Что такое ООП и с чем его едят? Принципы объектно-ориентированного программирования Объектно ориентированное программирование основные концепции

Наверное, в половине вакансий(если не больше), требуется знание и понимание ООП. Да, эта методология, однозначно, покорила многих программистов! Обычно понимание ООП приходит с опытом, поскольку годных и доступно изложенных материалов на данный счет практически нет. А если даже и есть, то далеко не факт, что на них наткнутся читатели. Надеюсь, у меня получится объяснить принципы этой замечательной методологии, как говорится, на пальцах.

Итак, уже в начале статьи я уже упомянул такой термин "методология". Применительно к программированию этот термин подразумевает наличие какого-либо набора способов организации кода, методов его написания, придерживаясь которых, программист сможет писать вполне годные программы.

ООП (или объектно-ориентированное программирование) представляет собой способ организации кода программы, когда основными строительными блоками программы являются объекты и классы, а логика работы программы построена на их взаимодействии.


Об объектах и классах

Класс - это такая структура данных, которую может формировать сам программист. В терминах ООП, класс состоит из полей (по-простому - переменных) и методов (по-простому - функций). И, как выяснилось, сочетание данных и функций работы над ними в одной структуре дает невообразимую мощь. Объект - это конкретный экземпляр класса. Придерживаясь аналогии класса со структурой данных, объект - это конкретная структура данных, у которой полям присвоены какие-то значения. Поясню на примере:

Допустим, нам нужно написать программу, рассчитывающую периметр и площадь треугольника, который задан двумя сторонами и углом между ними. Для написания такой программы используя ООП, нам необходимо будет создать класс (то есть структуру) Треугольник. Класс Треугольник будет хранить три поля (три переменные): сторона А, сторона Б, угол между ними; и два метода (две функции): посчитать периметр, посчитать площадь. Данным классом мы можем описать любой треугольник и вычислить периметр и площадь. Так вот, конкретный треугольник с конкретными сторонами и углом между ними будет называться экземпляром класса Треугольник. Таким образом класс - это шаблон, а экземпляр - конкретная реализация шаблона. А вот уже экземпляры являются объектами, то есть конкретными элементами, хранящими конкретные значения.

Одним из самых распространенных объектно-ориентированных языков программирования является язык java. Там без использования объектов просто не обойтись. Вот как будет выглядеть код класса, описывающего треугольник на этом языке:

/** * Класс Треугольник. */ class Triangle { /** * Специальный метод, называемый конструктор класса. * Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180); return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } }

Если мы внутрь класса добавим следующий код:

/** * Именно в этом месте запускается программа */ public static void main(String args) { //Значения 5, 17, 35 попадают в конструктор класса Triangle Triangle triangle1 = new Triangle(5, 17, 35); System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter()); //Значения 6, 8, 60 попадают в конструктор класса Triangle Triangle triangle2 = new Triangle(6, 8, 60); System.out.println("Площадь треугольника1: "+triangle2.getSquare()); System.out.println("Периметр треугольника1: "+triangle2.getPerimeter()); }

то программу уже можно будет запускать на выполнение. Это особенность языка java. Если в классе есть такой метод

Public static void main(String args)

то этот класс можно выполнять. Разберем код подробнее. Начнем со строки

Triangle triangle1 = new Triangle(5, 17, 35);

Здесь мы создаем экземпляр triangle1 класса Triangle и тут же задаем ему параметры сторон и угла между ними. При этом, вызывается специальный метод, называемый конструктор и заполняет поля объекта переданными значениями в конструктор. Ну, а строки

System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter());

выводят рассчитанные площадь треугольника и его периметр в консоль.

Аналогично все происходит и для второго экземпляра класса Triangle .

Понимание сути классов и конструирования конкретных объектов - это уверенный первый шаг к пониманию методологии ООП.

Еще раз, самое важное:

ООП - это способ организации кода программы;

Класс - это пользовательская структура данных, которая воедино объединяет данные и функции для работы с ними(поля класса и методы класса);

Объект - это конкретный экземпляр класса, полям которого заданы конкретные значения.


Три волшебных слова

ООП включает три ключевых подхода: наследование, инкапсуляцию и полиморфизм. Для начала, приведу определения из wikipedia :

Инкапсуляция - свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе. Некоторые языки (например, С++) отождествляют инкапсуляцию с сокрытием, но большинство (Smalltalk, Eiffel, OCaml) различают эти понятия.

Наследование - свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс - потомком, наследником, дочерним или производным классом.

Полиморфизм - свойство системы, позволяющее использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.

Понять, что же все эти определения означают на деле достаточно сложно. В специализированных книгах, раскрывающих данную тему на каждое определение, зачастую, отводится целая глава, но, как минимум, абзац. Хотя, сути того, что нужно понять и отпечатать навсегда в своем мозге программиста совсем немного.
А примером для разбора нам будут служить фигуры на плоскости. Из школьной геометрии мы знаем, что у всех фигур, описанных на плоскости, можно рассчитать периметр и площадь. Например, для точки оба параметра равны нулю. Для отрезка мы можем вычислить лишь периметр. А для квадрата, прямоугольника или треугольника - и то, и другое. Сейчас же мы опишем эту задачу в терминах ООП. Также не лишним будет уловить цепь рассуждений, которые выливаются в иерархию классов, которая, в свою очередь, воплощается в работающий код. Поехали:


Итак, точка - это самая малая геометрическая фигура, которая является основой всех прочих построений (фигур). Поэтому именно точка выбрана в качестве базового родительского класса. Напишем класс точки на java:

/** * Класс точки. Базовый класс */ class Point { /** * Пустой конструктор */ Point() {} /** * Метод класса, который рассчитывает площадь фигуры */ double getSquare() { return 0; } /** * Метод класса, который рассчитывает периметр фигуры */ double getPerimeter() { return 0; } /** * Метод класса, возвращающий описание фигуры */ String getDescription() { return "Точка"; } }

У получившегося класса Point пустой конструктор, поскольку в данном примере мы работаем без конкретных координат, а оперируем только параметрами значениями сторон. Так как у точки нет никаких сторон, то и передавать ей никаких параметров не надо. Также заметим, что класс имеет методы Point::getSquare() и Point::getPerimeter() для расчета площади и периметра, оба возвращают 0. Для точки оно и логично.


Поскольку у нас точка является основой всех прочих фигур, то и классы этих прочих фигур мы наследуем от класса Point . Опишем класс отрезка, наследуемого от класса точки:

/** * Класс Отрезок */ class LineSegment extends Point { LineSegment(double segmentLength) { this.segmentLength = segmentLength; } double segmentLength; // Длина отрезка /** * Переопределенный метод класса, который рассчитывает площадь отрезка */ double getSquare() { return 0; } /** * Переопределенный метод класса, который рассчитывает периметр отрезка */ double getPerimeter() { return this.segmentLength; } String getDescription() { return "Отрезок длиной: " + this.segmentLength; } }

Class LineSegment extends Point

означает, что класс LineSegment наследуется от класса Point . Методы LineSegment::getSquare() и LineSegment::getPerimeter() переопределяют соответствующие методы базового класса. Площадь отрезка всегда равняется нулю, а площадь периметра равняется длине этого отрезка.

Теперь, подобно классу отрезка, опишем класс треугольника(который также наследуется от класса точки):

/** * Класс Треугольник. */ class Triangle extends Point { /** * Конструктор класса. Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = (this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180))/2; return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } String getDescription() { return "Треугольник со сторонами: " + this.sideA + ", " + this.sideB + " и углом между ними: " + this.angleAB; } }

Тут нет ничего нового. Также, методы Triangle::getSquare() и Triangle::getPerimeter() переопределяют соответствующие методы базового класса.
Ну а теперь, собственно, тот самый код, который показывает волшебство полиморифзма и раскрывает мощь ООП:

Class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Мы создали массив объектов класса Point , а поскольку классы LineSegment и Triangle наследуются от класса Point , то и их мы можем помещать в этот массив. Получается, каждую фигуру, которая есть в массиве figures мы можем рассматривать как объект класса Point . В этом и заключается полиморфизм: неизвестно, к какому именно классу принадлежат находящиеся в массиве figures объекты, но поскольку все объекты внутри этого массива принадлежат одному базовому классу Point , то все методы, которые применимы к классу Point также и применимы к его классам-наследникам.


Теперь о инкапсуляции. То, что мы поместили в одном классе параметры фигуры и методы расчета площади и периметра - это и есть инкапсуляция, мы инкапсулировали фигуры в отдельные классы. То, что у нас для расчета периметра используется специальный метод в классе - это и есть инкапсуляцию, мы инкапсулировали расчет периметра в метод getPerimiter() . Иначе говоря, инкапсуляция - это сокрытие реализции (пожалуй, самое короткое, и в то же время емкое определением инкапсуляции).


Полный код примера:

Import java.util.ArrayList; class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Я не умею программировать на объектно-ориентированных языках. Не научился. После 5 лет промышленного программирования на Java я всё ещё не знаю, как создать хорошую систему в объектно-ориентированном стиле. Просто не понимаю.

Я пытался научиться, честно. Я изучал паттерны, читал код open source проектов, пытался строить в голове стройные концепции, но так и не понял принципы создания качественных объектно-ориентированных программ. Возможно кто-то другой их понял, но не я.

И вот несколько вещей, которые вызывают у меня непонимание.

Я не знаю, что такое ООП

Серьёзно. Мне сложно сформулировать основные идеи ООП. В функциональном программировании одной из основных идей является отсутствие состояния. В структурном - декомпозиция. В модульном - разделение функционала в законченные блоки. В любой из этих парадигм доминирующие принципы распространяются на 95% кода, а язык спроектирован так, чтобы поощрять их использование. Для ООП я таких правил не знаю.
  • Абстракция
  • Инкапсуляция
  • Наследование
  • Полиморфизм
Смахивает на свод правил, не так ли? Значит вот оно, те самые правила, которым нужно следовать в 95% случаев? Хмм, давайте посмотрим поближе.

Абстракция

Абстракция - это мощнейшее средство программирования. Именно то, что позволяет нам строить большие системы и поддерживать контроль над ними. Вряд ли мы когда-либо подошли бы хотя бы близко к сегодняшнему уровню программ, если бы не были вооружены таким инструментом. Однако как абстракция соотносится с ООП?

Во-первых, абстрагирование не является атрибутом исключительно ООП, да и вообще программирования. Процесс создания уровней абстракции распространяется практически на все области знаний человека. Так, мы можем делать суждения о материалах, не вдаваясь в подробности их молекулярной структуры. Или говорить о предметах, не упоминая материалы, из которых они сделаны. Или рассуждать о сложных механизмах, таких как компьютер, турбина самолёта или человеческое тело, не вспоминая отдельных деталей этих сущностей.

Во-вторых, абстракции в программировании были всегда, начиная с записей Ады Лавлейс, которую принято считать первым в истории программистом. С тех пор люди бесперерывно создавали в своих программах абстракции, зачастую имея для этого лишь простейшие средства. Так, Абельсон и Сассман в своей небезызвестной книге описывают, как создать систему решения уравнений с поддержкой комплексных чисел и даже полиномов, имея на вооружении только процедуры и связные списки. Так какие же дополнительные средства абстрагирования несёт в себе ООП? Понятия не имею. Выделение кода в подпрограммы? Это умеет любой высокоуровневый язык. Объединение подпрограмм в одном месте? Для этого достаточно модулей. Типизация? Она была задолго до ООП. Пример с системой решения уравнений хорошо показывает, что построение уровней абстракции не столько зависит от средств языка, сколько от способностей программиста.

Инкапсуляция

Главный козырь инкапсуляции в сокрытии реализации. Клиентский код видит только интерфейс, и только на него может рассчитывать. Это развязывает руки разработчикам, которые могут решить изменить реализацию. И это действительно круто. Но вопрос опять же в том, причём тут ООП? Все вышеперечисленные парадигмы подразумевают сокрытие реализации. Программируя на C вы выделяете интерфейс в header-файлы, Oberon позволяет делать поля и методы локальными для модуля, наконец, абстракция во многих языках строится просто посредствам подпрограмм, которые также инкапсулируют реализацию. Более того, объектно-ориентированные языки сами зачастую нарушают правило инкапсуляции , предоставляя доступ к данным через специальные методы - getters и setters в Java, properties в C# и т.д. (В комментариях выяснили, что некоторые объекты в языках программирования не являются объектами с точки зрения ООП: data transfer objects отвечают исключительно за перенос данных, и поэтому не являются полноценными сущностями ООП, и, следовательно, для них нет необходимости сохранять инкапсуляцию. С другой стороны, методы доступа лучше сохранять для поддержания гибкости архитектуры. Вот так всё непросто.) Более того, некоторые объектно-ориентированные языки, такие как Python, вообще не пытаются что-то скрыть, а расчитывают исключительно на разумность разработчиков, использующих этот код.

Наследование

Наследование - это одна из немногих новых вещей, которые действительно вышли на сцену благодаря ООП. Нет, объектно-ориентированные языки не создали новую идею - наследование вполне можно реализовать и в любой другой парадигме - однако ООП впервые вывело эту концепцию на уровень самого языка. Очевидны и плюсы наследования: когда вас почти устраивает какой-то класс, вы можете создать потомка и переопределить какую-то часть его функциональности. В языках, поддерживающих множественное наследование, таких как C++ или Scala (в последней - за счёт traits), появляется ещё один вариант использования - mixins, небольшие классы, позволяющие «примешивать» функциональность к новому классу, не копируя код.

Значит, вот оно - то, что выделяет ООП как парадигму среди других? Хмм… если так, то почему мы так редко используем его в реальном коде? Помните, я говорил про 95% кода, подчиняющихся правилам доминирующей парадигмы? Я ведь не шутил. В функцинальном программировании не меньше 95% кода использует неизменяемые данные и функции без side-эффектов. В модульном практически весь код логично расфасован по модулям. Преверженцы структурного программирования, следуя заветам Дейкстры, стараются разбивать все части программы на небольшие части. Наследование используется гораздо реже. Может быть в 10% кода, может быть в 50%, в отдельных случаях (например, при наследовании от классов фреймворка) - в 70%, но не больше. Потому что в большинстве ситуаций это просто не нужно .

Более того, наследование опасно для хорошего дизайна. Настолько опасно, что Банда Четырех (казалось бы, проповедники ООП) в своей книге рекомендуют при возможности заменять его на делегирование. Наследование в том виде, в котором оно существует в популярных ныне языках ведёт к хрупкому дизайну. Унаследовавшись от одного предка, класс уже не может наследоваться от других. Изменение предка так же становится опасным. Существуют, конечно, модификаторы private/protected, но и они требуют неслабых экстрасенсорных способностей для угадывания, как класс может измениться и как его может использовать клиентский код. Наследование настолько опасно и неудобно, что крупные фреймворки (такие как Spring и EJB в Java) отказываются от них, переходя на другие, не объектно-ориентированные средства (например, метапрограммирование). Последствия настолько непредсказуемы, что некоторые библиотеки (такие как Guava) прописывает своим классам модификаторы, запрещающие наследование, а в новом языке Go было решено вообще отказаться от иерархии наследования.

Полиморфизм

Пожалуй, полиморфизм - это лучшее, что есть в объектно-ориентированном программировании. Благодаря полиморфизму объект типа Person при выводе выглядит как «Шандоркин Адам Имполитович», а объект типа Point - как "". Именно он позволяет написать «Mat1 * Mat2» и получить произведение матриц, аналогично произведению обычных чисел. Без него не получилось бы и считывать данные из входного потока, не заботясь о том, приходят они из сети, файла или строки в памяти. Везде, где есть интерфейсы, подразумевается и полиморфизм.

Мне правда нравится полиморфизм. Поэтому я даже не стану говорить о его проблемах в мейнстримовых языках. Я также промолчу про узость подхода диспетчеризации только по типу, и про то, как это могло бы быть сделано . В большинстве случаев он работает как надо, а это уже неплохо. Вопрос в другом: является ли полиморфизм тем самым принципом, отличающим ООП от других парадигм? Если бы вы спросили меня (а раз уж вы читаете этот текст, значит, можно считать, что спросили), я бы ответил «нет». И причина всё в тех же процентах использования в коде. Возможно, интерфейсы и полиморфные методы встречаются немного чаще наследования. Но сравните количество строк кода, занимаемое ими, с количеством строк, написанных в обычном процедурном стиле - последних всегда больше. Глядя на языки, поощряющие такой стиль программирования, я не могу назвать их полиморфными. Языки с поддержкой полиморфизма - да, так нормально. Но не полиморфные языки.

(Впрочем, это моё мнение. Вы всегда можете не согласиться.)

Итак, абстракция, инкапсуляция, наследование и полиморфизм - всё это есть в ООП, но ничто из этого не является его неотъемлемым атрибутом. Тогда что такое ООП? Есть мнение, что суть объектно-ориентированного программирования лежит в, собственно, объектах (звучит вполне логично) и классах. Именно идея объединения кода и данных, а также мысль о том, что объекты в программе отражают сущности реального мира. К этому мнению мы ещё вернёмся, но для начала расставим некоторые точки над i.

Чьё ООП круче?

Из предыдущей части видно, что языки программирования могут сильно отличаться по способу реализации объектно-ориентированного программирования. Если взять совокупность всех реализаций ООП во всех языках, то вероятнее всего вы не найдёте вообще ни одной общей для всех черты. Чтобы как-то ограничить этот зоопарк и внести ясность в рассуждения, я остановлюсь только одной группе - чисто объекто-ориентированные языки, а именно Java и C#. Термин «чисто объектно-ориентированный» в данном случае означает, что язык не поддерживает другие парадигмы или реализует их через всё то же ООП. Python или Ruby, например, не буду являться чистыми, т.к. вы вполне можете написать полноценную программу на них без единого объявления класса.

Чтобы лучше понять суть ООП в Java и C#, пробежимся по примерам реализации этой парадигмы в других языках.

Smalltalk. В отличие от своих современных коллег, этот язык имел динамическую типизацию и использовал message-passing style для реализации ООП. Вместо вызовов методов объекты посылали друг другу сообщения, а если получатель не мог обработать то, что пришло, он просто пересылал сообщение кому-то ещё.

Common Lisp. Изначально CL придерживался такой же парадигмы. Затем разработчики решили, что писать `(send obj "some-message)` - это слишком долго, и преобразовали нотацию в вызов метода - `(some-method obj)`. На сегодняшний день Common Lisp имеет развитую систему объектно-ориентированного программирования (CLOS) с поддержкой множественного наследования, мультиметодов и метаклассов. Отличительной чертой является то, что ООП в CL крутится не вокруг объектов, а вокруг обобщённых функций.

Clojure. Clojure имеет целых 2 системы объектно-ориентированного программирования - одну, унаследованную от Java, и вторую, основанную на мультиметодах и более похожую на CLOS.

R. Этот язык для статистического анализа данных также имеет 2 системы объектно-ориентированного программирования - S3 и S4. Обе унаследованы от языка S (что не удивительно, учитывая, что R - это open source реализация коммерческого S). S4 по большей части соотвествует реализациям ООП в современных мейнстримовых языках. S3 является более легковесным вариантом, элементарно реализуемым средствами самого языка: создаётся одна общая функция, диспетчеризирующая запросы по атрибуту «class» полученного объекта.

JavaScript. По идеологии похож на Smalltalk, хотя и использует другой синтаксис. Вместо наследования использует прототипирование: если искомого свойства или вызванного метода в самом объекте нет, то запрос передаётся объекту-прототипу (свойство prototype всех объектов JavaScript). Интересным является факт, что поведение всех объектов класса можно поменять, заменив один из методов прототипа (очень красиво, например, выглядит добавление метода `.toBASE64` для класса строки).

Python. В целом придерживается той же концепции, что и мейнcтримовые языки, но кроме этого поддерживает передачу поиска атрибута другому объекту, как в JavaScript или Smalltalk.

Haskell. В Haskell вообще нет состояния, а значит и объектов в обычном понимании. Тем не менее, своеобразное ООП там всё-таки есть: типы данных (types) могут принадлежать одному или более классам типов (type classes). Например, практически все типы в Haskell состоят в классе Eq (отвечает за операции сравнения 2-х объектов), а все числа дополнительно в классах Num (операции над числами) и Ord (операции <, <=, >=, >). В менстримовых языках типам соответствуют классы (данных), а классам типов - интерфейсы.

Stateful или Stateless?

Но вернёмся к более распространённым системам объектно-ориентированного программирования. Чего я никогда не мог понять, так это отношения объектов с внутренним состоянием. До изучения ООП всё было просто и прозрачно: есть структуры, хранящие несколько связанных данных, есть процедуры (функции), их обрабатывающие. выгулять(собаку), снятьс(аккаунт, сумма). Потом пришли объекты, и это было тоже ничего (хотя читать программы стало гораздо сложней - моя собака выгуливала [кого?], а аккаунт снимал деньги [откуда?]). Затем я узнал про сокрытие данных. Я всё ещё мог выгулять собаку, но вот посмотреть состав её пищи уже не мог. Пища не выполняла никаких действий (наверное, можно было написать, что пища.съесть(собака), но я всё-таки предпочитаю, чтобы моя собака ела пищу, а не наоборот). Пища - это просто данные, а мне (и моей собаке) нужно было просто получить к ним доступ. Всё просто . Но в рамки парадигмы влезть было уже невозможно, как в старые джинсы конца 90-х.

Ну ладно, у нас есть методы доступа к данным. Пойдём на этот маленький самообман и притворимся, что данные у нас действительно скрыты. Зато я теперь знаю, что объекты - это в первую очередь данные, а потом уже, возможно, методы их обрабатывающие. Я понял, как писать программы, к чему нужно стремиться при проектировании.

Не успел я насладиться просветлением, как увидил в интернетах слово stateless (готов поклясться, оно было окружено сиянием, а над буквами t и l висел нимб). Короткое изучение литературы открыло чудесный мир прозрачного потока управления и простой многопоточности без необходимости отслеживать согласованность объекта. Конечно, мне сразу захотелось прикоснуться к этому чудесному миру. Однако это означало полный отказ от любых правил - теперь было непонятно, следует ли собаке самой себя выгуливать, или для этого нужен специальный ВыгулМенеджер; нужен ли аккаунт, или со всей работой справится Банк, а если так, то должен он списывать деньги статически или динамически и т.д. Количество вариантов использования возрасло экспоненциально, и все варианты в будущем могли привести к необходимости серьёзного рефакторинга.

Я до сих пор не знаю, когда объект следует сделать stateless, когда stateful, а когда просто контейнером данных. Иногда это очевидно, но чаще всего нет.

Типизация: статическая или динамическая?

Еща одна вещь, с которой я не могу определиться относительно таких языков, как C# и Java, это являются они статически или динамически типизированными. Наверное большинство людей воскликнет «Что за глупость! Конечно статически типизированными! Типы проверяются во время компиляции!». Но действительно ли всё так просто? Правда ли, что программист, прописывая в параметрах метода тип X может быть уверен, что в него всегда будут передаваться объекты именно типа X? Верно - не может, т.к. в метод X можно будет передать параметр типа X или его наследника . Казалось бы, ну и что? Наследники класса X всё равно будут иметь те же методы, что и X. Методы методами, а вот логика работы может оказаться совершенно другой. Самый распространённый случай, это когда дочерний класс оказывается соптимизированным под другие нужды, чем X, а наш метод может рассчитывать именно на ту оптимизацию (если вам такой сценарий кажется нереалистичным, попробуйте написать плагин к какой-нибудь развитой open source библиотеке - либо вы потратите несколько недель на разбор архитектуры и алгоритмов библиотеки, либо будете просто наугад вызывать методы с подходящей сигнатурой). В итоге программа работает, однако скорость работы падает на порядок. Хотя с точки зрения компилятора всё корректно. Показательно, что Scala, которую называют наследницей Java, во многих местах по умолчанию разрешает передавать только аргументы именно указанного типа, хотя это поведение и можно изменить.

Другая проблема - это значение null, которое может быть передано практически вместо любого объекта в Java и вместо любого Nullable объекта в C#. null принадлежит сразу всем типам, и в то же время не принадлежит ни одному. null не имеет ни полей, ни методов, поэтому любое обращение к нему (кроме проверки на null) приводит к ошибке. Вроде бы все к этому привыкли, но для сравнения Haskell (да и та же Scala) заставлют использовать специальные типы (Maybe в Haskell, Option в Scala) для обёртки функций, которые в других языках могли бы вернуть null. В итоге про Haskell часто говорят «скомпилировать программу на нём сложно, но если всё-таки получилось, значит скорее всего она работает корректно».

С другой стороны, мейнстримовые языки, очевидно, не являются динамически типизированными, а значит не обладают такими свойствами, как простота интерфейсов и гибкость процедур. В итоге писать в стиле Python или Lisp также становится невозможным.

Какая разница, как называется такая типизация, если все правила всё равно известны? Разница в том, с какой стороны подходить к проектированию архитектуры. Существует давний спор, как строить систему: делать много типов и мало функций, или мало типов и много функций? Первый подход активно используется в Haskell, второй в Lisp. В современных объектно-ориентированных языках используется что-то среднее. Я не хочу сказать, что это плохо - наверное у него есть свои плюсы (в конце концов не стоит забывать, что за Java и C# стоят мультиязыковые платформы), но каждый раз приступая к новому проекту я задумываюсь, с чего начать проектирования - с типов или с функционала.

И ещё...

Я не знаю, как моделировать задачу. Считается, что ООП позволяет отображать в программе объекты реального мира. Однако в реальности у меня есть собака (с двумя ушами, четырмя лапами и ошейником) и счёт в банке (с менеджером, клерками и обеденным перерывом), а в программе - ВыгулМенеджер, СчётФабрика… ну, вы поняли. И дело не в том, что в программе есть вспомогательные классы, не отражающие объекты реального мира. Дело в том, что поток управления изменяется . ВыгулМенеджер лишает меня удовольствия от прогулки с собакой, а деньги я получаю от бездушного БанкСчёта (эй, где та милая девушка, у которой я менял деньги на прошлой неделе?).

Может быть я сноб, но мне было гораздо приятней, когда данные в компьютере были просто данными, даже если описывали мою собаку или счёт в банке. С данными я мог сделать то, что удобно, без оглядки на реальный мир.

Я также не знаю, как правильно декомпозировать функционал. В Python или C++, если мне нужна была маленькая функция для преобразования строки в число, я просто писал её в конце файла. В Java или C# я вынужден выносить её в отдельный класс StringUtils. В недо-ОО-языках я мог объявить ad hoc обёртку для возврата двух значений из функции (снятую сумму и остаток на счету). В ООП языках мне придётся создать полноценный класс РезультатТранзакции. И для нового человека на проекте (или даже меня самого через неделю) этот класс будет выглядеть точно таким же важным и фундаментальным в архитектуре системы. 150 файлов, и все одинаково важные и фундаментальные - о да, прозрачная архитектура, прекрасные уровни абстракции.

Я не умею писать эффективные программы. Эффективные программы используют мало памяти - иначе сборщик мусора будет постоянно тормозить выполнение. Но чтобы совершить простейшую операцию в объектно-ориентированных языках приходится создавать дюжину объектов. Чтобы сделать один HTTP запрос мне нужно создать объект типа URL, затем объект типа HttpConnection, затем объект типа Request… ну, вы поняли. В процедурном программировании я бы просто вызвал несколько процедур, передав им созданную на стеке структуру. Скорее всего, в памяти был бы создан всего один объект - для хранения результата. В ООП мне приходится засорять память постоянно.

Возможно, ООП - это действительно красивая и элегантная парадигма. Возможно, я просто недостаточно умён, чтобы понять её. Наверное, есть кто-то, кто может создать действительно красивую программу на объектно-ориентированном языке. Ну что ж, мне остаётся только позавидовать им.

По мере совершенствования вычислительной техники компьютеры стали использоваться для решения все более и более сложных задач. Оказалось, что для решения сложных задач важна не только повышенная вычислительная мощность компьютеров, но и эффективность написания сложных программ. Объектно-ориентированное программирование (ООП) появилось именно как эффективный способ преодоления трудностей, возникающих при создании сложных программ.

Наиболее значимой частью ООП является особый подход к решению сложных задач программирования, называемый объектно-ориентированным анализом , а объектно-ориентированные языки программирования - просто удобные инструменты для реализации этого подхода.

История

Основатели ООП - выдающиеся норвежские ученые Кристен Нигаард (Cristen Nygaard) и Оле-Йохан Даль (Ole-Johan Dahl). Работая над моделированием судовождения, Нигаард понял, что существующие программные средства малоэффективны в создании столь сложных программ, и тогда Нигаард начал разрабатывать концепции нового программирования, позволяющего преодолеть барьеры сложности, и которое впоследствии было названо объектно-ориентированным (сам термин был придуман Аланом Кеем, автором языка Java). Вместе с Оле-Йоханом Далем Нигаард разработал основные положения ООП и практические механизмы их реализации, которые затем были воплощены в первом ООЯ Симула (Simula). Заслуги этих ученых были по достоинству оценены мировым научным сообществом, и в 2001 году Нигаард и Даль стали лауреатами премии имени Алана Тьюринга - своеобразного аналога Нобелевской премии в области computer science.

Язык Симула пользовался известностью в академических кругах, однако по ряду причин не завоевал популярности среди разработчиков коммерческого ПО. Тем не менее основные идеи и возможности ООП были очень привлекательны для программистов. Впоследствии были созданы другие ООЯ: SmallTalk (1980), C++ (1985), Eiffel (1986), Object Pascal (1986) и Delphi (1995), Oberon-2 (1991), Java (1991), Visual Basic (1991) и многие другие. Некоторые из этих языков стали промышленными стандартами в программировании.

Особенности ООП

Основная идея ООП заключается в том, что следует создавать программные структуры, поведение и взаимодействие которых имитирует поведение и взаимодействие объектов реального мира (т.е. в программе как бы создаются виртуальные аналоги реальных сущностей). Объектно-ориентированные языки программирования должны предоставлять средства для удобного и быстрого воплощения этого подхода.

В обыденной жизни люди используют (пусть даже неосознанно) различные приемы “экономии мышления”, позволяющие осмысливать и выражать сложные явления в простых понятиях. Типичными приемами “экономии мышления” являются:

· абстрагирование (отбрасывание несущественных деталей);

· обобщение (выделение общих существенных признаков у разных явлений или предметов);

· классификация (осознание связи между явлениями и степени их схожести).

Эти простые приемы помогают человеку справиться со сложностью рассматриваемых явлений. И объектно-ориентированные языки программирования также должны предоставлять подобные средства для “борьбы со сложностью” программ. Для реализации объектно-ориентированного подхода в языки программирования вводятся новые понятия:

· объекты - особые программные структуры, объединяющие данные и алгоритмы их обработки;

· инкапсуляция - сокрытие подробностей функционирования объектов;

· наследование - “сокращенный” способ создания новых классов;

· полиморфизм - возможность применения нескольких реализаций одной функции.

Объекты и классы

Объекты - особые программные единицы, состоящие из данных и алгоритмов для обработки именно этих данных . Данные, входящие в состав объекта, называются полями (атрибутами, свойствами, членами). Алгоритмы, входящие в состав объекта, называются методами (сервисами, операциями, функциями-членами). К сожалению, единой устоявшейся терминологии в ООП нет, и в разных языках используются различные термины для обозначения одних и тех же понятий.

Классы - это объектные типы данных. Подобно тому, как целые числа принадлежат какому-нибудь целочисленному типу (например, integer или byte), объекты также принадлежат какому-либо объектному типу - классу. Все объекты одного класса имеют одинаковый набор полей и одинаковый набор методов.

В некоторых языках (C++, Java) объекты называются экземплярами класса (instances).

Полезность использования классов и объектов заключается в том, что проверка логического (смыслового) соответствия между данными и функциями для обработки данных становится тривиальной задачей и может быть в основном переложена на компилятор (компьютер) - теперь он сам может определить неверное использование данных.

Инкапсуляция

Инкапсуляция (дословно - “сокрытие”) - контролируемое сокрытие информации о внутренней структуре класса. В классе могут быть поля и методы, используемые объектами исключительно для обеспечения своей работы (например, буфер в динамической памяти, файл с рабочими данными, методы для работы с этим файлом и т.п.). Изменять такие поля или вызывать методы извне объекта опасно - это может нарушить его рабочее состояние. Для обеспечения безопасности объектов подобные поля и методы можно скрыть - запретить обращение к ним извне.

С позиций “борьбы со сложностью” инкапсуляция позволяет переложить часть контроля за правильностью работы с объектами на компилятор (компьютер).

Различные ООЯ предлагают разные возможности по инкапсуляции полей и методов (от полного отсутствия и до автоматического сокрытия всех полей). В промышленных ООЯ, таких, как C++, Java, Delphi, Eiffel и т.д., предусмотрены три уровня инкапсуляции полей и методов:

· public - на обращение к публичным полям и методам объектов нет никаких ограничений;

· protected - прямое обращение к защищенным полям и методам возможно только из методов данного класса и методов дочерних классов;

· private - прямое обращение к приватным полям и методам возможно исключительно из методов данного класса.

Наследование

Наследование - создание новых классов путем дописывания только отличий от уже существующих классов, опуская описания совпадающих элементов. При наследовании новый класс называется классом-потомком (производным, дочерним, подклассом), а исходный класс называется классом-предком (базовым, родительским, суперклассом).

Наследование сокращает размер программы за счет исключения повторных описаний. Все поля и методы, объявленные в классе-предке, автоматически переносятся в класс-потомок, и их принято называть унаследованными (inherited).

При необходимости любой родительский метод можно переопределить - т.е. назначить выполнение другого алгоритма в случае вызова одноименного метода класса-потомка.

Некоторые ООЯ поддерживают множественное наследование , при котором производный класс наследует все свойства и методы одновременно от нескольких классов. К сожалению, множественное наследование таит в себе немало логических конфликтных ситуаций, а его поддержка усложняет язык программирования, и особенно - компилятор. По этой причине во многих ООЯ множественное наследование просто запрещено, но его можно сымитировать.

Совокупность всех классов-предков и классов-потомков называется иерархией классов .

Наследование классов - центральное понятие ООП, на нем прямо или косвенно базируются все остальные понятия и механизмы. Абсолютному большинству механизмов ООП, чтобы проявить свои преимущества, требуется построение иерархий классов.

Полиморфизм

Полиморфизм (дословно - “многообразие форм”) - возможность использовать одно имя для нескольких методов (или функций), имеющих сходное назначение. Другая интерпретация - один метод (функция) может иметь несколько вариантов реализации; такой метод (функция) называется полиморфным . Подобно другим механизмам ООП, полиморфизм является средством упрощения разработки сложных программ. Фактически полиморфизм отделяет понятие, что надо сделать, от того, как это надо делать.

Если провести аналогию с реальной жизнью, то полиморфизм соответствует обобщенным действиям. Например, глагол “музицировать” означает “играть на музыкальном инструменте”. Но на разных музыкальных инструментах играют по-разному. Термин один, а вариантов действия - много. Значит, “музицировать” - полиморфное действие . В ООП действию “музицировать” соответствовал бы полиморфный метод , имеющий свои реализации для каждого класса музыкальных инструментов.

В ООП есть два вида полиморфных методов - перегруженные и виртуальные .

Перегруженные методы предназначены для выполнения с данными разных типов. Они имеют одинаковые имена, но разные списки аргументов и/или тип возвращаемого значения.

Виртуальные методы предназначены для выполнения одинаковых по смыслу операций в объектах родственных, но не совпадающих классов. Виртуальные методы имеют одинаковые имена и прототипы. Их главная особенность - они всегда точно соответствуют реальному классу объекта.

Типичный пример перегруженных функций - функция SQR в Паскале. Она вычисляет квадрат числа, причем для целых аргументов результат будет также целым, а для вещественных - вещественным.

Достоинства виртуальных методов проявляются только при использовании иерархии классов. Типичная схема использования виртуальных методов такова:

· В классе-предке иерархии объявляется полиморфный метод, который описывает некое полезное действие. При этом либо он использует виртуальный метод, либо сам является виртуальным.

· В классах-потомках соответствующий виртуальный метод переопределяется - для каждого класса-потомка это полезное действие выполняется по-своему.

· При вызове для объекта, принадлежащего классу-потомку, полиморфного метода на деле используется виртуальный метод класса-потомка (а не класса-предка).

Яркий пример подобного использования виртуальных методов - система графического оконного интерфейса Delphi или Visual Basic: каждый видимый элемент графического интерфейса - кнопка, ползунок, окно и т.п. - должен быть потомком класса TControl. В классе TControl вводятся общие полиморфные методы отрисовки элементов графического интерфейса, а любой его потомок может нарисовать себя на экране своим собственным способом.

Объектно-ориентированное программирование явно не упоминается в Стандарте 2004 года, хотя в Обязательном минимуме содержания образования по информатике для учащихся профильных заведений (Уровень Б) такая тема присутствовала: Объектно-ориентированное программирование: объект, свойства объекта, операции над объектом . Там же упоминалась и объектно-ориентированная технология программирования.

Тем не менее ООП не просто вошло в практику преподавания информатики (программирования) многих школ, но и присутствует на страницах школьных учебников (Угринович Н.Д. Информатика и информационные технологии. Учебник для 10–11-х классов, 2005. М.: БИНОМ. Лаборатория Знаний). Кроме того, в пропедевтическом курсе информатики для начальной школы (рабочие тетради авторского коллектива под руководством А.Горячева. 1–4-е классы) также вводятся понятия объекта и его свойств .

Технология (парадигма) ООП требует не столько освоения современной техники программирования, сколько умения разрабатывать объектную модель решаемой задачи. Для этого требуется хорошо знать базовые принципы ООП и программирования вообще, однако знание какого-либо ООЯ не является обязательным - об этом неоднократно писали основоположники и теоретики ООП. Так, Гради Буч в своей книге “Объектно-ориентированное проектирование и анализ” высказывает следующую максиму: “Писать программы в объектно-ориентированном стиле можно в любом (не объектно-ориентированном) языке программирования”. Для построения алгоритма по технологии ООП требуется сформировать список объектов, с которыми работает алгоритм, продумать свойства каждого объекта и реализовать алгоритм как взаимодействие описанных объектов.

Как уже было сказано в статье, такой подход упрощает решение сложных задач, но в рамках школы (с учетом ограниченного числа часов) трудно придумать содержательные учебные задачи, которые бы не надуманно требовали использования технологии ООП в полной мере.

Фактически же ООП в школе рассматривается лишь как неотъемлемая часть визуального и компонентного программирования в современных профессиональных системах программирования, а в качестве объектов используются готовые объектные библиотеки различного уровня - это и библиотеки для построения графического интерфейса Windows-приложений, и многоцелевые универсальные библиотеки типов данных (например, STL в С++). Для примитивного использования этих библиотек достаточно знать и уметь применять несколько простейших правил синтаксиса языка программирования. Однако такие “знания” никоим образом не приближают учащихся ни к профессиональному овладению языком программирования, ни даже к пониманию ООП. Но, видимо, ничего страшного в этом нет. Школьная информатика и в профильной школе не ставит своей целью подготовку профессиональных программистов. Преподавание ООП - это специальная тема, даже на соответствующих специальностях вузов ее часто не изучают в достаточном объеме.

Не отрицая полностью предложение некоторых преподавателей информатики поставить объектно-ориентированный подход во главу угла изучения программирования, в том числе в школе, отметим, что ООП невозможно без таких базовых понятий, как программа, исполнитель, переменная, условие, цикл и т.д. Концепция ООП также включает в себя классическое процедурное программирование (см. “Подпрограммы ”), как механика Эйнштейна - механику Ньютона: достаточно представить себе процедурную программу как единственный объект с опущенным для простоты именем. Поэтому в первую очередь задача курса программирования в школе - научить базовым вещам. И лишь при возможности работы с современными визуальными средами программирования (Delphi, Visual Basic, Visual C++
и т.п.) познакомить с понятием объектов и их использованием в основном с помощью методики обучения программированию “по образцу”.

Волею судьбы мне приходится читать спецкурс по паттернам проектирования в вузе. Спецкурс обязательный, поэтому, студенты попадают ко мне самые разные. Конечно, есть среди них и практикующие программисты. Но, к сожалению, большинство испытывают затруднения даже с пониманием основных терминов ООП.

Для этого я постарался на более-менее живых примерах объяснить базовые понятия ООП (класс, объект, интерфейс, абстракция, инкапсуляция, наследование и полиморфизм).

Первая часть, представленная ниже, посвящена классам, объектам и интерфейсам.
Вторая часть иллюстрирует инкапсуляцию, полиморфизм и наследование

Основные понятия ООП

Класс
Представьте себе, что вы проектируете автомобиль. Вы знаете, что автомобиль должен содержать двигатель, подвеску, две передних фары, 4 колеса, и т.д. Ещё вы знаете, что ваш автомобиль должен иметь возможность набирать и сбавлять скорость, совершать поворот и двигаться задним ходом. И, что самое главное, вы точно знаете, как взаимодействует двигатель и колёса, согласно каким законам движется распредвал и коленвал, а также как устроены дифференциалы. Вы уверены в своих знаниях и начинаете проектирование.

Вы описываете все запчасти, из которых состоит ваш автомобиль, а также то, каким образом эти запчасти взаимодействуют между собой. Кроме того, вы описываете, что должен сделать пользователь, чтобы машина затормозила, или включился дальний свет фар. Результатом вашей работы будет некоторый эскиз. Вы только что разработали то, что в ООП называется класс .

Класс – это способ описания сущности, определяющий состояние и поведение, зависящее от этого состояния, а также правила для взаимодействия с данной сущностью (контракт).

С точки зрения программирования класс можно рассматривать как набор данных (полей, атрибутов, членов класса) и функций для работы с ними (методов).

С точки зрения структуры программы, класс является сложным типом данных.

В нашем случае, класс будет отображать сущность – автомобиль. Атрибутами класса будут являться двигатель, подвеска, кузов, четыре колеса и т.д. Методами класса будет «открыть дверь», «нажать на педаль газа», а также «закачать порцию бензина из бензобака в двигатель». Первые два метода доступны для выполнения другим классам (в частности, классу «Водитель»). Последний описывает взаимодействия внутри класса и не доступен пользователю.

В дальнейшем, несмотря на то, что слово «пользователь» ассоциируется с пасьянсом «Косынка» и «Microsoft Word», мы будем называть пользователями тех программистов, которые используют ваш класс, включая вас самих. Человека, который является автором класса, мы будем называть разработчиком.

Объект
Вы отлично потрудились и машины, разработанные по вашим чертежам, сходят с конвейера. Вот они, стоят ровными рядами на заводском дворе. Каждая из них точно повторяет ваши чертежи. Все системы взаимодействуют именно так, как вы спроектировали. Но каждая машина уникальна. Они все имеют номер кузова и двигателя, но все эти номера разные, автомобили различаются цветом, а некоторые даже имеют литьё вместо штампованных дисков. Эти автомобили, по сути, являются объектами вашего класса.

Объект (экземпляр) – это отдельный представитель класса, имеющий конкретное состояние и поведение, полностью определяемое классом.

Говоря простым языком, объект имеет конкретные значения атрибутов и методы, работающие с этими значениями на основе правил, заданных в классе. В данном примере, если класс – это некоторый абстрактный автомобиль из «мира идей», то объект – это конкретный автомобиль, стоящий у вас под окнами.

Интерфейс
Когда мы подходим к автомату с кофе или садимся за руль, мы начинаем взаимодействие с ними. Обычно, взаимодействие происходит с помощью некоторого набора элементов: щель для приёмки монеток, кнопка выбора напитка и отсек выдачи стакана в кофейном автомате; руль, педали, рычаг коробки переключения передач в автомобиле. Всегда существует некоторый ограниченный набор элементов управления, с которыми мы можем взаимодействовать.

Интерфейс – это набор методов класса, доступных для использования другими классами.

Очевидно, что интерфейсом класса будет являться набор всех его публичных методов в совокупности с набором публичных атрибутов. По сути, интерфейс специфицирует класс, чётко определяя все возможные действия над ним.
Хорошим примером интерфейса может служить приборная панель автомобиля, которая позволяет вызвать такие методы, как увеличение скорости, торможение, поворот, переключение передач, включение фар, и т.п. То есть все действия, которые может осуществить другой класс (в нашем случае – водитель) при взаимодействии с автомобилем.

При описании интерфейса класса очень важно соблюсти баланс между гибкостью и простотой. Класс с простым интерфейсом будет легко использовать, но будут существовать задачи, которые с помощью него решить будет не под силу. В то же время, если интерфейс будет гибким, то, скорее всего, он будет состоять из достаточно сложных методов с большим количеством параметров, которые будут позволять делать очень многое, но использование его будет сопряжено с большими сложностями и риском совершить ошибку, что-то перепутав.

Примером простого интерфейса может служить машина с коробкой-автоматом. Освоить её управление очень быстро сможет любая блондинка, окончившая двухнедельные курсы вождения. С другой стороны, чтобы освоить управление современным пассажирским самолётом, необходимо несколько месяцев, а то и лет упорных тренировок. Не хотел бы я находиться на борту Боинга, которым управляет человек, имеющий двухнедельный лётный стаж. С другой стороны, вы никогда не заставите автомобиль подняться в воздух и перелететь из Москвы в Вашингтон.

Этой статьей я начинаю серию публикаций о теории объектно-ориентированной методологии разработки программного обеспечения. Сегодня речь пойдет об одной из основных концепций ООП — объекте .

Объекты в ООП — это объекты реального мира

Любые программные системы предназначены для моделирования реальных систем, поэтому очень важно в каких терминах мы пытаемся описать эти реальные системы. Описание в виде последовательности действий (процедурный подход к программированию) оказался довольно сложным. Объектно-ориентированный подход предлагает описывать системы в виде взаимодействия объектов.

Предположим что нам нужно разработать систему автоматизации банка. Эта система могла быть осуществлена следующим образом:

В операции снятия денег через банкомат участвуют 3 объекта : «клиент Иванов», «банкомат на Тверской» и «счет № 66579801», который открыт в данном банке для Иванова. Подойдя к банкомату и засунув свою карточку, объект «клиент Иванов» посылает банкомату сообщение «Начать работу». Получив такое сообщение, банкомат выводит на экран какую-нибудь информацию и запрашивает код доступа, т.е объект «банкомат на Тверской» посылает сообщение объекту «клиент Иванов» — «Сообщить идентификационный код». Если идентификация прошла успешно, «клиент Иванов» просит выдать ему 1000 рублей. Он посылает сообщение об этом банкомату, а тот в свою очередь объекту «счет № 66579801». Приняв это сообщение объект «счет № 66579801» проверяет есть ли у него 1000 рублей, и, если есть, пересылает разрешение на снятие денег, одновременно уменьшая свой баланс на соответствующую сумму. Банкомат передает деньги и на этом процедура заканчивается.

Объекты выполняют необходимые действия передавая друг другу сообщения.

Описание в виде объектов позволяет определить различные компоненты системы. Те же самые объекты — «счет № 66579801» и «клиент Иванов» — будут учавствовать в другой операции при которой клиент приходит в отделение банка для снятие или зачисления денег на свой счет.

Приведенная ситуация является ярким примером сущности понятия «объект в ООП «. Сложно дать четкое определение этому понятию, приведу цитату этого определения Ивара Якобсона:

Объект в ООП — это сущность, способная сохранять свое состояние (информацию) и обеспечивающая набор операций (поведение) для проверки и изменения этого состояния.

Объект в объектно-ориентированном программировании — это модель или абстракция реальной сущности в программной системе. Предмет моделирования при построении объекта в ООП может быть различным. Например, могут существовать следующие типы абстракции, используемые при построении объекта:

  • абстракция понятия: объект — это модель какого-то понятия предметной области;
  • абстракция действия: объект объединяет набор операций для выполнения какой-либо функции;
  • абстракция виртуальной машины: объект объединяет операции, которые используются другими, более высокими уровнями абстракции;
  • случайная абстракция: объект объединяет не связанные между собой операции.

Состояние объекта в ООП

Каждый объект в ООП характеризуется своим состоянием. Состояние банковского счета — это сумма лежащих на нем денег. Состояние банкомата включает в себя состояние «включен» или «выключен», готов или не готов к принятию запроса, наличию денег в банкомате.

Состояние объекта характеризуется текущим значением его атрибутов . В нашем примере у счета есть атрибут -баланс. В простейшем случае он отражается числом — количеством рублей и копеек на счету. Операция снятия или зачисления на счет изменяет баланс и атрибут объекта «счет № 66579801». У объекта «банкомат на Тверской» есть несколько атрибутов. Количество денег в банкомате может характеризоваться числом. Состояние «включен» или «выключен» и состояние «готов или не готов к принятию запроса» — логическим значением.

Стоит заметить, что атрибутами объекта в ООП могут быть не только простейшие значения (число, логическое значение и т.д.), но и сложные величины или другие объекты. Например, наш банк для целей контроля будет хранить историю всех транзакций. Транзакция — это объект, который имеет атрибуты (характеристики) тип транзакции, сумма переведенных денег, место совершения и имена контрагентов этой операции. У объекта «счет № 66579801» появится новый атрибут — «история транзакций», который будет состоять из набора объектов-транзакций.

Идентификация объектов в ООП

Иногда нужно идентифицировать объекты в ООП, т.е., если имеются два объекта, как можно определить что эти объекты разные. Например, такая процедура очень важна для идентификации банковского счета (объект «счет № 66579801») клиента банка Иванова.

На самом деле существует два вопроса: равны ли два объекта или тождественны.

Обычно для идентификации применяются специальные атрибуты объектов — идентификаторы. Например, для объекта «счет № 66579801» идентификатором является его атрибут «номер счета», который является уникальным (соблюдается требование предметной области).

В свою очередь, зная идентификаторы объектов можно точно определить являются ли они тождественными или нет.

Интерфейс объекта в ООП

Важнейшей характеристикой объекта в ООП является описание того, как он может взаимодействовать с окружающим миром. Это описание называется интерфейсом объекта .

Объекты в ООП взаимодействуют между собой с помощью сообщений. Принимая сообщение, объект выполняет соответствующее действие. Эти действия обычно называются методами .

В нашем примере у объекта «счет № 66579801» есть следующие методы — «снять деньги со счета» и «положить деньги на счет». Эти два метода и составляют интерфейс объекта. У объекта «клиент Иванов» имеется метод «Сообщить свой код». А у объекта «банкомат на Тверской » есть методы «начать работу», «принять деньги», «выдать деньги».

У объекта «счет № 66579801» есть еще один атрибут «баланс». Является ли он частью интерфейса объекта? Интерфейс — это внешнее описание объекта. При разработке банковской системы и, в частности, объекта «счет», мы решаем вопрос: является ли баланс необходимой информацией для других объектов? Очевидно, что является. Тогда нам нужно ответить на еще один вопрос: что именно нужно другим объектам? Остаток денег на счете. В таком случае необходимо добавить еще один метод «сообщить остаток денег на счете» к объекту «счет» , и его интерфейс будет теперь состоять из трех методов.

Таким образом, атрибут баланс не является непосредственно частью интерфейса. Другие объекты могут обратиться к этому атрибуту только опосредственно, с помощью метода «сообщить остаток на счете» (тем самым они не могут непосредственно менять значение этого атрибута).

Наряду с методами и атрибутами, входящими в интерфейс и доступными другим объектам, у объекта могут быть атрибуты предназначенные для внутреннего использования (к ним может обращаться только сам объект). Например, у банкомата очень сложная внутренняя структура, т.е. он имеет огромное количество атрибутов. Но для банковской системы они не важны, и ни клиент, ни объект «счет» не могут к ним обратиться. Они не входят в интерфейс объекта «банкомат».

Время жизни объекта в ООП

В любой системе объекты создаются, функционируют и уничтожаются. В программировании существуют два способа уничтожения объектов:

  1. Объекты должны уничтожаться явно, с помощью специальных вызовов
  2. Объекты уничтожаются тогда, когда они никому не нужны (в системе отсутствуют все ссылки на данный объект). Такое уничтожение иногда называется уничтожением по достижимости

Но в тоже время могут существовать объекты, для которых необходимо восстанавливать их предыдущее состояние при новом запуске программы. Для работы с такими объектами применяется метод сериализации , когда значения всех атрибутов записываются, и, при необходимости восстановления объекта, считываются. Схема данного метода представлена ниже.

Существуют, также, и постоянные объекты, которые не уничтожаются при завершении программы и не создаются заново при ее запуске (объекты объектно-ориентированной базы данных). Программа и при первом и при втором запуске обращается к одному и тому же объекту, хранящемуся в постоянной памяти.

Со временем жизни и идентификации объектов тесно связано еще одно понятие — понятие объектов первого и второго сорта или равноправия объектов в системе.
Объект считается самостоятельным или первого сорта, в том случае, если он обладает всеми признаками идентификации объектов, принятыми в данной объектной среде, и время его жизни не связано со временем жизни породившего его объекта.

Композиция объектов в ООП

Объект может состоять из других объектов. Например, банкомат содержит большое количество узлов (атрибутов), т.е он включает в свой состав другие объекты. При этом, банкомат может непосредственно включать в себя другие объекты или же только ссылаться на них.

В следующей статье будут рассмотрены классы в ООП, как способ описания структуры и поведения объектов.



Понравилась статья? Поделиться с друзьями: