Аккумуляторы для резервных источников питания. Почему автомобильный аккумулятор нельзя использовать в ИБП

  • Лайфхаки для гиков
  • Предыстория
    На тот момент, когда я первый раз попробовал заменить в ИБП старый аккумулятор ёмкостью 7Ач на старый автомобильный аккумулятор номинальной ёмкостью 65Ач, я ещё не знал, почему этого нельзя делать, и как это может навредить здоровью аккумулятора, самому ИБП и людям, проживающим в одном помещении с ним.

    Доработка бесперебойника не заняла много времени, но профит был заметен сразу же. Сто-ватная нагрузка в виде домашнего «сервера» продержалась порядка двадцати часов без внешнего питания, хотя раньше 10 минут - это был предел, которого хватало разве что на корректное завершение работы. Более длительных отключений за время эксплуатации данной модификации замечено не было, а подключение интернета по технологии GPON позволяло серверу оставаться в сети даже при масштабных отключениях электроэнергии.

    Но это было давно. А год назад мне случайно попалось на глаза объявление о продаже нескольких бывших в употреблении ИБП APC 3000 за смешные деньги, 4000 рублей за штуку, без аккумуляторов, но рабочие. Немного подумав, решил что надо брать, причём сразу два, правда к моменту покупки цена успела подняться до 5000 рублей за штуку, но меня это не остановило, ведь в магазине за те же деньги предлагали лишь варианты на 1кВт, да и то от всяких noname фирм с не очень лестными отзывами и модифицированным синусом.

    Без аккумуляторов ИБП включаться отказался, судя по информации из интернета, ему требовалось восемь аккумуляторов по 12 вольт, т.е. батарея на 96 вольт, но конденсаторы на входе батарей были номиналом 63 вольта. Оказалось, что в картридже две параллельно соединённых цепочки по четыре аккумулятора, по 5Ач каждый. Итого получается батарея на 48 вольт и 10Ач. И вот тут началось самое интересное.

    Выбор АКБ
    Настало время покупать аккумуляторы. Разница в цене между специализированным аккумуляторами для ИБП и обычными автомобильными была примерно раза в два при сопоставимой ёмкости. Зачем платить больше? Решил загуглить и нашёл несколько сайтов продающих АКБ для ИБП, которые почти под копирку приводили несколько доводов, почему стоит заплатить больше. В целом звучит правдоподобно, но давайте их рассмотрим поподробнее.
    Итак, первая значительная разница - это различное напряжение постоянного тока в автомобиле и у источника автономного электроснабжения. У автомобильной батареи напряжение постоянного тока примерно равно 14-14.2 В, а у аккумулятора для источника бесперебойного питания оно составляет 13.5-13.8 В. Напряжение тока заряда у обычных автомобильных и специальных для ИБП рассчитано на различные значения. После того как Вы подсоедините автомобильный аккумулятор к системе резервного электропитания, то результат будет виден такой - постоянно батарея будет недозаряжена. Высокое внутреннее сопротивление имеется у максимально заряженной батареи, так как потребляется небольшой ток при работе с ИБП. С разряженными аккумуляторами дела состоят с точностью наоборот. В конечном итоге присоединение автомобильного аккумулятора может привести к кипению электролита, так как будет потребляться постоянно ток и аккумулятор не будет до конца заряжаться.

    Заглядываем в статью википедии о свинцово-кислотных аккумуляторах и видим, что ЭДС заряженного аккумулятора 2.11-2.17В, для 6 банок это получается 12,66-13,02В. Смотрим на аккумулятор для ИБП и видим надписи о рекомендуемых значениях напряжений: в режим постоянного подзаряда 13.5-13.8В, в циклическом режиме 14.4-15.0В. Смотрим на полностью заряженный автомобильный аккумулятор, видим 12.7В, заводим двигатель, напряжение поднимается до 14.2. Получается что 14.2В - это не напряжение автомобильного аккумулятора, а напряжение которым его заряжает автомобильный генератор. Но разве в автомобиле предусмотрена какая-либо схема заряда аккумулятора? В общем мне показался данный довод несостоятельным.
    Второе отличие - временной этап работы и равномерное выделение электрического тока за счет пластин, которые встроены внутри аккумуляторной батареи. Средняя толщина электрода (пластины) у автомобильного аккумулятора составляет примерно 1-1.2 мм, а у специализированных для ИБП 2-2.5 мм. Движение электронов происходит на менее толстой поверхности. Если подключить автомобильный аккумулятор к источнику бесперебойного питания, то пластины которые находятся внутри быстро разрушатся из-за длительного функционирования цикла.

    Если бы в автомобиле не было сигнализации и магнитолы, то наверное можно было бы поверить в то, что автомобильный аккумулятор не способен длительное время отдавать малые или средние токи, но ведь они питаются от того же аккумулятора. И это не говоря о том, что автомобиль в принципе может некоторое время двигаться без генератора, только лишь на заряде аккумулятора, и после этого достаточно будет просто зарядить аккумулятор и он продолжит работать. По поводу толщины пластин сложно что либо сказать, разве что в аккумуляторах от ИБП некоторым попадаются нанотехнологические вставки из стекла. Стекло добавляет толщины пластинам и вес батареи, правда в химических реакциях не участвует.

    И третье важное отличие - в процессе заряда аккумулятора выделяется водород. Когда батарея установлена под капотом автомобиля, то водород быстро улетучивается и не представляет никакой опасности. Так как источник бесперебойного питания установлен как правило в замкнутом пространстве, то газ начнет скапливаться, а смесь водорода с кислородом образует взрывоопасную смесь, которая может детонировать от любой искры (даже от включения света). Аккумулятор для ИБП полностью герметизирован, в процессе работы он не выделяет водород в атмосферу, а рециркулирует в пространстве батареи.

    Данный довод мне сразу показался подозрительным, ввиду того, что мне не доводилось видеть герметичных аккумуляторов в ИБП. Если посмотреть на аккумулятор, то можно увидеть небольшие отверстия для отвода газов, в отличии от автомобильных аккумуляторов, они закрыты резиновыми колпачками и замурованы под пластиковые заглушки, но вовсе не герметично. Если снять пластиковые заглушки и поставить аккумулятор на зарядку, то некоторые резиновые колпачки весело улетят в неизвестном направлении. Значит вода всё таки распадается на кислород и водород, и простой резиновый колпачок не заставит их преобразоваться обратно в воду, а после определённого давления газы всё равно выйдут наружу. Впрочем ладно, если за несколько лет эксплуатации автомобильного аккумулятора в закрытом шкафу ничего не взорвалось, то в проветриваемом подвале и на балконе наверняка проблем с накоплением водорода не возникнет.

    Автомобильные аккумуляторы имеют разбавленный электролит, а так как в жидкой среде все процессы протекают быстро, то срок службы этих батарей намного меньше чем у специализированных для ИБП. Внутри АКБ для источников бесперебойного питания находится губчатый материал, который пропитан электролитом. И поэтому ток самозаряда получается небольшим. И когда система перейдет на функционирование от аккумулятора, то батареи для ИБП проработают больше.

    Действительно, в автомобильном аккумуляторе электролит находится в жидком состоянии, а в специализированных аккумуляторах для домашних ИБП им пропитан пористый материал, и если перевернуть его с открытыми заглушками, то ничего из него не выльется, это позволяет размещать его внутри ИБП в любом положении, хоть вверх ногами (хотя и не рекомендуется). Как это связано с током саморазряда, полностью электролита и скоростью протекания химических реакций - я не знаю, но вероятнее всего, что никак.

    И не стоит забывать о том, что автомобильный аккумулятор работает в суровых условиях, от него несколько раз в день требуют больших токов, несколько месяцев в году это сопровождается очень низкими температурами, а несколько месяцев высокими, кроме того он испытывает вибрационные и ударные нагрузки во время движения автомобиля, а генератор заряжает его без какого либо контроля, и хорошо, если владелец следит за его состоянием.

    Так же, некоторые высказывают сомнение по поводу того, что ИБП в состоянии зарядить автомобильный аккумулятор, ведь у него значительно большая ёмкость. Но ведь увеличив ёмкость, мы получаем увеличение длительности работы от батареи, странно ожидать, что последующая зарядка будет производиться за прежнее время.

    Прочитав ещё несколько статей о вреде использования автомобильного аккумулятора в быту, стало понятно, что ничего не понятно. Но, учитывая предшествующий положительный опыт, было решено выбрать вариант с большей ёмкостью, т.е. автомобильные аккумуляторы. Для одного ИБП были выбраны самые дешёвые аккумуляторы от Тюменского Медведя на 75Ач, для второго АКБ фирмы BRAVO на 90Ач примерно за ту же стоимость. И вот сейчас, спустя почти год эксплуатации решил попробовать замерить ёмкость аккумуляторов, чтобы понять, насколько всё плохо.

    Результаты замеров

    Параметр АКБ №1 АКБ №2
    Модель BRAVO 6CT-90VL Tyumen Batbear 75
    Ёмкость, макс. ток 90Ач, 760А 75Ач, 610А
    Стоимость на момент покупки 2200 руб 2400 руб
    Дата установки 9 ноября 2014 11 ноября 2014
    ИБП APC Smart-UPS 3000VA, 2700Вт, 230В, чистый синус 50Гц +-3 Гц
    насос газового котла, насос тёплого пола,
    насос скважины с водой, морозильная камера,
    холодильная камера, освещение
    освещение, холодильник
    Циклов заряда-разряда 330+ 10
    Производилась калибровка нет да
    Дата контрольного замера 31 августа 2015 1 сентября 2015
    Контрольный разряд 4 часа 20 минут, 37.22Ач 9 часов, 55.7Ач
    Напряжение после разряда 45.0В под нагрузкой, 48.7В без нагрузки 44.6В под нагрузкой, 46.3В без нагрузки
    Контрольный заряд 9 часов, 37.32Ач 14 часов, 52.28Ач
    Напряжение после заряда 55.4В, плюс-минус 0.02В на каждой батареи
    Уровень электролита Визуально не изменился, уровень выше пластин с запасом
    Графики процесса разрядки-зарядки по данным самого ИБП можно посмотреть и . Одна линия показывает напряжение на батарее, вторая мощность нагрузки в процентах.

    Хотя я не уверен, что правильно произвёл замер, но лучше способа, чем включить цифровой ватт-метр в разрыв между АКБ и ИБП, я придумать не смог. Сомнения в корректности замеров у меня возникли из-за того, что не смотря на постоянно включенную нагрузку, ИБП потреблял ток периодами (3-5 секунд потребление нарастает до номинала и опускается до нуля, 1-2 секунды потребления нет), возможно это связано с тем, что по аккумуляторному входу установлена пара ёмких конденсаторов, которые сглаживают нагрузку на АКБ. Зарядка производится примерно таким же образом (некоторое время подаётся ток, затем пара секунд перерыв). После полной зарядки ИБП продолжает периодически подавать ток на АКБ в районе 1А.

    Не смотря на то, что один бесперебойник нещадно насиловал аккумуляторы каждый день почти полностью разряжая их, а затем вновь заряжая, а второй работал в штатном режиме и разряжал АКБ только при отключениях электричества, спустя год они по-прежнему работают и держат нагрузку. Специализированные аккумуляторы в ИБП, что стоящие с завода, что купленные в процессе эксплуатации не жили у меня даже этого времени, они просто высыхали и переставали держать заявленную ёмкость. В общем я не смог ответить для себя на вопрос, почему же автомобильные аккумуляторы не годятся для использования в ИБП, но через год я постараюсь повторить измерения и сравнить результаты.
    Добавить метки

    Электрическая схема, представленная на рис. 1 , удобна в применении на даче и там, где электроэнергия пока еще поступает нестабильно. Простое устройство, собранное по рекомендуемой схеме, обеспечит автоматическое включение резервного освещения (или другой активной нагрузки мощностью до 10–12 Вт) при пропадании сетевого напряжения 220 В.

    Рис. 1

    Транзистор VT1 серии КТ825 (можно заменить указанный на схеме на транзистор КТ825 с буквенными индексами Д и Е) обеспечивает максимальную нагрузку до 25 Вт. Он должен быть установлен на радиатор с площадью охлаждения не менее 100 см2. Если планируется менее мощная нагрузка (до 5 Вт), то возможно применить в схеме управляющий транзистор типа КТ818АМ - КТ818ГМ.

    В качестве резервного источника питания используется автомобильный аккумулятор емкостью 55-190 А/ч. В качестве ламп резервного освещения используются автомобильные лампы накаливания.

    Принцип работы устройства

    Сетевой блок питания (БП) вырабатывает пониженное выпрямленное напряжение 13–14 В. В БП входят понижающий трансформатор и выпрямительный мост. Пульсации этого источника питания сглаживаются электролитическим конденсатором большой емкости С1. Напряжение с блока питания через диоды VD1, VD2 и ограничивающий резистор R1 беспрепятственно поступает к подключенному аккумулятору и заряжает его слабым током. При величине зарядного тока 80-110 мА автомобильная АКБ может находиться без вреда под зарядкой продолжительное время, примерно до десяти суток подряд. Падение напряжения на диоде VD2 создает обратное смещение для перехода база-эмиттер транзистора VT1. Транзистор находится в закрытом состоянии и нагрузка (EL1, EL2) обесточена. Переключатель S1 служит для принудительного включения аварийного режима. Это может понадобиться для разрядки АКБ или проверки системы резервного освещения (целостности ламп).

    Налаживание

    Устройство в налаживании не нуждается.

    Когда сетевая энергия отключается, стационарный источник питания обесточивается, и в цепь базы транзистора VT1 поступает ток через резистор R2, транзистор открывается и нагрузка питается от АКБ. Как только поступление энергии в сети возобновляется, транзистор VT1 закрывается, нагрузка выключаются, и аккумулятор заряжается по рассмотренной схеме.

    О деталях

    Резистор R1 марки МЛТ-2, резистор R2 - типа МЛТ-0,5. Аккумулятор и лампы нагрузки подключаются к устройству многожильными изолированными сетевыми проводами сечением не менее 1 мм и с минимальной длиной (для уменьшения потерь энергии в проводах). Конденсатор С1 марки К50-24, К50-3Б или другой на напряжение не менее 25 В.

    Оптимальный вариант для понижающего трансформатора сетевого источника питания - универсальный силовой трансформатор ТПП 127/220-50-12.

    Источник http://meandr.org/archives/25602

    Гелевый аккумулятор (маркировка GEL) — это особая разновидность АКБ, у которых электролит имеет жидкую желеобразную консистенцию за счет добавления в него кремния (двуокись кремния).

    Гелевые аккумуляторы с напряжением 12В нашли свое применение в качестве источника бесперебойного питания (ИБП). Такой аккумулятор подойдет в качестве ИБП в закрытых и невентилируемых помещениях, для питания солнечных и ветровых электрогенераторов, в системах автономного электроснабжения.

    Обзор гелевых батарей (GEL) для ИБП

    При работе батареи происходит разрыв и соединения молекул газа (рекомбинация), выделяется энергия и вода, которая потом поглощается жидким гелем. Благодаря этому решается две проблемы:

    1. Не нужно доливать воду, поскольку свободная вода образуется при рекомбинации газов.
    2. Не происходит выделение газов, что делает возможным использование гелевых аккумуляторов в жилых помещениях в качестве ИБП.

    Технологию изготовления гелевых аккумуляторов будем разбирать в другой статье. Также чуть позже проведем сравнительных анализ разных типов батарей, сведем данные в таблицу для удобного понимания. Достаточно посмотреть это короткое видео, чтобы понять основные преимущества гелевых аккумуляторов.

    Сферу применения гелевых аккумуляторов можно описать так:

    1. ИБП, где они работают в ежедневном цикличном режиме «заряда-разряда». Время жизни таких АКБ составляет 2-3 года, или находиться в диапазоне 600-700 циклов, DoD обычно равен 40%.
    2. В системах резервного электропитания или автономных системах off-grid. Для хранения электричества, полученных с помощью возобновляемых источников энергии (солнце, тепла, ветра). Хотя правда для off-grid систем данный тип АКБ не подходит как раз из-за малого количества времени жизни перезаряда и уровня DoD. Другими словами, если АКБ разрядиться до 70-90% — это приведет к его полной замене. Поэтому в off-grid системах применяют li-ion батареи или AMG батареи, либо уж очень дорогие необслуживаемые GEL батареи.
    3. Резервное питание промышленных объектов, электростанций, подстанций.
    4. Для автоматики электротехники, в железнодорожном и в воздушном транспорте.
    5. Мототехнике или в системах для автозапуска дизель-генераторов.
    6. В системах СКУД, в качестве резервного питания электромагнитных замков.
    7. В системах пожарной и охранной сигнализации (ОПС).
    8. Для систем аварийного освещения телекоммуникации и связи.
    9. Для питания переносного оборудования (DC).

    Комбинированные аккумуляторные батареи — новое развитие технологии свинцово-кислотных батарей. Например, технология PLT, в которой пластины изготавливаются из чистого свинца, а электролит применяется на основе геля, позволило увеличить срок службы батарей до 15 лет, DoD до 50%, а количество циклов разрядки до 1000 раз.

    При сравнение гелевых батарей для ИБП по ценовой диапазон колеблется от 10 000 руб до 40 000 руб., разница по цене наблюдается в технологиях изготовлении и емкости батареи

    Такая технология применяется в VENTURA VG 12-200, но примерная цена данного аккумулятора составляет 26000 руб. Цена батарей в системах бесперебойного питания составляет от 300 руб.

    Основные показатели

    У гелевых аккумуляторов, которые используются в качестве ИБП, следующие показатели:

    • батарея имеет ресурс порядка 500-700 циклов заряд-разряд;
    • во время глубокого разряда пластины остаются покрытыми, поэтому они меньше подвержены коррозии;
    • очень важна точность заряда, поскольку при его превышении возможно вспучивание батареи;
    • очень чувствительны к перегреву и короткому замыканию;
    • важно придерживаться значений заявленных показателей производителя по температуре и диапазону напряжения зарядки;
    • отлично выдерживают глубокую разрядку (но не все);
    • имеют высокое внутреннее сопротивление, поэтому не могут дать большие токовые величины;
    • могут эксплуатироваться во всех положения, кроме положения «вверх дном»;
    • при мелких повреждениях не происходит утечка электролита, поскольку он имеет вязкую структуру;
    • гелевые аккумуляторы могут выдерживать сильные холода вплоть до -45 градусов.

    Технические и эксплуатационные характеристики

    Узнаем о технических и эксплуатационных характеристиках гелевых аккумуляторов, представленных на российском рынке:

    • Емкость аккумулятора при вольтаже 12В — от 2 до 100 ампер-час. При помощи небольших аккумуляторов мощностью менее 20ач можно обустроить автономное питание в небольших помещениях, тогда как гигантские «батарейки» сгодятся для использования в качестве ИБП в сфере «зеленой» энергетики и системах автономного энергообеспечения.
    • Габариты — есть как маленькие «батарейки», так и крупные аккумуляторы. Например, гелевый аккумулятор Ventura GP 12-12 емкостью 18 ампер-час имеет габариты 181x76x166 мм.
    • Вес — от 3 до 20 кг, хотя можно встретить как более легкие, так и более тяжелые модели, а средний бесперебойный источник питания имеет вес порядка 10-15 килограмм.
    • Цена — от 1 до 20 тысяч рублей. Стоимость напрямую зависит от емкости аккумулятора, его размеров, страны-производителя и так далее. Например, одна модель аккумулятора AplhaLINE AGM мощностью 60 ампер-час с пусковым током 680 ампер будет стоить 8900 рублей, тогда как другая модель мощностью 75 ампер-час с пусковым током 750 ампер того же производителя будет стоить 10900 рублей.
    • Основные производители, у которых можно купить аккумуляторы — Bosch, Varta, Titan, Multi, Delkor, Тюменский аккумуляторный завод, Аком и другие.
    • Основные страны-производители — Чехия, Китай, Польша, Россия и другие.

    Какую модель гелевого аккумулятора Вы бы ни выбрали, рекомендую в первую очередь соблюдать рекомендации производителя по температуре окружающей среды в месте расположения батарей, температуре при которой происходит зарядка и уровню напряжения зарядки. Данные указанные производителем являются номинальными, т.е. заявленный срок службы будет зависеть от выполнения этих рекомендаций.

    В действительности данные условия редко можно соблюсти. Поэтому ресурс самых простых батарей составляет 1-3 года, после чего они высыхают и вздуваются. В более дорогих моделях, при соблюдении рекомендаций по глубине разряда (DoD) живут намного дольше 5-10 лет. Пример, где соблюдают условия, заявленные производителем, являются ЦОД (центры обработки данных).

    Электрическая схема, представленная на рисунке, удобна в применении на даче и там, где электроэнергия пока еще поступает нестабильно. Простое устройство, собранное по рекомендуемой схеме, обеспечит автоматическое включение резервного освещения (или другой активной нагрузки мощностью до 10–12 Вт) при пропадании сетевого напряжения 220 В.
    Транзистор VT1 серии КТ825 (можно заменить указанный на схеме на транзистор КТ825 с буквенными индексами Д и Е) обеспечивает максимальную нагрузку до 25 Вт. Он должен быть установлен на радиатор с площадью охлаждения не менее 100 см2. Если планируется менее мощная нагрузка (до 5 Вт), то возможно применить в схеме управляющий транзистор типа КТ818АМ - КТ818ГМ.

    В качестве резервного источника питания используется автомобильный аккумулятор емкостью 55-190 А/ч. В качестве ламп резервного освещения используются автомобильные лампы накаливания.
    Сетевой блок питания (БП) вырабатывает пониженное выпрямленное напряжение 13–14 В. В БП входят понижающий трансформатор и выпрямительный мост. Пульсации этого источника питания сглаживаются электролитическим конденсатором большой емкости С1. Напряжение с блока питания через диоды VD1, VD2 и ограничивающий резистор R1 беспрепятственно поступает к подключенному аккумулятору и заряжает его слабым током. При величине зарядного тока 80-110 мА автомобильная АКБ может находиться без вреда под зарядкой продолжительное время, примерно до десяти суток подряд. Падение напряжения на диоде VD2 создает обратное смещение для перехода база-эмиттер транзистора VT1. Транзистор находится в закрытом состоянии и нагрузка (EL1, EL2) обесточена. Переключатель S1 служит для принудительного включения аварийного режима. Это может понадобиться для разрядки АКБ или проверки системы резервного освещения (целостности ламп).
    Устройство в налаживании не нуждается.
    Когда сетевая энергия отключается, стационарный источник питания обесточивается, и в цепь базы транзистора VT1 поступает ток через резистор R2, транзистор открывается и нагрузка питается от АКБ. Как только поступление энергии в сети возобновляется, транзистор VT1 закрывается, нагрузка выключаются, и аккумулятор заряжается по рассмотренной схеме.
    Резистор R1 марки МЛТ-2, резистор R2 - типа МЛТ-0,5. Аккумулятор и лампы нагрузки подключаются к устройству многожильными изолированными сетевыми проводами сечением не менее 1 мм и с минимальной длиной (для уменьшения потерь энергии в проводах). Конденсатор С1 марки К50-24, К50-3Б или другой на напряжение не менее 25 В.
    Оптимальный вариант для понижающего трансформатора сетевого источника питания - универсальный силовой трансформатор ТПП 127/220-50-12.

    Для обеспечения надежной работы многих стационарных устройств необходимо применять резервное питание. Чаще всего для этих целей устанавливают аккумулятор, но за ним надо следить, не допуская сильного разряда и вовремя ставить на подза- ряд. Удобнее эту обязанность поручить автоматике.

    Для подзаряда аккумулятора необходимо соответствующее устройство (внутреннее или внешнее). Зарядное устройство можно выполнить в составе системы бесперебойного питания и полностью автоматизировать процесс, т. е. оно может включаться при снижении напряжения на аккумуляторе ниже порогового уровня , или же применить «плавающий» подзаряд . Под плавающим зарядом подразумевают подключение аккумулятора параллельно с нагрузкой (рис. 2.18), когда источник питания служит только для компенсации токов саморазряда в элементах питания. В этом случае схема получается наиболее простой.

    В этих схемах поступающее напряжение с трансформатора выбирается таким, чтобы зарядный ток, проходящий через аккумулятор, компенсировал ток естественного саморазряда. Нужное напряжение после выпрямителя можно подобрать экспериментально установкой дополнительных диодов или с помощью отводов от вторичной обмотки трансформатора (у некоторых унифицированных трансформаторов, например из серии TH, ТПП и др., есть возможность немного изменить напряжение во вторичной цепи за счет переключения отводов в первичной обмотке). При этом контролируем ток в цепи аккумулятора по амперметру. Обычно значение тока «плавающего» подзаряда не должно превышать 0,005…0,01 номинального для аккумулятора. Уменьшение тока заряда приводит только к увеличению продолжительности процесса (в данном применении время заряда значения не имеет - оно всегда будет достаточным).

    Такие схемы можно применять, если ваша сеть достаточно стабильна и питающее напряжение не выходит за рамки допуска

    Рис. 2.18. Схемы, обеспечивающиеплавающийподзаряд аккумулятора резервного питания

    (в крупных городах за этим следят). В противном случае между трансформатором и аккумулятором устанавливается стабилизатор напряжения и диод, препятствующий прохождению тока аккумулятора в стабилизатор, когда трансформатор не включен (рис. 2.19). Микросхема KP142EH12 может быть заменена аналогичной импортной LM317.

    Рис. 2.19. Схема зарядного устройства со стабилизатором напряжения

    Более совершенная схема зарядного устройства приведена на рис. 2.20. Она не только поддерживает стабильное напряжение на

    аккумуляторе, но и имеет настраиваемую токовую защиту, которая предотвращает повреждение элементов в случае короткого замыкания на выходе (или неисправности аккумулятора). Ограничение тока полезно и в тех случаях, когда подключается новый аккумулятор (еще не заряженный или сильно разряженный ранее). В этом случае ограничение тока на нужном уровне предотвращает перегрузку питающего сетевого трансформатора (он может быть маломощным - 14…30 Вт, так как в режиме «Тревога» необходимый ток вполне может обеспечить сам аккумулятор). Кроме того, внутри микросхемы есть температурная защита, отключающая ее выход при перегреве, что исключает повреждение компонентов.

    Для сборки устройства можно воспользоваться односторонней печатной платой из стеклотекстолита, показанной на рис. 2.21, ее внешний вид приведен на рис. 2.22.

    При монтаже применялись детали C1 - любой оксидный, С2-С4 - из серии K10. Подстроечный резистор R4 - многооборотный СП5-2В. В качестве микросхемы можно использовать любые из серии K142EH3 или K142EH4 - они имеют планарные выводы. Для установки микросхемы со стороны печатных проводников, в плате сделано окно размером 15 x 10 мм и отверстия для ее крепления. Между пластиной теплоотвода микросхемы и платой подкладываются диэлектрические шайбы так, чтобы выводы легли прямо на токопроводящие дорожки. Это позволит ко всей плоскости микросхемы закрепить отводящую тепло пластину.

    Рис. 2.21. Топология печатной платы и расположение элементов

    Рис. 2.22. Внешний вид монтажа элементов на плате

    Трансформатор (T1) можно заменить на ТП115-K9 - он имеет 2 обмотки по 12 В с допустимым током до 0,8 А. В холостом ходу на обмотке будет напряжение 16 В, а после выпрямления и сглаживания конденсатором - 19 В, что вполне достаточно для работы стабилизатора (основную часть времени схема будет работать как раз в режиме хрлостого хода).

    Работающая аналогично еще одна схема приведена на рис. 2.2,3- Основой ее является микросхема L200 (отечественных аналогов нет), имеющая выводы (2 и 5) для контроля тока в нагрузке. Приреденное включение микросхемы является типовым: от номинала резистора В2 зависит максимальный ток в цепи нагрузки (Lax = 0,45/R2), а нужное напряжение выставляется резистором R3. Стабилизатор может обеспечить выходной ток от 0,1 до 2 А и имеет внутреннюю защиту от перегрева.

    Рис. 2.23. Второй вариант схемы зарядного устройства с ограничением тока

    Для монтажа элементов второй схемы зарядного устройства можно воспользоваться печатной платой, показанной на рис. 2.24.

    О настройке всех схем со стабилизацией. Вам потребуется миллиамперметр, вольтметр (лучше цифровой) и имитирующий нагрузку мощный резистор. Все это соединяется no схеме, показанной на рис. 2.25.

    Сначала при отключенном аккумуляторе соответствующим подстроечным резистором выставляем на выходе стабилизатора напряжение 13 В, После этого переключателем S1 включаем резистор RH и проверяем ток ограничения. Его можно установить любым при помощи подбора резистора токовой обратной связи - R3 в схеме рис. 2.20 (например, для тока 220 мА - R3 = 3,9 Ом; для 300 мА - R3 = 3,3 Ом) или R2 в схеме на рис. 2.23.

    Рис. 2.24. Топология печатной платы и внешний вид монтажа

    Рис. 2.25. Стенддля настройки и проверки зарядногоустройства

    Теперь вместо резистора RH подключаем аккумулятор GB1. Необходимый ток в цепи заряда (для энергоемкости конкрегного аккумулятора) устанавливаем подстройкой выходного напряжения. Окончательную установку следует делать уже после того, как аккумулятор полностью зарядится - этот ток должен компенсировать саморазрядОВ1.

    Дополнительная литература

    1. Кадино Э. Электронные системы охраны. Пер. с франц. - M.: ДМК Пресс, 2001,c. 11.

    2. Шелестов И. П. Радиолюбителям: полезные схемы. Книга 1. - M.: СОЛОН-Пресс, 2003, с. 84.

    3. Шелестов И. П. Радиолюбителям: полезные схемы. Книга 3. - M.: СОЛОН-Пресс, 2003, с. 133.

    4. Сайт фирмы: http://www.dart.ru/index5.shtml?/cataloguenew/acoustics/oscillator.shtml

    5. ХрусталевД. А. Аккумуляторы. - M.: Изумруд, 2003.



    Понравилась статья? Поделиться с друзьями: