешевый вариант и позволяет достигать больших скоростей в работе.

Есть у любых струйных печатающих устройств и свои недостатки. Самыми главными из них являются медленный процесс работы и высокая себестоимость печати. Еще одним моментом является использование фотобумаги со специальным покрытием для распечатки фотографий. Кроме того, у картриджа небольшой размер, а потому и невыгодный ресурс.

Последний аспект указывает на существенную дороговизну в обслуживании устройства . Таким образом, при постоянной смене картриджей в струйниках, это существенно отразится на бюджете. Однако выход найден – печатающие агрегаты с СНПЧ.

Разница между картриджами и СНПЧ

Одним из главных элементов струйника является картриджное устройство, имеющее в своем составе специальную пластину с печатающими элементами (головка с чипом) и чернилосодержащую емкость.

Картриджи делятся на два типа:


Последний вариант более современен, но он используется для маленьких объемов работы. Еще один существенный недостаток – если высыхает один цвет, то приходится выкидывать всю деталь (даже если еще достаточно других цветов).

Чтобы предотвратить это, можно воспользоваться системой очистки дюз.

А вот СПНЧ, по своей сути, предоставляет подачу чернил «самотеком «. Система с такими возможностями состоит из следующих частей:

  • отсеки с краской;
  • трубочки, подающие краску;
  • микрочипы, которые обнуляются автоматически.

Как работает СНПЧ? Здесь задействованы мембраны пьезоэлементов у печатающей головки – во время работы в картриджной части СНПЧ начинается разряжение. Затем начинается покапельное поступление чернил. Система полностью герметична и позволяет поддерживать постоянный уровень краски.

Плюсы СНПЧ в том, что такая приставка сокращает расходы на покупку картриджей. Особенно это помогает при работе с большими объемами печати. По себестоимости это выходит гораздо дешевле цветных лазерных устройств. СНПЧ очень просто установить и использовать – с этим справится даже начинающий пользователь. Но надо знать о небольшой разнице между катриджной и капсульной системами.

  1. В картриджной системе на месте оригинальных моделей картриджей стоят аналогичные постоянные, которые имеют авточип, подающий сигналы по мере опустошения.
  2. А в капсульной модели на входные «иглы» самой печатающей головки устанавливаются капсулы. Этот вариант легко обслуживать – капсулы имеют прозрачные стенки, и пользователь в любое время может контролировать уровень краски.

Какие чернила нужны для работы струйного принтера

Используемую в устройствах краску можно разделить на определенные группы. Дадим характеристики каждой из них.


Струйный принтер представляет собой интересный и обладающий большими возможностями получить качественные цветные и фотоизображения инструмент. Особенно популярно подобное приобретение для художников и фотографов. Однако перед покупкой стоит задать себе вопрос: насколько необходимо такое устройство? И, конечно же, следует знать его внутреннее устройство и возможности работы – это позволит выбрать самый оптимальный для себя вариант.

Лазерные принтеры стали незаменимыми атрибутами офисной оргтехники. Такая популярность объясняется большой скоростью и невысокой себестоимостью печати. Чтобы понять, как работает эта техника, следует знать устройство и принцип работы лазерного принтера. На самом деле, вся магия аппарата объясняется простыми конструктивными решениями.

Еще в 1938 году Честером Карлсоном была запатентована технология, переносившая изображение на бумагу при помощи сухих чернил. Основным двигателем работы было статическое электричество. Электрографический метод (а это был именно он) получил большое распространение в 1949 году, когда корпорация Xerox взяла его за основу в работе самого первого своего аппарата. Однако до логического совершенства и полной автоматизации процесса потребовалось еще десятилетие работ – только после этого и появился первый «Ксерокс», который стал прообразом современных лазерных печатных устройств.

Первый лазерный принтер Xerox 9700

Сам же первый лазерный принтер появился только в 1977 году (им стала модель Xerox 9700). Тогда печать производилась со скоростью 120 страниц в минуту. Этот аппарат использовался исключительно в учреждениях и на предприятиях. А вот уже в 1982 году выходит первым настольный агрегат Canon. С этого времени к разработкам подключаются многочисленные бренды, которые и по сегодняшний день предлагают все новые варианты настольных лазерных печатающих помощников. Каждому человеку, решившему пользоваться подобной техникой, интересно будет узнать больше о внутреннем строении и принципе работы такого агрегата.

Что же внутри

Несмотря на большой ассортимент, устройство лазерного принтера всех моделей является схожим. За основу работы взята фотоэлектрическая часть ксерографии , а сам прибор поделен на следующие блоки и узлы:

  • блок лазерного сканирования;
  • узел, осуществляющий перенос изображения;
  • узел для закрепления изображения.

Первый блок представлен системой линз и зеркал . Именно здесь находится полупроводниковый тип лазера со способной фокусироваться линзой. Далее расположены зеркала и группы, которые могут вращаться, тем самым формируя изображение. Переходим к узлу, отвечающему за перенос изображения: в нем находятся сам тонерный картридж и ролик , переносящий заряд. Уже только в картридже присутствуют три основных формирующих изображение элемента: фотоцилиндр, вал с предварительным зарядом и магнитный вал (работающий совместно с барабаном устройства). И вот тут большую актуальность приобретает возможность фотоцилиндра менять свою проводимость под действием попавшего на него света. Когда фотоцилиндру придается зарядность, он сохраняет ее надолго, но при засвечивании уменьшается его сопротивление, что приводит к тому, что заряд начинает стекать с его поверхности. Так появляется необходимый нам оттиск.

В целом, существует два способа для создания картинки.

Попадая в агрегат, непосредственно перед будущим контактом с фотоцилиндром, соответствующий заряд получает и сама бумага. В этом ей помогает ролик переноса изображения. После переноса статический заряд исчезает при помощи специального нейтрализатора – так бумага перестает притягиваться в фотоцилиндру.

А как же фиксируется изображение? Это происходит за счет тех добавок, которые находятся в тонере. Они имеют определенную температуру плавления. Такая «печка» вдавливает в бумагу расплавленный порошок тонера, после чего он быстро застывает и становится долговечным.

Распечатанные на бумаге лазерным принтером изображения имеют отличную стойкость к многочисленным внешним воздействиям.

Как устроен картридж

Определяющим звеном в работе лазерного принтера является картридж. Он представляет собой небольшой бункер с двумя отсеками – для рабочего тонера и для уже отработанного материала. Также здесь находится светочувствительный барабан (фотоцилиндр) и механические шестеренки для его проворачивания.

Сам тонер представляет собой порошок мелкодиспенсерного вида, который состоит из полимерных шариков – они покрыты специальным слоем магнитного материала. Если речь идет о цветном тонере, то в его состав дополнительно входят еще и красящие вещества.

Важно знать, что каждый производитель выпускает собственные оригинальные тонера – всем им присуща своя магнитность, дисперсность и прочие свойства.

Вот почему ни в коем случае нельзя заправлять картриджи случайными тонерами – это может негативно сказаться на его работоспособности.

Процесс рождения оттиска

Появление изображения или текста на бумаге будет состоять из таких последовательных этапов:

  • заряд барабана;
  • экспонирование;
  • проявка;
  • перенос;
  • закрепление.

Как работает фотозаряд? Он формируется на фотобарабане (где, как уже понятно, зарождается и само будущее изображение). Для начала происходит снабжение зарядом, который может быть как отрицательным, так и положительным. Происходит это одним из следующих способов.

  1. Используется коронатор , то есть вольфрамовая нить с покрытием из углеродных, золотых и платиновых включений. Когда в дело вступает высокое напряжение, между этой нитью каркасом проносится разряд, который, соответственно, создаст электрическое поле, передающее заряд на фотобарабан.
  2. Однако использование нити приводило со временем к проблемам с загрязнением и ухудшением качества распечатанного материала. Гораздо лучше действует ролик заряда с аналогичными функциями. Сам он похож на металлический вал, который покрыт токопроводящей резиной или поролоном. Идет соприкосновение с фотоцилиндром – в этот момент ролик и передает заряд. Напряжение здесь значительно ниже, но и детали изнашиваются гораздо быстрее.

Это и есть работа освещения, в результате чего часть фотоцилиндра становится токопроводящей и пропускает заряд через металлическое основание в барабане. А участок, подвергшийся экспонированию, становится незаряженным (или приобретает слабый заряд). На этом этапе формируется еще невидимое изображение.

Технически это осуществляется так.

  1. Лазерный луч падает на поверхность зеркала и отражается на линзу, которая распределит его в необходимое место на барабане.
  2. Так система линз и зеркал формирует строчку вдоль фотоцилиндра – лазер то включается, то выключается, заряд то остается нетронутым, то снимается.
  3. Строка закончилась? Фотобарабан повернется, и экспонирование продолжится снова.

Проявка

В этом процессе большое значение имеет магнитный вал из картриджа , похожий на трубку из металла, внутри которой находится магнитный сердечник. Часть поверхности вала помещена в заправочный тонер бункера. Магнит притягивает к валу порошок, и он выносится наружу.

Важно регулировать равномерность распределения слоя порошка – для этого существует специальное дозирующее лезвие . Оно пропускает лишь тонкий слой тонера, отбрасывая остальное назад. Если лезвие установлено неправильно, на бумаге могут появиться черные полосы.

После этого тонер продвигается на участок между магнитным валом и фотоцилиндром – здесь он притянется к проэкспонированным участкам, а от заряженных оттолкнется. Так изображение становится уже более видимым.

Перенос

Чтобы изображение появилось уже на бумаге, в дело вступает ролик переноса , в металлическую сердцевину которого притягивается положительный заряд – он переносится на бумагу благодаря специальному прорезиненному покрытию.

Итак, частички отрываются от барабана и начинают перемещаться на страницу. Но удерживаются они здесь пока только из-за статического напряжения. Образно говоря, тонер просто насыпается там, где нужно.

Вместе с тонером могут попасть пыль и ворсинки бумаги, но они снимаются вайпером (специальной пластиной) и отправляются прямиком в отсек отходов на бункере. После полного круга барабана процесс повторяется.

Для этого используется свойство тонера расплавляться при высоких температурах. Конструктивно это в этом оказывают помощь два следующих вала:

  • в верхнем расположен нагревательный элемент;
  • в нижнем в бумагу вдавливается расплавленный тонер.

Иногда подобная «печка» представляет собой термопленку – специальный гибкий и термостойкий материал с нагревательной составляющей и прижимным роликом. Её нагрев контролируется датчиком. Как раз в момент прохода между пленкой и прижимной частью бумага и разогревается до 200 градусов, что позволяет ей легко впитать в себя ставшим жидким тонер.

Дальнейшее остывание идет естественным образом – в лазерных принтерах обычно не требуется установка дополнительной охлаждающей системы. Однако здесь еще раз проходит специальный очиститель – обычно его роль исполняет фетровый вал .

Фетр обычно пропитывают специальным составом, что помогает смазать покрытие. Поэтому другое название такого вала – масляной.

Как осуществляется цветная лазерная печать

А как же происходит цветная печать? В лазерном устройстве используется четыре таких основных колора – черный, пурпурный, желтый и голубой. Принцип печати такой же, как и в черно-белом случае, однако сначала принтер разобьет изображение на монохром для каждого цвета. Начинается последовательное перенесение каждым картриджем своего цвета, а в итоге наложения получается нужный результат.

Выделяют такие технологии цветной лазерной распечатки:

  • многопроходная;
  • однопроходная.

При многопроходном варианте в дело вступает промежуточный носитель – это вал или лента, переносящая тонер. Действует это так: за 1 оборот накладывается 1 цвет, потом в нужное место подается другой картридж, а поверх первой картинки ложится вторая. Достаточно четырех проходов, чтобы сформировалась полноценная картинка – она и перейдет на бумагу. Но и само устройство будет работать в 4 раза медленнее, чем его черно-белый собрат.

Как работает принтер с однопроходной технологией ? В этом случае все четыре отдельно печатающих механизма имеют общее управление – они выстроены в одну шеренгу, у каждого имеется свой собственный лазерный блок с переносным роликом. Так бумага и идет по барабану, последовательно собирая все четыре изображения картриджей. Только после этого прохода лист уходит в печку, где происходит закрепление картинки.

Достоинства лазерных принтеров сделали их фаворитами для работы с документацией, как в офисе, так и домашних условиях. А информация о внутренней составляющей их работы поможет любому пользователю вовремя заметить недочеты и обратиться в сервисную службу для технической поддержки функционирования устройства.

Принтером называют устройство, служащее для распечатывания информации из электронного вида на бумагу. В этом случае процесс переноса данных на бумагу называется выводом на печать, а результат – распечаткой. Принтер может выполнять несколько функций, поэтому к процессу выбора следует подходить внимательно, тщательно ознакомившись с его функциями. Нужно учесть все особенности печати, например, офисная модель для дома не будет лучшим вариантом, так как большой объем печати вам не нужен, а универсальное печатающее устройство приобретать также нет необходимости.

Типы печатающих устройств

Сегодня существует два типа печатающих устройств, отличающихся своей функциональностью:
  • Многофункциональные.
  • Принтеры.

Первый тип коротко называют МФУ. Его обычно выбирают для дома, кроме печати информации на бумагу этим устройством можно сканировать документы для сохранения результата в электронном виде, можно использовать его как обычный ксерокс для простого копирования документов, а также в качестве факса.

Такое комплексное устройство обойдется дешевле, по сравнению со стоимостью принтера, ксерокса и сканера, приобретенных отдельно. К тому же, такой покупкой вы сэкономите место на компьютерном столе, да и проводов будет меньше. Если кроме печати текста на бумаге вам ничего не нужно, то оптимальным выбором будет второй тип устройства.

Виды и особенности устройства

Модельный ряд принтеров на сегодняшний день очень большой. Они различаются по многим параметрам – назначению, виду чернил, количеству цветов, принципу работы и т.д. Каждый из видов обладает своими особенностями и вспомогательными функциями. Рассмотрим основные виды принтеров более подробно.

Матричные

Принтер этого вида разработан в Японии в 60-х годах прошлого века.

Его принцип действия заключается в создании изображения специальной печатающей головкой, которая состоит из матрицы, отсюда и пошло название этого устройства. Матрица состоит из набора игл, приводящихся в действие электромагнитами. Печатающая головка передвигается по листу бумаги по каждой строчке текста, а иглы воздействуют на бумагу посредством красящей ленты, тем самым создавая на листе точечный отпечаток.

В разных моделях головка для печати может иметь от 9 до 24 игл. Чем больше иголок, тем выше качество печати, а изображение более четкое. Матричные печатающие устройства уже практически вытеснены другими современными принтерами, но до сих пор применяются в некоторых местах. Например, товарные чеки в магазинах отпечатывают матричным способом.

Недостаточное качество, подобное печатной машинке, уже не дает возможность применять матричную технологию в других областях. Среди недостатков таких устройств, кроме плохого качества, можно выделить шумность работы и низкая скорость печати.

Достоинствами этой раритетной конструкции является способность функционировать в любых условиях, отпечатки игл обладают устойчивостью к влаге и стиранию. Подделать документ, отпечатанный на матричном устройстве, довольно сложно.

Струйный принтер

Принцип действия струйного устройства чем-то похож на матричную технологию: изображение формируется так же из точек. Вместо игольчатой печатающей головки применяется матрица с жидкими красящими веществами.

Она бывает закрепленной в корпусе устройства, либо встроена в картридж. «Струйники» разделяются по некоторым типовым признакам.

Если рассматривать их деление по типу чернил, то они делятся на:
  • Водные (применяются во многих офисных и бытовых устройствах).
  • Масляные (для маркировки в промышленности).
  • Сольвентные (для печати стендов, рекламы и различных плакатов, устойчивы к влаге).
  • Пигментные (лучший способ создания качественных изображений, фотографий).
  • Термотрансферные (для нанесения модных принтов на одежду).
  • Спиртовые (быстро высыхают в печатающей головке, чем ограничено их применение).
Различают виды струйных принтеров по назначению:
  • Офисные (ими оборудованы офисы для распечатывания документов небольшого размера).
  • Широкоформатные (для печати рекламы).
  • Маркировочные (выполняется маркировка деталей).
  • Интерьерные (печать стендов, плакатов, элементов интерьера).
  • Фотопринтеры .
  • Сувенирные (печать изображений на лазерных дисках, предметах со сложной поверхностью).
  • Маникюрные (наносится рисунок на ногти в салонах красоты).

Фотопринтеры и офисные печатающие устройства снабжены одной головкой для каждого цвета, обладают качественной передачей цвета, не создают шума. Высокое качество изображения может достигаться только при применении специальной бумаги.

Быстродействие струйных принтеров незначительно выше матричных, изображение чувствительно к влаге, может размазываться, в зависимости от вида чернил, со временем выцветает. Струйный принтер – капризное устройство, которое будет нормально работать, если регулярно использовать все картриджи. Если долгое время устройство не включалось, чернила в головке могут засохнуть.

Основным отрицательным фактором является высокая стоимость печати. Чернила в картридже быстро кончаются, необходима периодическая их замена, что является дорогим удовольствием. Эта проблема частично решена следующим рассматриваемым устройством.

СНПЧ

Это устройство может легко заменять работу картриджей, его название расшифровывается как система непрерывной подачи чернил. Принцип действия этой системы заключается в подаче чернил к картриджу по трубкам.

Это повышает качество печати, и можно экономить деньги, не приобретая дорогие картриджи. Необходимо только своевременно приобретать чернила и наливать их в контейнеры, что значительно дешевле, и хватает на более длительное время.

Для заправки этой системы не требуется обращение к специалисту, все можно сделать своими руками. Раньше эта система продавалась отдельно, а сейчас она встроена во многие модели принтеров.

Лазерная технология

Этот способ печати правильнее будет назвать электрографическим, он возник в 1938 году, и назывался тогда ксерографией и электрографией. В настоящее время этот способ называют лазерной печатью, отличающейся высоким качеством, экономичностью и высоким быстродействием.

Основным элементом этого устройства является фоторецептор, хранящий на своей поверхности заряд электрического тока, для каждой точки изображения имеется отдельный заряд. Луч лазера попадает на фоторецептор, выполненный в виде барабана, и направляет излучение на отдельные точки, с которых снимает заряд. Компьютер, подключенный к лазерному принтеру, управляет лучом лазера, и создает на барабане определенное изображение.

Специальный порошковый краситель поступает на фоторецептор и прилипает на его заряженные участки, создавая изображение, которое затем переходит на бумагу, и запекается на ней путем нагревания.

Эта технология зарекомендовала себя высоким быстродействием, по сравнению со струйными моделями. Качество печати лазерного принтера высокое, изображение не подвержено истиранию, устойчиво к влаге, не выцветает, в отличие от предыдущих рассмотренных моделей. Достоинством лазерной технологии является также способность печати на любой бумаге с отличным качеством.

Лазерный принтер имеет свои недостатки: высокая стоимость, которая компенсируется более дешевой заправкой и обслуживанием. К недостатку также можно отнести некоторые искажения печати букв и изображений на краю листа – точка иногда получается в виде овала. Современные модели уже не имеют этой проблемы, путем использования специальных технологических линз.

Светодиодная технология

Этот способ можно считать разновидностью лазерной печати, с отличием в источнике света. Здесь вместо луча лазера применяются светодиоды. На изображении все точки соответствуют отдельным светодиодам, которые не движутся как лазер.

Это повышает надежность работы, и является преимуществом. Другим достоинством можно назвать высокое быстродействие – скорость печати может достигать 40 листов в минуту, причем качество печати значительно выше, по сравнению с лазерной печатью, так как искажений на краях листа нет. Недостатком является только его высокая стоимость.

Редко используемые виды принтеров

Существует много разных технологий печати, которые не получили широкого применения, либо используются для узкой специализации.

  • Сублимационный принтер является альтернативным вариантом для струйных моделей, редко работает в офисах, но в полиграфическом производстве успешно используется, обладает хорошим качеством изображения и цветопередачи.

  • Барабанные устройства, которые работали раньше, сейчас уже не используются, их конструкция устарела, но скорость печати этих устройств превосходит все существующие виды принтеров. Его основным элементом является барабан, который имеет размеры листа, и на поверхности имеет рельефы цифр и букв.Работа устройства заключается в следующем: барабан вращается, и когда над листом проходит нужная цифра или буква, то специальный толкатель ударяет по листу, отпечатывая на бумаге символ с помощью красящей ленты. Отпечатанные листы на таком принтере можно легко узнать – шрифт похож на тот, который был у ручной печатной машинки, со «скачущими» по высоте символами.

  • Лепестковый принтер работает аналогичным способом, с той разницей, что набор символов находится на гибких лепестках на вращающемся диске. Нужный лепесток прикасается к красящей ленте и листу бумаги, создавая отпечаток. Цветной текст можно получить, если установить ленту другого цвета.

За всю историю развития печатающие устройства были следующих видов: цепными, гусеничными и шаровыми. Они отличались принципом работы, но не получили широкого распространения.

  • Домашний или офисный принтер . Разница между ними только в объеме печати. Для дома достаточно до 500 листов в месяц, для работы в офисе этого будет явно недостаточно. Поэтому лазерные модели приобретают для офиса, а струйные предпочтительнее для дома, хотя каждый выбирает сам.
  • Качество печати . Этот параметр для каждого пользователя индивидуален. Существует параметр, определяющий четкость и качество распечатка – это разрешение.Для работы в офисе подойдет печатающее устройство с разрешением от 600 до 2400 пикселей на один дюйм. Практически все современные устройства сегодня имеют достаточное разрешение для работы в любых условиях.
  • Стоимость печати . При выборе принтера нужно смотреть как на цену самого устройства, так и на затраты, необходимые для его обслуживания и заправку. Если печатать требуется немного, то лучше приобрести недорогое устройство, рассчитанное на небольшую загрузку. Если требуется печатать большой объем документов, то оптимальным выбором будет дорогой принтер с большой допустимой нагрузкой. Цена также зависит от числа дополнительных функций: встроенной памяти, вспомогательных лотков, возможности беспроводного соединения с компьютером и т.д.

С начала нового тысячелетия понятие «3D» прочно вошло в нашу повседневную жизнь. В первую очередь, мы связываем его с киноискусством, фотографией или мультипликацией. Но едва ли сейчас найдётся человек, который хотя бы раз в жизни не слышал о такой новинке, как 3D-печать.

Что же это такое и какие новые возможности в творчестве, науке, технике и повседневной жизни несут нам технологии трехмерной печати, мы и попытаемся разобраться в статье, приведенной ниже.

Но сначала немного истории. Хоть и много стали говорить о 3D печати только последние несколько лет, на самом деле эта технология существует уже достаточно давно. В 1984 году компания Charles Hull разработала технологию трёхмерной печати для воспроизведения объектов с использованием цифровых данных, а двумя годами позже дала название и запатентовала технику стереолитографии.

Тогда же эта компания разработала и создала первый промышленный 3D принтер. Впоследствии эстафету приняла компания 3D Systems, разработавшая в 1988 году модель принтера для 3Д печати в домашних условиях SLA – 250.

В том же году компанией Scott Grump было изобретено моделирование плавлеными осаждениями. После нескольких лет относительного затишья, в 1991 году компания Helisys разрабатывает и выпускает на рынок технологию для производства многослойных объектов, а через год, в 1992, в компании DTM выходит в свет первая система селективного лазерного спаивания.

Затем, в 1993 году основывается компания Solidscape, которая и приступает уже к серийному производству принтеров на струйной основе, которые способны производить небольшие детали с идеальной поверхностью, причём при относительно небольших затратах.

Тогда же Массачусетский университет патентует технологию трёхмерной печати, подобную струйной технологии обычных 2D принтеров. Но, пожалуй, пик развития и популярности 3D печати всё же пришёлся на новый, 21 век.

В 2005 году появился первый , способный печатать в цвете, это детище компании Z Corp под названием Spectrum Z510, а буквально через два года появился первый принтер, способный воспроизводить 50% собственных комплектующих.

В настоящее время круг возможностей и сфер применения 3Д печати постоянно растёт. Этим технологиям оказалось подвластно всё - от кровеносных сосудов до коралловых рифов и мебели. Впрочем, о сферах применения данных технологий мы поговорим чуть позже.

Итак, что же представляет из себя печать на 3d принтере?

Вкратце - это построение реального объекта по созданному на компьютере образцу 3D модели. Затем цифровая трёхмерная модель сохраняется в формате STL-файла, после чего 3D принтер, на который выводится файл для печати, формирует реальное изделие.

Сам процесс печати – это ряд повторяющихся циклов, связанных с созданием трёхмерных моделей, нанесением на рабочий стол (элеватор) принтера слоя расходных материалов, перемещением рабочего стола вниз на уровень готового слоя и удалением с поверхности стола отходов.

Циклы непрерывно следуют один за другим: на первый слой материала наносится следующий, элеватор снова опускается и так до тех пор, пока на рабочем столе не окажется готовое изделие.

Как работает 3D принтер?

Применение трехмерной печати – это серьезная альтернатива традиционным методам прототипирования и мелкосерийному производству. Трёхмерный, или 3д-принтер, в отличие от обычного, который выводит двухмерные рисунки, фотографии и т. д. на бумагу, даёт возможность выводить объёмную информацию, то есть создавать трёхмерные физические объекты.

На данный момент оборудование данного класса может работать с фотополимерными смолами, различными видами пластиковой нити, керамическим порошком и металлоглиной.

Что такое 3d принтер?

В основу принципа работы 3d принтера заложен принцип постепенного (послойного) создания твердой модели, которая как бы «выращивается» из определённого материала, о котором будет сказано немного позже. Преимущества 3D печати перед привычными, ручными способами построения моделей - высокая скорость, простота и относительно небольшая стоимость.

Например, для создания или какой-либо детали вручную может понадобиться довольно много времени - от нескольких дней до месяцев. Ведь сюда входит не только сам процесс изготовления, но и предварительные работы - чертежи и схемы будущего изделия, которые всё равно не дают полного видения окончательного результата.

В итоге значительно возрастают расходы на разработку, увеличивается срок от разработки изделия до его серийного производства.

3D технологии же позволяют полностью исключить ручной труд и необходимость делать чертежи и расчёты на бумаге - ведь программа позволяет увидеть модель во всех ракурсах уже на экране, и устранить выявленные недостатки не в процессе создания, как это бывает при ручном изготовлении, а непосредственно при разработке и создать модель за несколько часов.

При этом возможность ошибок, присущих ручной работе, практически исключается.

Что такое 3d принтер: видео

Существуют различные технологии трёхмерной печати. Разница между ними заключается в способе наложения слоёв изделия. Рассмотрим основные из них.

Наиболее распространенными являются SLS (селективное лазерное сплетение), НРМ (наложение слоев расплавленных материалов) и SLA (стереолитиография).

Наиболее широкое распространение благодаря высокой скорости построения объектов получила технология стереолитографии или SLA.

Технология SLA

Технология работает так: лазерный луч направляется на фотополимер, после чего материал затвердевает.

В качестве фотополимера могут использоваться самые разные материалы. Их физико-механические характеристики могут сильно различаться между собой. Однако ни одному производителю пока не удаётся создать действительно прочный материал. Характеристики смол по прочности сравнимы с эпоксидной смолой.

После отвердевания он легко поддаётся склеиванию, механической обработке и окрашиванию. Рабочий стол находится в ёмкости с фотополимером. После прохождения через полимер лазерного луча и отвердения слоя рабочая поверхность стола смещается вниз.

Технология SLS

Спекание порошковых реагентов под действием лазерного луча – оно же SLS - единственная технология 3D печати, которая применяется при изготовлении форм, как для металлического, так и пластмассового литья.

Пластмассовые модели обладают отличными механическими качествами, благодаря которым они могут использоваться для изготовления полнофункциональных изделий. В SLS технологии используются материалы, близкие по свойствам к маркам конечного продукта: керамика, порошковый пластик, металл.

Устройство 3d принтера выглядит следующим образом: порошковые вещества наносятся на поверхность элеватора и спекаются под действием лазерного луча в твёрдый слой, соответствующий параметрам модели и определяющий её форму.

Технология LCD

Ещё недавно, около 2017 года, 3d-принтеры для печати фотополимером были дорогими. Однако изобретение печати на основе проницаемых матриц LCD изменило ситуацию в корне. На середину 2019 года можно приобрести фотополимерный 3d-принтер хорошего качества примерно за 30 000 рублей.

LCD матрица для 3d принтера представляет из себя экран по аналогии с экраном сотового телефона. Сама по себе такая матрица не излучает свет. Она может только изменять степень светопропускания в различных областях. Так формируется картинка слоя печати. А вот источник излучения находится за lcd матрицей. Таким образом для создания подобного 3д-принтера нужно было всего лишь заменить лампу-излучатель на источник ультрафиолетового излучения. Напомним, что подавляющее большинство фотополимеров застывают под действием именно УФ излучения.

Технология DLP

Технология DLP – новичок на рынке трехмерной печати. Стереолитографические печатные аппараты сегодня позиционируются, как основная альтернатива FDM оборудованию. Принтеры данного типа используют технологию цифровой обработки светом. Многие задаются вопросом, чем печатает 3d принтер данного образца?

Вместо пластиковой нити и нагревающей головки для создания трехмерных фигур используются фотополимерные смолы и DLP-проектор.

Ниже вы можете увидеть, как работает 3d принтер видео:

Впервые услышав про DLP 3d принтер, что это такое – вполне резонный вопрос. Несмотря на замысловатое название, устройство почти не отличается от других настольных печатных аппаратов. К слову, его разработчики, в лице компании
QSQM Technology Corporation, уже запустили в серию первые образцы высокотехнологичного оборудования. Выглядит оно следующим образом:

Технология EBM

Стоит отметить, технологии SLS/DMLS – далеко не единственные в области . В настоящее время для создания металлических трехмерных объектов широко используется электронно-лучевая плавка. Лабораторные исследования показали, что использование металлической проволоки для послойного наплавления при изготовлении высокоточных деталей малоэффективно, поэтому инженеры разработали специальный материал – металлоглину.

Металлическая глина, использующаяся в качестве чернил во время электронно-лучевой плавки изготавливается из смеси органического клея, металлической стружки и определенного количества воды. Для того чтобы превратить чернило в твердый объект, его нужно нагреть до температуры, при которой клей и вода выгорят, а стружка сплавится между собой в монолит.

EBM 3d принтер: как работает

Примечательно, что данный принцип также используется при работе с SLS принтерами. Но в отличие от них, EBM-аппараты генерируют для плавки металлоглины направленные электронные импульсы вместо лазерного луча. Нужно сказать, что данный метод обеспечивает высокое качество печати и отличную прорисовку мелких деталей.

На сегодняшний день продаются только промышленные принтеры, использующие EBM технологию. Вот как выглядит один из них:

На видео, представленном ниже, наглядно продемонстрированы возможности 3d принтера, приспособленного для электронно-лучевой плавки:

Технология НРМ (FDM) HPM

Даёт возможность создавать не только модели, но и конечные детали из стандартных, конструкционных и высокоэффективных термопластиков. Это единственная технология, использующая термопластики производственного класса, обеспечивающие не имеющую аналогов механическую, термическую и химическую прочность деталей.

Печать по технологии НРМ выгодно отличается чистотой, простотой использования и пригодностью для применения в офисе. Детали из термопластика устойчивы к высоким температурам, механическим нагрузкам, различным химическим реагентам, влажной или сухой среде.

Растворимые вспомогательные материалы позволяют создавать сложные многоуровневые формы, полости и отверстия, которые было бы проблематично получить обычными методами. 3D-принтеры, действующие по технологии НРМ, создают детали слой за слоем, разогревая материал до полужидкого состояния и выдавливая его в соответствии созданными на компьютере путями.

Для печати по технологии НРМ используется два различных материала - из одного (основного) будет состоять готовая деталь, и вспомогательного, который используется для поддержки. Нити обоих материалов подаются из отсеков 3D-принтера в печатающую головку, которая передвигается зависимости от изменения координат X и Y, и наплавляет материал, создавая текущий слой, пока основание не переместится вниз и не начнется следующий слой.

Когда 3D-принтер завершит создание детали, остаётся отделить вспомогательный материал механически, или растворить его моющим средством, после чего изделие готово к использованию.

Интересно, что в наши дни популярностью пользуются не только автоматические настольные HPM принтеры, но и приспособления для ручной печати. Причем, правильно было бы назвать их не печатными устройствами, а ручками для рисования трехмерных объектов.

Ручки сделаны по той же схеме, что и принтеры, использующие технологию послойного наплавления. Пластиковая нить подается в ручку, где плавится до нужной консистенции и тут же выдавливается через миниатюрное сопло! При должной сноровке получаются вот такие оригинальные декоративные фигурки:

Ну и конечно, так же, как и технологии, отличаются друг от друга и сами принтеры. Если у вас принтер, работающий по SLA, то технологию SLS на нём применить будет невозможно, т. е. каждый принтер создан только под определённую технологию печати.

Цветная 3D-печать

Данная технология единственная в своем роде, которая позволяет получать объекты во всем доступном диапазоне оттенков. Примечательно, что окрашивание изделий происходит непосредственно во время их изготовления. С ее помощью получаются фотореалистичные объекты. Это и вызывает неподдельный интерес к ней со стороны дизайнеров.

Зачастую в качестве исходного материала применяют порошок, созданный на основе гипса. Щетки и ролики формируют не очень толстый слой расходника. Дальше с помощью подвижной головки на необходимые участки наносятся микрокапли клееобразного вещества (перед этим его окрашивают в нужный цвет). Оно напоминает по своему составу цианокрилат. Послойно создается готовый разноцветный объект. Финальная обработка изделия цианоакрилатом обеспечивает ему блеск и жесткость.

Промышленные и настольные цветные 3D-принтеры

Современный рынок предлагает различные многоцветные 3D-принтеры. С их помощью создаются разноцветные объекты в домашних условиях. Большинство агрегатов предназначено для профессионального использования.

Профессиональная цветная печать на 3D-принтере осуществляется с помощью:

1. Линейки Zрrintеr от известной торговой марки 3D Sуstems. Эти устройства могут создавать габаритные разноцветные объекты. Снабжаются 5-ю картриджами и системой автоматической загрузки порошка. Техника практически на 100% автоматизирована, поэтому настройка или контроль процесса печати не обязателен. Весят модели около 340 килограмм. Стоимость в пределах 90-130 тысяч долларов.

2. Полноцветный 3D-принтер Мсor Iris. Разноцветные изделия создаются путем склеивания отдельных бумажных клочков. Данный агрегат от Мсоr Тесhnologies Ltd создает объемные фотореалистичные модели с неплохими показателями прочности. Может генерировать до миллиона цветов. Стоит 15 тысяч долларов.

Настольные модели для домашнего использования:

1. Цветной 3D-принтер 3D Тоuch. Данный агрегат работает по технологии FDМ. Модель может снабжаться одной, двумя или даже тремя экструзионными головками. Работает с АВS или РLА-пластиком. Весит ни много ни мало 38 килограмм. Стоимость – около 4 тысяч долларов.

2. 3D-принтер трехцветный ВFB 3000 РАNTHER – первый цветной принтер, который был выпущен на рынок. Сегодня его стоимость составляет около 2,5 тысяч долларов. В качестве рабочего материала применяется стандартная пластиковая нить. Для работы понадобится нить трех цветов.

3. Одна из самых дешевых моделей – РroDеsk3D. Для создания изделий используется система из пяти картриджей. Возможна работа с РLA или АВS-пластиком. Принтер снабжен системой автоматической настройки. Стоит всего 2 тысячи долларов. К сожалению, не может похвастаться высокими показателями разрешения печати.

Области применения 3D печати

3D печать открыла большие возможности для экспериментов в таких сферах как архитектура, строительство, медицина, образование, моделирование одежды, мелкосерийное производство, ювелирное дело, и даже в пищевой промышленности.

В архитектуре, например, 3D печать позволяет создавать объёмные макеты зданий, или даже целых микрорайонов со всей инфраструктурой - скверами, парками, дорогами и уличным освещением.

Благодаря используемому при этом дешёвому гипсовому композиту обеспечивается низкая себестоимость готовых моделей. А более 390 тысяч оттенков CMYK позволяют в цвете воплотить любую, даже самую смелую фантазию архитектора.

3d принтер: применение в области строительства

В строительстве есть все основания предполагать, что в недалёком будущем намного ускорится и упростится процесс возведения зданий. Калифорнийскими инженерами создана система 3D печати для крупногабаритных объектов. Она работает по принципу строительного крана, возводящего стены из слоёв бетона.

Такой принтер может возвести двухэтажный дом всего в течение 20 часов.

После чего рабочим останется лишь провести отделочные работы. 3D House Постепенно завоёвывают прочные позиции 3D принтеры и в мелкосерийном производстве.

В основном эти технологии используются для производства эксклюзивных изделий, таких как предметы искусства, фигурки персонажей для ролевых игр, прототипов моделей будущих товаров или каких-либо конструктивных деталей.

В медицине благодаря технологиям трёхмерной печати врачи получили возможность воссоздавать копии человеческого скелета, что позволяет более точно отработать приёмы, повышающих гарантии успешного проведения операций.

Всё большее применение находят 3D принтеры в области протезирования в стоматологии, так как эти технологии позволяют намного быстрее получить протезы, чем при традиционном изготовлении.

Не так давно немецкими учёными была разработана технология получения человеческой кожи. При её изготовлении используется гель, полученный из клеток донора. А в 2011 году учёным удалось воспроизвести живую человеческую почку.

Как видим, возможности, которые открывает 3D печать практически во всех сферах деятельности человека поистине безграничны.

Принтеры, создающие кулинарные шедевры, воспроизводящие протезы и органы человека, игрушки и наглядные пособия, одежду и обувь - уже не плод воображения писателей - фантастов, а реалии современной жизни.

А какие ещё горизонты откроются перед человечеством в ближайшие годы, наверное, это может быть ограничено только фантазией самого человека.



Понравилась статья? Поделиться с друзьями: