Протокол H. Рекомендация H.323 Специфицирует системы мультимедийной связи, которые ориентированы на работу в сетях с коммутацией пакетов, не обеспечивающих. 323

И если H.323 можно сравнить с ванилью, то протокол Session Initialization Protocol (SIP) вполне уместно в таком случае считать клубникой. Он не лучше и не хуже, чем H.323; он просто другой.

Действительно, SIP - часть предложений IETF, призванных заменить H.323. В то время как H.323 является набором протоколов, SIP - лишь один из нескольких протоколов, взаимодействующих друг с другом с целью организации сеансов передачи голоса по IP-сетям.

SIP - это протокол прикладного уровня, предназначенный для установления, изменения и окончания сеансов с одним или несколькими участниками. Эти сеансы могут включать в себя мультимедиа-конференции, дистанционное обучение, телефонные звонки по Internet и распространение мультимедийного информационного наполнения. Для участия в сеансе SIP способен «пригласить» людей или «роботов», таких, например, как службы хранения мультимедиа-информации.

Данный протокол может применяться для инициации сеансов, для приглашения к участию в сеансах, «объявленных» с помощью иных средств, для организации голосовых конференций с использованием устройств, поддерживающих звонки с участием многих абонентов. SIP поддерживает службы отображения имен и перенаправления, позволяя реализовать такие услуги для абонентов интеллектуальной сети, как обеспечение мобильной связи.

Этот протокол не предоставляет возможностей управления конференциями и не указывает, каким именно образом должно осуществляться это управление. SIP не резервирует адреса для многоадресной рассылки и не захватывает ресурсы, но может передавать «приглашенной» системе необходимую для этого информацию.

Абоненты, как инициирующие звонок, так и принимающие его, идентифицируются с помощью адресов SIP. Звонящий сначала определяет местонахождение соответствующего сервера, затем передает запрос SIP. В идеальном случае запрос передается адресату, который возвращает код ответа SIP, равный 200. Как и в случае с другими кодами ответа TCP/IP, двойка в начале свидетельствует об отсутствии ошибки.

Затем инициатор звонка посылает подтверждение получателю, что несколько необычно, потому что станция, которая инициировала звонок, также посылает подтверждение.

SIP позволяет взаимодействовать в рамках многоадресной рассылки, в сети одноадресных связей или посредством сочетания много- и одноадресных связей.

Объекты, к которым обращаются посредством SIP, являются пользователями на хостах, которые идентифицируются с помощью URL-адресов SIP. Пользовательская часть - это имя пользователя или номер телефона. Хостовая часть - это имя домена или IP-адрес.

SIP использует разнообразные серверы, каждый из которых служит для определенной цели. Среди них имеются серверы с пользовательскими агентами, proxy-серверы, серверы перенаправления и регистраторы. Существует также сервер, занимающийся определением местонахождения абонента, причем этот сервер может быть объединен с сервером SIP.

Транзакция SIP состоит из запроса и соответствующего ответа. В парных запросах и ответах имеются несколько полей, содержащих идентичные значения. К таким полям относятся поле с идентификатором звонка, номер командной последовательности, поле получателя, поле отправителя и тег (если присутствует). Поля отправителя и получателя идентичны в обоих направлениях. Это необычно, но отнюдь не ново в отличие от метода, применяемого в High-Level Data Link Control. Это помогает решить возникающие проблемы при использовании анализатора протокола для поиска и устранения аномалий в сети.

Запрос на приглашение представляет собой обращение к абоненту с просьбой присоединиться к конференции или принять участие в двустороннем звонке. Такое приглашение включает в себя описание сеанса, где перечисляются типы носителей и форматы. Если вызываемый абонент дает свое согласие, звонящий посылает подтверждение и возвращает описание с указанием носителя, который он хочет использовать.

Если говорить очень упрощенно, IETF создала SIP и связанные с ним протоколы потому, что убеждена в недостаточной масштабируемости H.323. Пока же совершенно очевидно, что H.323 опережает SIP в этой гонке. Но каков будет финиш?

Как работает протокол SIP

Протокол Session Initialization Protocol (SIP) - это протокол обмена сигналами для создания, изменения и прекращения телефонных сессий, в том числе телефонных звонков по Internet и мультимедийных конференций. SIP - это только один из целого числа протоколов, которые служат для замены фрагментов протокола H.323

  1. От звонящего исходит приглашение на перенаправляющий сервер, который, в свою очередь, сообщает звонящему DNS предполагаемого абонента и предоставляет адреса сервера пользовательского агента (UAS)
  2. Звонящий формирует новое приглашение UAS
  3. UAS посылает «звонок» принимающей стороне и подтверждение вызывающего. После этого звонок считается установленным, даже если на него не поступило ответа
  4. Звонящий выдает подтверждение UAS

Министерство образования Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ

ЭЛЕКТРОНИКИ И МАТЕМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

Реферат по предмету

Управление сетями ЭВМ

«Интернет телефония. Протокол H.323»

Проверил Харламов А.Г.

Исполнитель Группа С-94

Мерчи А. Э.

Москва 2010

Введение

Всего за несколько лет технологии IP-телефонии значительно эволюционировали, и распространенные сегодня решения существенно отличаются от прежних. С одной стороны, это обусловлено развитием аппаратных решений, в частности появлением мощных магистральных и транзитных маршрутизаторов и высокоскоростных телекоммуникационных каналов. С другой стороны, нельзя не отметить и появления таких качественно новых технологий, как динамическая маршрутизация с учетом качества обслуживания в мультисервисных IP-сетях и резервирование ресурсов для контроля качества обслуживания транзитных маршрутизаторов.

Современное оборудование для передачи голоса посредством протокола IP (VoIP) позволяет обеспечивать приоритет передачи голосового трафика над передачей обычных данных, получать приемлемое качество звукового сигнала при сильном сжатии, эффективно подавлять различные шумы.

Сегодня телекоммуникационные операторы, специализирующиеся на предоставлении услуг IP-телефонии, применяют выделенные каналы с приоритетом голосового трафика над трафиком данных, что гарантирует высокое качество передачи речи. При этом используется сразу несколько вариантов маршрутизации голосового трафика для каждого из тысяч направлений, а в случае возникновения каких-либо проблем трафик автоматически перенаправляется на другие каналы.

По мере своего развития IP-телефония претерпевает важные качественные изменения: из дополнительной услуги она постепенно превращается в некий базовый сервис, который в скором времени может стать одним из компонентов мультисервисной технологии.

Важную роль играет протокол для передачи голосового трафика. Активно развиваются, во-первых, Н.323, берущий свое начало от традиционных телефонных протоколов, и, во-вторых, протоколы, созданные на базе IP-технологий, - такие как SIP, MGCP, MEGACO.

Российские операторы IP-телефонии наиболее часто используют протоколы группы Н.323. Это вызвано тем, что данный протокол был первым общепринятым стандартом промышленной реализации IP-телефонии. В настоящее время все большее внимание уделяется SIP. Протокол SIP в этой группе является самым простым видом протокола, более доступным для восприятия и понимания рядовым IT-специалистом. SIP особенно хорош в использовании во внутрикорпоративных сетях. При этом внешним протоколом в сети телекоммуникационного оператора для предприятия, как правило, все равно останется либо Н.323, либо MGCP/MEGACO.

Как было отмечено, IP-телефония становится одним из компонентов решения передачи разнородного мультимедийного трафика с использованием протокола TCP/IP. И вполне естественно, что развитие отдельных инструментов управления мультимедийным трафиком влияет на всю систему технологий пакетной передачи данных.

Следует также иметь в виду, что IP-телефония - это не просто альтернатива обычной телефонии. Актуальность развития решений IP-телефонии обусловлена не только возможностью снижения затрат на телефонные переговоры и техническое обслуживание инфраструктуры (хотя и это, безусловно, имеет значение). В стратегическом плане IP-телефония может стать единой технической платформой, которая позволит объединить решения для передачи данных и голоса, а также для обработки и последующего использования этой информации во всех бизнес-процессах. Таким образом, развитие IP-телефонии в определенном смысле является средством повышения производительности труда и развития бизнеса.


Протокол H .323

В 1990 г. был одобрен первый международный стандарт в области видео-конференц-связи - спецификация H.320 для поддержки видеоконференций по ISDN. Затем ITU-T одобрил еще целую серию рекомендаций, относящихся к видео-конференц-связи. Эта серия рекомендаций, часто называемая H.32x, помимо H.320, включает в себя стандарты H.321-H.324, которые предназначены для различных типов сетей. Во второй половине 90-х годов интенсивное развитие получили IP-сети и Интернет. Они превратились в экономичную среду передачи данных и стали практически повсеместными. Однако, в отличие от ISDN, IP-сети плохо приспособлены для передачи аудио- и видеоданных. Стремление использовать сложившуюся структуру IP-сетей привело к появлению в 1996 г. стандарта H.323, который содержит описания терминальных устройств, оборудования и сетевых служб, предназначенных для осуществления мультимедийной связи в сетях с коммутацией пакетов (например, Intranet или Интернет). Терминальные устройства и сетевое оборудование стандарта H.323 могут передавать данные, речь и видеоинформацию в масштабе реального времени. В рекомендации H.323 не определены: сетевой интерфейс, физическая среда передачи информации и транспортный протокол, используемый в сети. Сеть, через которую осуществляется связь между терминалами H.323, может представлять собой сегмент или множество сегментов со сложной топологией. Терминалы H.323 могут быть интегрированы в персональные компьютеры или реализованы как автономные устройства. Но поддержка речевого обмена - обязательная функция для любого устройства стандарта H.323.

· управление полосой пропускания;

· возможность взаимодействия сетей;

· платформенную независимость;

· поддержку многоточечных конференций;

· поддержку многоадресной передачи;

· стандарты для кодеков;

· поддержку групповой адресации.

Управление полосой пропускания

Передача аудио- и видеоинформации весьма интенсивно нагружает каналы связи, и, если не следить за ростом этой нагрузки, работоспособность критически важных сетевых сервисов может быть нарушена. Поэтому рекомендации H.323 предусматривают управление полосой пропускания. Можно ограничить как число одновременных соединений, так и суммарную полосу пропускания для всех приложений H.323. Эти ограничения помогают сохранить необходимые ресурсы для работы других сетевых приложений. Каждый терминал H.323 может управлять своей полосой пропускания в конкретной сессии конференции.

Межсетевые конференции
Платформенная независимость

H.323 "не привязан" к каким-либо технологическим решениям, связанным с оборудованием или программным обеспечением. Взаимодействующие между собой приложения могут создаваться на основе разных платформ, с разными операционными системами.

Поддержка многоточечных конференций

Рекомендации H.323 позволяют организовывать конференцию с тремя или более участниками. Многоточечные конференции могут проводиться как с использованием центрального контроллера - MCU (устройства многоточечной конференции), так и без него.

Поддержка многоадресной передачи

H.323 поддерживает многоадресную передачу в многоточечной конференции, если сеть поддерживает протокол управления групповой адресацией. При многоадресной передаче один пакет информации отправляется всем необходимым адресатам без лишнего дублирования. Многоадресная передача использует полосу пропускания гораздо более эффективно, поскольку всем адресатам - участникам списка рассылки отправляется ровно один поток.

Стандарты для кодеков

H.323 устанавливает стандарты для кодирования и декодирования аудио- и видеопотоков с целью обеспечения совместимости оборудования разных производителей. Вместе с тем стандарт достаточно гибок. Сформулированы требования, выполнение которых обязательно, и существуют опциональные возможности, в случае использования которых также необходимо строго следовать стандарту. Помимо этого, производитель может включать в мультимедийные продукты и приложения дополнительные возможности, если они не противоречат обязательным и опциональным требованиям стандарта.

Совместимость

Возможны случаи, когда участники конференции хотят общаться друг с другом, не заботясь о вопросах совместимости между собой. Рекомендации H.323 поддерживают выяснение общих возможностей оборудования конечных пользователей и устанавливают наилучшие из общих для участников конференции протоколов кодирования, вызова и управления.

H.323 является одним из старейших стандартов, используемых для организации VoIP-телефонии и видеоконференцсвязи. Это целая система протоколов и элементов, которые позволяют передавать медиаданные по пакетным сетям с негарантированной пропускной способностью. Структура рекомендации H.323 обеспечивает различные возможности коммуникации - от обычной телефонии до видеоконференцсвязи с передачей медиаданных.

Одним из преимуществ стандарта H.323 является его связующая функция, которая позволяет устройствам различных производителей взаимодействовать друг с другом.

До появления протокола H.323 все VoIP-приложения работали на собственных сигнальных протоколах, поэтому связь между ними была невозможна. Однако в 1996 году опубликовали первую версию H.323 и этот стандарт получил широкое распространение.

Эволюция и развитие стандарта

С момента появления стандарта H.323 прошло много лет, и, естественно, он совершенствовался с каждой версией. С 1996 года до сегодняшнего дня было выпущено 7 версий стандарта.

Первая версия была довольно скудной, потому как выпускалась с главной целью - наладить коммуникацию между терминалами различных производителей. О надежности, безопасности и хорошем качестве связи речи пока не шло, к тому же, раннее несовместимые друг с другом, терминалы могли “общаться” только внутри корпоративной сети.

Прорывом стала вторая версия, которая вышла спустя два года и была направлена на активное использование в VoIP-телефонии и многосторонних конференциях. В этот раз ключевым словом стала надежность - подтверждение достоверности конечных точек (участников конференции), неизменность пакетных данных при передаче, защита от несанкционированного взлома данных и, как ни странно, отсутствие отклонения входящих вызовов. Также было ускорено соединение между терминалами и добавлена возможность переадресации звонков.

Третья версия обеспечила передачу сигнализации для большего числа вызовов посредством одного TCP-соединения. Межсетевые шлюзы, которые могли обеспечить до тысячи одновременных вызовов, особенно выиграли тогда.

Изменения в четвертом выпуске коснулись наращивания емкости H.323-терминалов, а выход пятой версии был направлен на общую стабилизацию стандарта. Кстати, решения TrueConf работают на четвертой версии протокола H.323.

В июне 2006 года утвердили шестую версию стандарта с изменениями по части транспортных протоколов H.225 и H.245. Появилась поддержка Assigned Gatekeeper - назначенного привратника, на котором регистрируется конечная точка из списка альтернативных гейткиперов. Помимо этого, были поддержаны документы и ряд приложений, позволяющих использовать кодеки GSM и H.264 в H.323-решениях.

Финальная - седьмая версия H.323 вышла в ноябре 2009 года. Среди множества обновлений следует выделить две важные для пользователей возможности:

  • передача информации о пользователях на нескольких языках (это позволило сотрудникам различных международных организаций без труда взаимодействовать друг с другом);
  • автоматическая доставка данных о групповой конференции, проходящей на MCU-сервере, всем H.323-терминалам (это позволило пользователям подключаться к конференции без ввода каких-либо данных о ней).

Архитектура

Стандарт H.323 основывается на четырех компонентах для организации видеоконференций типа точка-точка или многоточка:

  • терминалы
  • шлюзы
  • контроллеры зоны (привратник)
  • сервер многоточечных конференций (MCU)

Терминал — это по сути инструмент для управления H.323-устройством, этакий пользовательский интерфейс, конечная точка. Терминалы могут связываться друг с другом в режиме VoIP-телефонии либо видеоконференцсвязи. Для связи терминалов из разных сетей - к примеру, H.323 и ISDN, используются шлюзы . Они выполняют следующие функции:

  • установка соединения между терминалами;
  • конвертация звуковых форматов;
  • обмен информацией.

Если терминалы находятся в одной H.323-сети, шлюзы не используются.

Контроллер зоны или гейткипер - это центральная точка H.323-сети, поскольку именно гейткипер отвечает за адресацию вызовов, управляет шириной полосы пропускания и устанавливает подлинность терминалов и шлюзов во время соединения. Хотя рекомендация H.323 не определяет привратник как обязательный элемент, все же без него невозможно использование множества современных функций, которые внедряют в свои решения производители VoIP-приложений и решений видеоконференцсвязи.

Для связи трех и более терминалов используется сервер многоточечных конференций MCU (Multipoint Control Unit). Все терминалы, которые участвуют в конференции, сначала связываются с MCU-сервером, а MCU в свою очередь распределяет видеопотоки по всем терминалам. Само устройство MCU обычно также объединяет в себе роли гейткипера и шлюза.

Протоколы H.323

Каждый H.323-терминал либо устройство, поддерживающее протокол H.323, имеет свой собственный IP-адрес. По нему осуществляется механизм маршрутизации H.323-пакетов внутри сети. Для связи терминалов со шлюзами и гейткипером, а также для передачи медиатрафика используются протоколы UDP. Транспортные протоколы TCP используются только для установления звонка между терминалами и обмена дополнительными возможностями.

  1. обнаружение гейткипера и регистрация на нем;
  2. установка соединения между двумя и более терминалами;
  3. обмен голосом и видео - передача посредством транспортных протоколов;
  4. обмен мультимедиа - передача различных графических или текстовых документов, совместная работа над ними;
  5. завершение вызова.

Процесс обнаружения нужен для того, чтобы конечные точки (терминалы) могли найти привратник по сетевому адресу и зарегистрироваться на нем. Эта процедура может выполняться автоматически (многоадресная рассылка - обмен сообщениями между конечными точками и гейткипером, если гейткиперов несколько, терминал самостоятельно выбирает, на каком ему регистрироваться) либо вручную (когда сетевой адрес гейткипера известен заранее при конфигурации устройства). Предпочтительнее первый вариант обнаружения гейткипера, поскольку в случае каких-либо неисправностей в его работе терминал (конечная точка) сможет автоматически переключиться на другой гейткипер, без вмешательства в конфигурацию.

Процедура регистрации необходима для того, чтобы конечные точки (терминалы) могли сообщить свои адреса гейткиперу и войти в его зону управления.

Для установки соединения между терминалами и для обмена медиатрафиком используются следующие протоколы:

TCP:
  • H.225 - установка соединения между H.323-устройствами.
  • H.245 - обмен информацией о возможностях (поддерживаемые кодеки, например). Один терминал “сообщает” другому терминалу о поддерживаемых возможностях (кодеках), и выбирает кодек для отправки из возможностей другого терминала.
UDP:
  • RAS - используется между терминалами, шлюзами и гейткипером. Отвечает за регистрацию, разрешение на звонки и статусы.
  • RTP - используется при передаче медиатрафика в реальном времени.

Для завершения соединения терминалы посылают сообщение гейткиперу, после чего канал закрывается и связь прерывается.

Кодеки H.323

Стандарт H.323 определяет функцию обмена аудиоинформацией как основную свою возможность (так было изначально, ведь H.323 всегда применялся именно в VoIP-телефонии), поэтому каждый терминал должен был поддерживать как минимум один кодек из семейства G.7XX. А вот видеосвязь в отношении H.323 позиционировалась как второстепенная задача, в виду чего поддержка видеокодеков не была обязательной. Однако сегодня, в эпоху существования видеоконференцсвязи и интеграции ее во множество H.323-терминалов, видеокодеки входят в число обязательных. Для кодирования видео в H.323 используются видеокодеки семейства H.26X.

  • низкий уровень задержки;
  • возможность восстановления потерянных пакетов;
  • высокое качество звука;
  • малая полоса пропускания (не более 8 kbit/s).

Всем этим требованиям отвечают кодеки семейства G.7XX. Однако если говорить о последнем пункте данного списка, то лишь некоторые из G.7XX соответствуют ему.

По умолчанию в H.323 используется кодек G.711, который обладает довольно высоким коэффициентом полосы пропускания - 64 kbit/s. К тому же, G.711 на сегодняшний день считается устаревшим кодеком, ведь его частота дискретизации (преобразования аналогового сигнала в цифровой) составляет всего 8 kHz, в то время, как у другого кодека - более современного G.722.1 эта цифра в два раза больше (16 kHz). Кстати, для интернет-соединений раньше использовались низкочастотные кодеки G.723 (5.3/6.3 kbps) и G.729 (8 kbps).

Что касается видеокодеков, тут всё просто: стандартом уже много лет является видеокодек H.264. Его последователь H.265 пока не обрел популярности и поддержан только на новых устройствах, поэтому мы не думаем что он будет массово использоваться ранее 2022 года.


Добрый день, уважаемые хабражители. В данной статье я постараюсь рассмотреть основные принципы IP-телефонии, описать наиболее часто используемые протоколы, указать способы кодирования и декодирования голоса, разобрать некоторые характерные проблемы.

Под IP-телефонией подразумевается голосовая связь, которая осуществляется по сетям передачи данных, в частности по IP-сетям (IP - Internet Protocol). На сегодняшний день IP-телефония все больше вытесняет традиционные телефонные сети за счет легкости развертывания, низкой стоимости звонка, простоты конфигурирования, высокого качества связи и сравнительной безопасности соединения. В данном изложении будем придерживаться принципов эталонной модели OSI (Open Systems Interconnection basic reference model) и рассказывать о предмете “снизу-вверх”, начиная с физического и канального уровней и заканчивая уровнями данных.

"
Модель OSI и инкапсуляция данных

Принципы IP-телефонии

При осуществлении звонка голосовой сигнал преобразуется в сжатый пакет данных (подробнее этот процесс будет рассмотрен в главах “Импульсно кодовая модуляция” и “Кодеки”). Далее происходит пересылка данных пакетов поверх сетей с коммутацией пакетов, в частности, IP сетей. При достижении пакетами получателя, они декодируются в оригинальные голосовые сигналы. Эти процессы возможны благодаря большому количеству вспомогательных протоколов, часть из которых будет рассмотрена далее.

В данном контексте, протокол передачи данных - некий язык, позволяющий двум абонентам понять друг друга и обеспечить качественную пересылку данных между двумя пунктами.

Отличие от традиционной телефонии

В традиционной телефонии установка соединения происходит при помощи телефонной станции и преследует исключительно цель разговора. Здесь голосовые сигналы передаются по телефонным линиям, через выделенное подключение. В случае же IP-телефонии, сжатые пакеты данных поступают в глобальную или локальную сеть с определенным адресом и передаются на основе данного адреса. При этом используется уже IP-адресация, со всеми присущими ей особенностями (такими как маршрутизация).

При этом IP-телефония оказывается более дешевым решением как для оператора, так и для абонента. Происходит это благодаря тому, что:

  • Традиционные телефонные сети обладают избыточной производительностью, в то время, как IP-телефония использует технологию сжатия голосовых пакетов и позволяет полностью использовать емкость телефонной линии.
  • Как правило, на сегодняшний момент доступ в глобальную сеть есть у всех желающих, что позволяет сократить затраты на подключение или совсем исключить их.
  • Звонки в локальной сети могут использовать внутренний сервер и происходить без участия внешней АТС.
Вместе с вышеперечисленным, IP-телефония позволяет улучшить качество связи. Достигается это, опять же, благодаря трем основным факторам:
  • Телефонные серверы постоянно совершенствуются и алгоритмы их работы становятся более устойчивыми к задержкам или другим проблемам IP-сетей.
  • В частных сетях их владельцы обладают полным контролем над ситуацией и могут изменять такие параметры, как ширина полосы пропускания, количество абонентов на одной линии, и, как следствие, величину задержки.
  • Сети с коммутацией пакетов развиваются, и ежегодно вводятся новые протоколы и технологии, позволяющие улучшить качество связи (например, протокол резервирования полосы пропускания RSVP).
Благодаря IP-телефонии очень элегантно решается проблема занятой линии, так как переадресация, либо перевод в режим ожидания могут быть осуществлены несколькими командами в конфигурационном файле на АТС.

Физический уровень (Physical Layer)

На физическом уровне осуществляется передача потока битов по физической среде через соответствующий интерфейс. IP-телефония практически полностью опирается на уже существующую инфраструктуру сетей. В качестве среды передачи информации используются, как правило витая пара категории 5 (UTP5), одномодовое или многомодовое оптическое волокно, либо коаксиальный кабель. Тем самым в полной мере реализуется принцип конвергенции телекоммуникационных сетей.

PoE

Интересно рассмотреть технологию PoE (Power Over Ethernet) - стандарты IEEE 802.3 af-2003 и IEEE 802.3at-2009. Ее суть заключается в возможности обеспечения питанием устройств посредством стандартной витой пары. Большинство современных IP-телефонов, в частности, модельный ряд Cisco Unified IP Phones 7900 Series, поставляются с поддержкой PoE. Согласно стандарту 2009 года, устройства могут получать ток мощностью до 25,5 Ватт.

При подаче питания используются лишь две витых пары кабеля 100BASE-TX, однако некоторые производители задействуют все четыре, достигая мощности до 51 Ватт. Необходимо заметить, что технология не требует модификации уже существующих кабельных систем, в том числе и кабелей Cat 5.

Для определения того, является ли подключаемое устройство питаемым (PD - powered device) на кабель подается напряжение 2,8 - 10 В. Тем самым вычисляется сопротивление подключаемого устройства. Если данное сопротивление находится в диапазоне 19 - 26,5 кОм, то процесс переходит на следующий этап. Если же нет - проверка повторяется с интервалом ≥2 мс.

Далее происходит поиск диапазона мощностей питаемого устройства путем подачи более высокого напряжения и измерения тока в линии. Вслед за этим на линию подается 48 В - питающее напряжение. Также осуществляется постоянный контроль перегрузок.

Канальный уровень (Data Link Layer)

Согласно спецификации IEEE 802 канальный уровень разделяется на два подуровня:
  1. MAC (Media Access Control) - обеспечивает взаимодействие с физическим уровнем;
  2. LLC (Logical Link Control) - обслуживает сетевой уровень.
На канальном уровне работают коммутаторы - устройства, обеспечивающие соединение нескольких узлов компьютерной сети и распределение фреймов между хостами на основе физической (MAC) адресации.

Необходимо упомянуть механизм виртуальных локальных сетей (Virtual Local Area Network). Данная технология позволяет создавать логическую топологию сети без оглядки на ее физические свойства. Достигается это тегированием трафика, что подробно описано в стандарте IEEE 802.1Q.


Формат фрейма

В контексте IP-телефонии отметим Voice VLAN, широко применяющуюся для изоляции голосового трафика, генерируемого IP-телефонами, от других данных. Ее использование целесообразно по двум причинам:

  1. Безопасность. Создание отдельной голосовой VLAN уменьшает вероятность перехвата и анализа голосовых пакетов.
  2. Повышение качества передачи. Механизм VLAN позволяет задать повышенный приоритет голосовым пакетам, и, как следствие, улучшить качество связи.

Сетевой уровень (Network Layer)

На сетевом уровне происходит маршрутизация, соответственно основными устройствами сетевого уровня являются маршрутизаторы (Router). Именно здесь определяется, каким путем данные достигнут получателя с определенным IP-адресом.

Основной маршрутизируемый протокол - IP (Internet Protocol), на основе которого и построена IP-телефония, а также всемирная сеть Интернет. Также существует множество динамических протоколов маршрутизации, самый популярный среди которых OSPF (Open Shortest Path First) - внутренний протокол, основанный на текущем состоянии каналов связи;

На сегодняшний момент существуют специальные VoIP-шлюзы (Voice Over IP Gateway), обеспечивающие подключение обычных аналоговых телефонов к IP-сети. Как правило, они имеют и встроенный маршрутизатор, позволяющий вести учет трафика, авторизовать пользователей, автоматически раздавать IP-адреса, управлять полосой пропускания.

Среди стандартных функций VoIP-шлюзов:

  • Функции безопасности (создание списков доступа, авторизация);
  • Поддержка факсимильной связи;
  • Поддержка голосовой почты;
  • Поддержка протоколов H.323, SIP (Session Initiation Protocol).
Для борьбы с возможными задержками передачи IP необходимо дополнять дополнительными средствами, например протоколами установления очередности (чтобы голосовые данные не конкурировали с обычными).
Как правило, в этих целях на маршрутизаторах используется очередность с малой задержкой (LLQ - Low-Latency queuing), либо взвешенная организация очередей на основе классов (CBWFQ - Class-Based Weighted Fair Queuing).
Кроме того, необходимы схемы маркировки с заданием приоритетов для рассмотрения голосовых данных, как наиболее важных для передачи.

Транспортный уровень (Transport Layer)

Для транспортного уровня характерны:
  • Сегментация данных приложений верхнего уровня;
  • Обеспечение сквозного соединения;
  • Гарантия надежности данных.
Основные протоколы транспортного уровня - TCP (Transmission Control Protocol), UDP (User Datagram Protocol), RTP (Real-time Transport Protocol). Непосредственно в IP-телефонии используются протоколы UDP и RTP, причем основное их отличие от TCP заключается в том, что они не обеспечивают надежность доставки данных. Это является более приемлемым вариантом, нежели осуществление контроля за доставкой (TCP), так как телефонная связь чрезвычайно зависима от задержек передачи, но менее чувствительна к потерям пакетов.

UDP

UDP базируется на сетевом протоколе IP и предоставляет транспортные услуги прикладным процессам. Его главное отличие от TCP - обеспечение негарантированной доставки, то есть при отправке и получении данных никаких подтверждений не запрашивается. Также при отправке информации не обязательно установление логического соединения между модулями UDP (источник и приемник).

RTP

Несмотря на то, что RTP принято считать протоколом транспортного уровня, как правило он работает поверх UDP. С помощью RTP реализуется распознавание типа трафика, работа с метками времени, контроль передачи и нумерация последовательности пакетов.

Основное назначение RTP состоит в том, что он присваивает каждому исходящему пакету временные метки, обрабатывающиеся на приемной стороне. Это позволяет принимать данные в надлежащем порядке, снижает влияние неравномерности времени прохождения пакетов по сети, восстанавливает синхронизацию между аудио и видео данными.

Уровни данных (Data Layers)

Три последних уровня модели OSI рассмотрим совместно. Такое объединение допустимо, так как процессы, происходящие на данных уровнях тесно связаны между собой, и описывать их безотносительно разделения на подуровни будет логичнее.

H.323

Первым делом необходимо описать стек протоколов H.323, разработанный в 1996 году. Данный стандарт содержит описание оборудования, сетевых служб и терминальных устройств, предназначенных для осуществления аудио- и видеосвязи в сетях с коммутацией пакетов (Интернет). Для любого устройства стандарта H.323 обязательна поддержка обмена голосовой информацией.
  • Платформенную независимость.
  • Стандарты кодирования аналоговых данных.
  • Управление полосой пропускания.
  • Гибкость и совместимость.
Отметим очень важный факт: в рекомендациях не определены физическая среда передачи, транспортный протокол и сетевой интерфейс. Это значит, что устройства, поддерживающие стандарт H.323 могут работать в любых существующих сегодня сетях с коммутацией пакетов.

Согласно H.323 четырьмя основными компонентами VoIP-соединения являются:

  • терминал;
  • шлюз;
  • контроллер зоны;
  • контроллер управления многоточечной конференции (MCU - Multipoint Control Unit).


Пример структурной схемы сети в IP-телефонии 

Выдержка из документа, описывающего стек протоколов H.323

1. Управление соединением и сигнализация:
1.а. H.225.0: протоколы сигнализации и пакетирования мультимедийного потока (использует подмножество протокола сигнализации Q.931).
1.б. H.225.0/RAS: процедуры регистрации, допуска и состояния.
1.в. H.245: протокол управления для мультимедиа.
2. Обработка звуковых сигналов:
2.а. G.711: импульсно-кодовая модуляция тональных частот.
2.б. G.722: кодирование звукового сигнала 7 кГц в 64 кбит/с.
2.в. G.723.1: речевые кодеры на две скорости передачи для организации мультимедийной связи со скоростью передачи 5.3 и 6.3 кбит/с.
2.г. G.728: кодирование речевых сигналов 16 кбит/с с помощью линейного предсказания с кодированием сигнала возбуждения с малой задержкой.
2.д. G.729: кодирование речевых сигналов 8 кбит/с с помощью линейного предсказания с алгебраическим кодированием сигнала возбуждения сопряженной структуры.
3. Обработка видеосигналов:
3.а. H.261: видеокодеки для аудиовизуальных услуг со скоростью 64 кбит/с.
3.б. H.263: кодирование видеосигнала для передачи с малой скоростью.
4. Конференц-связь для передачи данных:
4.а. T.120: стек протоколов (включает T.123, T.124, T.125) для передачи данных между оконечными пунктами.
5. Мультимедийная передача:
5.а. RTP: транспортный протокол реального времени.
5.б. RTCP: протокол управления передачей в реальном времени.
6. Обеспечение безопасности:
6.а. H.235: обеспечение безопасности и шифрование для мультимедийных терминалов сети H.323.
7. Дополнительные услуги:
7.а. H.450.1: обобщенные функции для управления дополнительными услугами в H.323.
7.б. H.450.2: перевод соединения на телефонный номер третьего абонента.
7.в. H.450.3: переадресация вызова.
7.г. H.450.4: удержание вызова.
7.д. H.450.5: парковка вызова (park) и ответ на вызов (pick up).
7.е. H.450.6: уведомление о поступившем вызове в состоянии разговора.
7.ж. H.450.7: индикация ожидающего сообщения.
7.з. H.450.8: служба идентификации имен.
7.и. H.450.9: служба завершения соединения для сетей H.323.


Сценарий установки соединения на основе протокола H.323

SIP (Session Initiation Protocol)

SIP - протокол сигнализации, предназначенный для организации, изменения и завершения сеансов связи. SIP независим от транспортных технологий, однако при установлении соединения предпочтительно использовать UDP. Для передачи самой голосовой и видеоинформации рекомендовано применять RTP, но возможность использования других протоколов не исключена.

В SIP определены два типа сигнальных сообщений - запрос и ответ. Также существует шесть процедур:

  • INVITE (приглашение) - приглашает пользователя принять участие в сеансе связи (служит для установления нового соединения; может содержать параметры для согласования);
  • BYE (разъединение) - завершает соединение между двумя пользователями;
  • OPTIONS (опции) - используется для передачи информации о поддерживаемых характеристиках (эта передача может осуществляться напрямую между двумя агентами пользователей или через сервер SIP);
  • АСК (подтверждение) - используется для подтверждения получения сообщения или для положительного ответа на команду INVITE ;
  • CANCEL (отмена) - прекращает поиск пользователя;
  • REGISTER (регистрация) - передает информацию о местоположении пользователя на сервер SIP, который может транслировать ее на сервер адресов (Location Server).

Сценарий сеанса связи SIP

Кодеки

Аудиокодеком называют программу или алгоритм, который сжимает, либо разжимает цифровые звуковые данные, позволяя снизить требования к пропускной способности канала передачи данных. В IP-телефонии на сегодняшний день наиболее распространено преобразование посредством кодека G.729, а также сжатие G.711 по А-закону (alaw) и μ-закону (ulaw).
G.729
G.729 является кодеком, который сжимает исходный сигнал с потерей данных. Основная идея, заложенная в G.729 - передача не самого оцифрованного сигнала, а его параметров (спектральной характеристики, количества переходов через ноль), достаточных для последующего синтезирования на принимающей стороне. При этом все основные характеристики голоса, такие как амплитуда и тембр сохраняются.

Пропускная способность канала, на которую рассчитан данный кодек - 8 кбит/с. Длина кадра обрабатываемого G.729 - 10 мс, частота дискретизации - 8 кГц. Для каждого из таких кадров определяются параметры математической модели, которые в дальнейшем и передаются в канал в виде кодов.

При использовании кодирования G.729 задержка составляет 15 мс, из которых 5 мс тратится на заполнение предварительного буфера. Отметим также, что кодек G.729 предъявляет достаточно высокие требования к ресурсам процессора.

G.711
G.711 - голосовой кодек, который не предполагает никакого сжатия, помимо компандирования - метода уменьшения эффектов каналов с ограниченным динамическим диапазоном. В основе данного метода лежит принцип уменьшения количества уровней квантования сигнала в области высокой громкости, сохраняя при этом качество звука. Две широко использующиеся в телефонии схемы компандирования - alaw и ulaw.

Сигнал в данном кодеке предоставлен потоком величиной 64 кбит/с. Частота дискретизации - 8000 кадров по 8 бит в секунду. Качество голоса субъективно лучше, нежели при применении кодека G.729.

alaw
alaw или А-закон - алгоритм сжатия звуковых данных с потерей информации. В основном используется на территории Европы и России.

Для сигнала x преобразование по алгоритму alaw выглядит следующим образом:

Где А - параметр сжатия (обычно принимается равным 87,7).

ulaw
ulaw или μ-закон - алгоритм сжатия звуковых данных с потерей информации. В основном используется на территории Японии и Северной Америки.

Для сигнала x преобразование по алгоритму ulaw выглядит следующим образом:

где μ принимается равным 255 (8 бит) в стандартах Северной Америки и Японии.

Импульсно кодовая модуляция (PCM - Pulse Code Modulation)

Импульсно кодовая модуляция - передача непрерывной функции в виде серии последовательных импульсов.

Для получения на входе канала связи модулированного сигнала, мгновенное значение несущего сигнала измеряется АЦП с определенным периодом. При этом количество оцифрованных значений в секунду (иначе, частота дискретизации) должно быть большим или равным двукратной максимальной частоте в спектре аналогового сигнала.

Далее полученные значения округляются до одного из заранее принятых уровней. Заметим, что количество уровней необходимо принимать кратным степени двойки. В зависимости от того, сколько было определено уровней, сигнал кодируется определенным количеством бит.


Квантование сигнала

На данном рисунке представлено кодирование с помощью четырех битов (то есть все промежуточные значения аналогового сигнала будут округляться до одного из заранее заданных 16 уровней). Для примера, при времени равном нулю сигнал будет представлен подобным образом: 0111.

При демодуляции последовательность нулей и единиц преобразуется в импульсы демодулятором, уровень квантования которого равен уровню квантования модулятора. После этого ЦАП на основе данных импульсов восстанавливает сигнал, а сглаживающий фильтр окончательно убирает неточности.

В современной телефонии число уровней квантования должно быть большим или равным 100, то есть минимальное количество бит, которым может кодироваться сигнал - 7.

Вопросы качества обслуживания в IP-телефонии (Quality of Service - QoS)

В сетях на основе стека TCP/IP высокое качество обслуживания трафика, чувствительного к задержкам передачи не обеспечивается по умолчанию. При использовании протокола TCP имеется гарантия достоверной доставки информации, но ее перенос может осуществляться с непредсказуемыми задержками. Для UDP характерна минимизация задержек, но гарантия верной доставки пакета отсутствует.

В то же время добротность речевого трафика сильно зависит от качества передачи, и в сети, где не реализованы механизмы, гарантирующие соответственное качество, реализация IP-телефонии может быть не удовлетворяющей требованиям пользователей.

Основными показателями качества обслуживания являются пропускная способность сети и задержка передачи. Задержка при этом определяется как промежуток времени, прошедший с момента отправки пакета, до момента его приема.

Также существуют такие характеристики, как готовность сети и ее надежность (оцениваются по результатам контроля уровня обслуживания в течение длительного времени, либо по коэффициенту использования).

Для улучшения качества связи используются следующие механизмы:

  1. Перемаршрутизация. При перегрузке одного из каналов связи позволяет осуществить доставку при помощи резервных маршрутов.
  2. Резервирование ресурсов канала связи на время соединения.
  3. Приоретизация трафика. Дает возможность помечать пакеты в соответствии с уровнем их важности и производить обслуживание на основе меток.
Как было сказано ранее, голосовой трафик чрезвычайно чувствителен к задержкам передачи. Максимальное время задержки не должно превышать 400 мс (сюда включается и продолжительность обработки информации на конечных станциях). Различают два основных типа задержек:

Задержка при кодировании информации в голосовых шлюзах или терминальном оборудовании. Уменьшается путем улучшения алгоритмов обработки и преобразования голоса.
- Задержка, вносимая сетью передачи. Уменьшается путем улучшения сетевой инфраструктуры, в частности, сокращением количества маршрутизаторов и использованием высокоскоростных каналов.


Источники задержки в IP-телефонии

Джиттер

Еще одно явление, характерное для IP-телефонии - джиттер, или, иначе, случайная задержка распространения пакета.

Обуславливается джиттер тремя факторами:

  • Ограниченная полоса пропускания или некорректная работа активных сетевых устройств;
  • Высокая задержка распространения сигнала;
  • Тепловой шум.
Наиболее часто применяющийся метод борьбы с джиттером - джиттер-буфер, хранящий определенное количество пакетов.

Обычно предусматривается динамическая подстройка длины буфера в течение всего времени существования соединения. Для выбора наилучшей длины используются эвристические алгоритмы.

Джиттер буфер
Для компенсации неравномерной скорости поступления пакетов на приемной стороне создают временное хранилище пакетов, или так называемый джиттер буфер. Его задача, собрать поступающие пакеты в правильном порядке в соответствии с временными метками и выдать их кодеку с правильными интервалами и правильном порядке.

Джиттер буфер

Размер буфера приемное VOIP устройство рассчитывает в процессе работы, либо принудительно задается в настройках. С одной стороны он не может быть слишком большим, чтобы не увеличивать транспортную задержку. С другой стороны, маленький размер буфера вызывает потери пакетов при изменениях времени задержки в IP сети.

Отсюда и происходит одно из главных противоречий, между интернет провайдерами и пользователями IP телефонии. С точки зрения провайдера все пакеты доставлены абоненту, то есть, потерь нет. А с точки зрения VoIP устройства, разница во времени между приходом пакетов значительно превышает джиттер буфер. Поэтому фактически потери есть. На практике потеря более 1% вызывает определенные неприятные ощущения. При 2% разговор оказывается затруднен. При значениях больше 4% разговор уже практически невозможен.

Размер джиттер буфера
Случайная задержка распространения Ji для i-го пакета может определяться по формуле:

где:
Di – отклонение от ожидаемого времени прибытия i-го пакета.
Отклонение от ожидаемого времени прибытия i-го пакета Di определяется по формуле:

где:
R – время прибытия пакета в метках времени RTP,
S – временная метка RTP, взятая из пакета.

Приведем пример расчета ожидаемого размера случайной задержки распространения 5-го пакета, на основе двух предыдущих.

Пусть J4=10 мс; R4=10, R3=11, S4=6, S3=5, тогда D5 будет равно (10-11)-(6-5)=-2.

В среднем, случайная задержка времени распространения для одного пакета в текущем примере составит 10 мс (точнее можно посчитать по формуле, приведенной выше). Тогда для того, чтобы ни один пакет не был отброшен, размер джиттер буфера должен быть равным 10 мс.

Для определения требуемого размера джиттер буфера в мегабайтах, домножим полученное значение на 100 мбит/сек – среднюю пропускную способность сети: 10 10^-3 100 = 128 кб.

Размер джиттер-буфера должен быть больше, чем флуктуация транзитного времени в сети. Например, если для 10 пакетов время транзита колеблется от 5 до 10 мс, то буфер должен быть хотя бы 8 мс, чтобы ни один пакет не был потерян. Лучше, если буфер еще больше, например 12 мс, тогда сможет работать механизм перезапроса потерянных пакетов.

Решения для развертывания телефонной сети

Asterisk

Asterisk - программная АТС, способная коммутировать как VoIP вызовы, так и вызовы, осуществляемые между IP-телефонами и традиционной телефонной сетью общего пользования.

Поддерживаемые протоколы: IAX, SIP, H.323, Skinny, UNIStim.
Поддерживаемые кодеки: G.711 (ulaw и alaw), G.722, G.723, G.729, GSM, iLBC, LPC-10, Speex.

Asterisk - динамично развивающееся открытое программное обеспечение, которое может быть установлено без оглядки на лицензирование. Это делает данную программную АТС привлекательной для малого и среднего бизнеса. Количество абонентов в сети может достигать 2000 и ограничено только мощностью сервера.

Еще одно достоинство Asterisk - возможность гибкой настройки. Весь необходимый функционал либо уже реализован, либо может быть дописан самостоятельно без существенных временных и денежных затрат. Этому способствует принцип: одна задача - один программный модуль.

В сравнении с решениями от таких вендоров, как Cisco или Avaya, Asterisk привлекателен еще и стоимостью развертывания. Фактически все затраты сводятся только к покупке телефонных аппаратов и сервера, способного обеспечить требуемую нагрузку на сеть. Сама программа абсолютно бесплатна.

Cisco Unified Communication Manager (CallManager)

CallManager предназначен скорее для крупных сетей, включающих до 30000 абонентов. Данный программно-аппаратный комплекс обеспечивает надежность работы и позволяет конфигурировать множество параметров, таких как переадресация звонков или голосовое меню. Существует и “облегченная” express версия, предназначенная скорее для небольших офисов.

Из преимуществ Cisco CallManager следует отметить в первую очередь знаменитую техническую поддержку корпорации Cisco. При соответствующем уровне контракта на обслуживание, любая проблема, начиная с вопросов по настройке и заканчивая вышедшим из строя оборудованием, будет решена практически мгновенно. Поэтому Cisco CallManager подойдет компаниям, готовым платить немалые деньги, но и получать при этом высочайшее качество обслуживания.

Avaya IP Office


Система IP Office может стать неплохим выбором для среднего размера телефонной сети. Количество абонентов здесь ограничено не только мощностью сервера, но и количеством приобретенных лицензий. Лицензировать необходимо практически все - платы расширения, используемые приложения и т.д., что может доставить определенные неудобства.

Конфигурирование может осуществляться через ряд программ, но наиболее популярная и простая в обращении - Avaya IP Office Manager. Также возможно управление через консоль с помощью Avaya Terminal Emulator.

В целом, продукция корпорации Avaya не ограничивается одним IP Office. Avaya, в 2009 году слившаяся с еще одним известным производителем Nortel, является признанным лидером на рынке оборудования для IP-телефонии.

Министерство образования Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ

ЭЛЕКТРОНИКИ И МАТЕМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

Реферат по предмету

Управление сетями ЭВМ

«Интернет телефония. Протокол H.323»

Проверил Харламов А.Г.

Исполнитель Группа С-94

Мерчи А. Э.

Москва 2010

Введение

Всего за несколько лет технологии IP-телефонии значительно эволюционировали, и распространенные сегодня решения существенно отличаются от прежних. С одной стороны, это обусловлено развитием аппаратных решений, в частности появлением мощных магистральных и транзитных маршрутизаторов и высокоскоростных телекоммуникационных каналов. С другой стороны, нельзя не отметить и появления таких качественно новых технологий, как динамическая маршрутизация с учетом качества обслуживания в мультисервисных IP-сетях и резервирование ресурсов для контроля качества обслуживания транзитных маршрутизаторов.

Современное оборудование для передачи голоса посредством протокола IP (VoIP) позволяет обеспечивать приоритет передачи голосового трафика над передачей обычных данных, получать приемлемое качество звукового сигнала при сильном сжатии, эффективно подавлять различные шумы.

Сегодня телекоммуникационные операторы, специализирующиеся на предоставлении услуг IP-телефонии, применяют выделенные каналы с приоритетом голосового трафика над трафиком данных, что гарантирует высокое качество передачи речи. При этом используется сразу несколько вариантов маршрутизации голосового трафика для каждого из тысяч направлений, а в случае возникновения каких-либо проблем трафик автоматически перенаправляется на другие каналы.

По мере своего развития IP-телефония претерпевает важные качественные изменения: из дополнительной услуги она постепенно превращается в некий базовый сервис, который в скором времени может стать одним из компонентов мультисервисной технологии.

Важную роль играет протокол для передачи голосового трафика. Активно развиваются, во-первых, Н.323, берущий свое начало от традиционных телефонных протоколов, и, во-вторых, протоколы, созданные на базе IP-технологий, - такие как SIP, MGCP, MEGACO.

Российские операторы IP-телефонии наиболее часто используют протоколы группы Н.323. Это вызвано тем, что данный протокол был первым общепринятым стандартом промышленной реализации IP-телефонии. В настоящее время все большее внимание уделяется SIP. Протокол SIP в этой группе является самым простым видом протокола, более доступным для восприятия и понимания рядовым IT-специалистом. SIP особенно хорош в использовании во внутрикорпоративных сетях. При этом внешним протоколом в сети телекоммуникационного оператора для предприятия, как правило, все равно останется либо Н.323, либо MGCP/MEGACO.

Как было отмечено, IP-телефония становится одним из компонентов решения передачи разнородного мультимедийного трафика с использованием протокола TCP/IP. И вполне естественно, что развитие отдельных инструментов управления мультимедийным трафиком влияет на всю систему технологий пакетной передачи данных.

Следует также иметь в виду, что IP-телефония - это не просто альтернатива обычной телефонии. Актуальность развития решений IP-телефонии обусловлена не только возможностью снижения затрат на телефонные переговоры и техническое обслуживание инфраструктуры (хотя и это, безусловно, имеет значение). В стратегическом плане IP-телефония может стать единой технической платформой, которая позволит объединить решения для передачи данных и голоса, а также для обработки и последующего использования этой информации во всех бизнес-процессах. Таким образом, развитие IP-телефонии в определенном смысле является средством повышения производительности труда и развития бизнеса.


Протокол H .323

В 1990 г. был одобрен первый международный стандарт в области видео-конференц-связи - спецификация H.320 для поддержки видеоконференций по ISDN. Затем ITU-T одобрил еще целую серию рекомендаций, относящихся к видео-конференц-связи. Эта серия рекомендаций, часто называемая H.32x, помимо H.320, включает в себя стандарты H.321-H.324, которые предназначены для различных типов сетей. Во второй половине 90-х годов интенсивное развитие получили IP-сети и Интернет. Они превратились в экономичную среду передачи данных и стали практически повсеместными. Однако, в отличие от ISDN, IP-сети плохо приспособлены для передачи аудио- и видеоданных. Стремление использовать сложившуюся структуру IP-сетей привело к появлению в 1996 г. стандарта H.323, который содержит описания терминальных устройств, оборудования и сетевых служб, предназначенных для осуществления мультимедийной связи в сетях с коммутацией пакетов (например, Intranet или Интернет). Терминальные устройства и сетевое оборудование стандарта H.323 могут передавать данные, речь и видеоинформацию в масштабе реального времени. В рекомендации H.323 не определены: сетевой интерфейс, физическая среда передачи информации и транспортный протокол, используемый в сети. Сеть, через которую осуществляется связь между терминалами H.323, может представлять собой сегмент или множество сегментов со сложной топологией. Терминалы H.323 могут быть интегрированы в персональные компьютеры или реализованы как автономные устройства. Но поддержка речевого обмена - обязательная функция для любого устройства стандарта H.323.

· управление полосой пропускания;

· возможность взаимодействия сетей;

· платформенную независимость;

· поддержку многоточечных конференций;

· поддержку многоадресной передачи;

· стандарты для кодеков;

· поддержку групповой адресации.

Управление полосой пропускания

Передача аудио- и видеоинформации весьма интенсивно нагружает каналы связи, и, если не следить за ростом этой нагрузки, работоспособность критически важных сетевых сервисов может быть нарушена. Поэтому рекомендации H.323 предусматривают управление полосой пропускания. Можно ограничить как число одновременных соединений, так и суммарную полосу пропускания для всех приложений H.323. Эти ограничения помогают сохранить необходимые ресурсы для работы других сетевых приложений. Каждый терминал H.323 может управлять своей полосой пропускания в конкретной сессии конференции.

Межсетевые конференции
Платформенная независимость

H.323 "не привязан" к каким-либо технологическим решениям, связанным с оборудованием или программным обеспечением. Взаимодействующие между собой приложения могут создаваться на основе разных платформ, с разными операционными системами.

Поддержка многоточечных конференций

Рекомендации H.323 позволяют организовывать конференцию с тремя или более участниками. Многоточечные конференции могут проводиться как с использованием центрального контроллера - MCU (устройства многоточечной конференции), так и без него.

Поддержка многоадресной передачи

H.323 поддерживает многоадресную передачу в многоточечной конференции, если сеть поддерживает протокол управления групповой адресацией. При многоадресной передаче один пакет информации отправляется всем необходимым адресатам без лишнего дублирования. Многоадресная передача использует полосу пропускания гораздо более эффективно, поскольку всем адресатам - участникам списка рассылки отправляется ровно один поток.

Стандарты для кодеков

H.323 устанавливает стандарты для кодирования и декодирования аудио- и видеопотоков с целью обеспечения совместимости оборудования разных производителей. Вместе с тем стандарт достаточно гибок. Сформулированы требования, выполнение которых обязательно, и существуют опциональные возможности, в случае использования которых также необходимо строго следовать стандарту. Помимо этого, производитель может включать в мультимедийные продукты и приложения дополнительные возможности, если они не противоречат обязательным и опциональным требованиям стандарта.

Совместимость

Возможны случаи, когда участники конференции хотят общаться друг с другом, не заботясь о вопросах совместимости между собой. Рекомендации H.323 поддерживают выяснение общих возможностей оборудования конечных пользователей и устанавливают наилучшие из общих для участников конференции протоколов кодирования, вызова и управления.

Гибкость

H.323 конференция может включать участников, конечное оборудование которых обладает различными возможностями. Например, один из участников может использовать терминал только с аудио возможностями, в то время как остальные участники конференции могут обладать возможностями передачи/приема также видео и данных.

Архитектура стандарта H.323

· терминал;

· контроллер зоны;

· шлюз (gateway);

· устройство управления многоточечной конференцией (MCU).

Рис. 1. Структурная схема сети IP-телефонии по стандарту H.323

Терминал (Terminal ) - оконечное мультимедийное (голос, видео, данные) устройство, предназначенное для участия в конференции. Под терминалом стандарт понимает оборудование конечных точек сети, которое позволяет пользователям общаться друг с другом в реальном времени. H.323-терминал должен обеспечивать поддержку следующих протоколов:

1. H.245 для установления возможностей терминалов и создания канала обмена аудиоинформацией.

2. H.225 для сигнализации вызова и установки параметров связи.

3. RAS для регистрации терминала пользователя и установки дополнительных параметров управления контроллером зоны.

4. RTP/RTCP для упорядочивания звуковых и видеопакетов.

H.323-терминал должен также поддерживать звуковой кодер-декодер в соответствии с G.711.

Протоколы H.225 и RAS используются между H.323-оконечными точками (терминалами и шлюзами) и контроллером зоны для обеспечения:

· обнаружения контроллера зоны (GRQ);

· регистрации оконечной точки;

· определения расположения оконечной точки;

· управления аутентификацией;

· задания маркера доступа.

RAS-сообщения передаются через ненадежные RAS-каналы, поэтому при обмене сообщениями возможны потери, задержки и повторные передачи.

Стек протоколов H.323

Стандарт H.323 определяет широкие требования для многих различных протоколов, которые составляют полный стек протоколов H.323.

Стек H.323 составляют 7 групп протоколов:

1. управление и сигнализация;

2. обработка звуковых сигналов;

3. обработка видеосигналов;

4. конференц-связь;

5. передача мультимедийной информации;

6. обеспечение информационной безопасности;

7. дополнительные услуги;

1. Управление соединением и сигнализация:

· 1.а. H.225.0: протоколы сигнализации и пакетирования мультимедийного потока (использует подмножество протокола сигнализации Q.931).

· 1.б. H.225.0/RAS: процедуры регистрации, допуска и состояния.

· 1.в. H.245: протокол управления для мультимедиа.

2. Обработка звуковых сигналов:

· 2.а. G.711: импульсно-кодовая модуляция тональных частот.

· 2.б. G.722: кодирование звукового сигнала 7 кГц в 64 кбит/с.

· 2.в. G.723.1: речевые кодеры на две скорости передачи для организации мультимедийной связи со скоростью передачи 5.3 и 6.3 кбит/с.

· 2.г. G.728: кодирование речевых сигналов 16 кбит/с с помощью линейного предсказания с кодированием сигнала возбуждения с малой задержкой.

· 2.д. G.729: кодирование речевых сигналов 8 кбит/с с помощью линейного предсказания с алгебраическим кодированием сигнала возбуждения сопряженной структуры.

3. Обработка видеосигналов:

· 3.а. H.261: видеокодеки для аудиовизуальных услуг со скоростью 64 кбит/с.

· 3.б. H.263: кодирование видеосигнала для передачи с малой скоростью.

4. Конференц-связь для передачи данных:

· 4.а. T.120: это стек протоколов (который включает T.123, T.124, T.125) для передачи данных между оконечными пунктами. Он может использоваться для разных приложений в области совместной работы (Collaboration Work), такой как коллективное редактирование растровых изображений, совместное использование приложений и совместная организация документов. В T.120 применяется многоуровневая архитектура, подобная модели OSI.

5. Мультимедийная передача:

· 5.а. RTP: транспортный протокол реального времени.

· 5.б. RTCP: протокол управления передачей в реальном времени.

6. Обеспечение безопасности:

· 6.а. H.235: обеспечение безопасности и шифрование для мультимедийных терминалов сети H.323.

7. Дополнительные услуги:

· 7.а. H.450.1: обобщенные функции для управления дополнительными услугами в H.323.

· 7.б. H.450.2: перевод соединения на телефонный номер третьего абонента.

· 7.в. H.450.3: переадресация вызова.

· 7.г. H.450.4: удержание вызова.

· 7.д. H.450.5: парковка вызова (park ) и ответ на вызов (pick up ).

· 7.е. H.450.6: уведомление о поступившем вызове в состоянии разговора.

· 7.ж. H.450.7: индикация ожидающего сообщения.

· 7.з. H.450.8: служба идентификации имен.

· 7.и. H.450.9: служба завершения соединения для сетей H.323.

Установление соединения по Н.323

Обнаружение контроллера зоны (GRQ)

Процесс обнаружения контроллера зоны используется H.323-оконечными точками, в которых оконечная точка должна зарегистрироваться. Обнаружение контроллера зоны может быть выполнено статически или динамически. В статическом режиме оконечная точка знает транспортный адрес контроллера априорно. В динамическом режиме обнаружения контроллера оконечная точка посылает многоадресное сообщение (multicasts GRQ) поиска контроллера на групповой адрес поиска контроллера, содержащее вопрос: "Кто мой контроллер?". Один или большее количество контроллеров могут отвечать GCF-сообщением: "Я могу быть вашим контроллером".

Регистрация оконечной точки

Регистрация - процесс, используемый оконечными точками, чтобы соединить зону и сообщить контроллеру параметры несущей сети зоны, которая обеспечивает транспорт, и один из псевдонимов своего адреса. Все оконечные точки регистрируются в контроллере зоны.

Определение положения оконечной точки

Определение положения оконечной точки - это процесс привязки ее сетевого адреса (адреса в сети транспортировки) к ее H.323-псевдониму или адресу E.164 (телефонному номеру).

Другие функции управления

RAS-канал используется и для других видов механизмов управления, таких как контроль аутентификации, ограничение входа конечной точки в зону, управление шириной полосы пропускания, управление процессами разъединения (отключения), когда оконечная точка отключается от текущего контроллера зоны и выходит из зоны.

Стандарты H.225 - сигнализации вызова и H.245 - сигнализации управления

H. 225 - сигнализация вызова

H.225 - сигнализация вызова - используется для установления соединения между H.323-оконечными точками (терминалами и шлюзами), через которые будут транспортироваться данные в реальном масштабе времени. Сигнализация вызова включает обмен H.225-сообщениями протокола через надежный канал, задействованный для этой цели (канал сигнализации вызовов).

Если в H.323-сети нет контроллера зоны, то конечные точки обмениваются сигналами вызовов непосредственно друг с другом. Если контроллер зоны есть, то возможно использование двух методов вызовов: обмен сигналами непосредственно между конечными точками (так называемый "метод прямых вызовов") и обмен между оконечными точками только после обращения к контроллеру зоны и маршрутизации вызова ("метод с маршрутизацией вызовов в контроллере зоны"). Выбор используемого метода осуществляется при регистрации конечной точки в контроллере зоны.

Метод с маршрутизацией «вызовов в контроллере зоны»

Сигналы вызовов между оконечными точками и контроллером зоны передаются по RAS-каналам. Контроллер зоны получает сообщение вызова через канал сигнализации из одной оконечной точки и направляет его к другой оконечной точке через канал сигнализации другой оконечной точки.

H.245 - сигнализация управления

H.245 - сигнализация управления - состоит из сквозного обмена H.245-сообщеними между H.323-оконечными точками. H.245-сообщения управления передаются через H.245-каналы управления. H.245 - канал управления представляет из себя логический канал, который постоянно открыт, в отличие от каналов обмена мультимедиа потоков. Сообщения сигнализации управления можно разделить на две группы: обмен терминалов H.323 своими параметрами и сообщения управления.

· Сообщения обмена параметрами

Обмен параметрами позволяет терминалам выбрать такие режимы обмена данными и форматы кодирования, которые они могут использовать при совместной работе друг с другом. Уточняются возможности терминалов, как на прием, так и на передачу.

· Сообщения управления процессами логическими каналами между конечными точками

Логический канал несет информацию от одной оконечной точки до другой оконечной точки (в случае двухточечной конференции) или множественных оконечных точек (в случае отметки на многоточечную конференцию). Протокол H.245 предоставляет набор сообщений, обеспечивающих открытие и закрытие этих каналов. Логический канал всегда однонаправленный.

Мультимедиа шлюз (Gateway)

Представляет из себя устройство, предназначенное для преобразования мультимедийной и управляющей информации при сопряжении разнородных сетей (рис. 2).

Рис. 2. Шлюз H.323/PSTN

Шлюз не входит в число обязательных компонентов сети H.323. Он необходим только в том случае, когда требуется установить соединение с терминалом другого стандарта. Эта связь обеспечивается трансляцией протоколов установки и разрыва соединений, а также форматов передачи данных. Согласно H.323, мультимедиа шлюз - это опциональный элемент в конференции H.323. Он может выполнять много различных функций. Типичной его функцией, например, является задача преобразования форматов протоколов передачи (например, H.225.0 и H.221). Шлюзы H.323 широко применяются в IP-телефонии для сопряжения IP-сетей и цифровых или аналоговых коммутируемых телефонных сетей (ISDN или PSTN). При отсутствии в сети шлюза должна быть обязательно реализована одна из его функций - преобразование номера ТфОП в транспортный адрес IP-сети с помощью других средств. Со стороны сетей с маршрутизацией пакетов IP, так же, как и со стороны ТфОП, шлюз может участвовать в соединениях в качестве терминала или устройства управления конференциями.

Контроллер управления многоточечными конференциями (Multipoint Control Unit - MCU) предназначен для организации конференций с участием трех и более участников. В этом устройстве должен присутствовать контроллер Multipoint Controller (MC) и, возможно, процессоры Multipoint Processors (MP). Контроллер MC поддерживает протокол Н.245 и предназначен для согласования параметров обработки аудио- и видеопотоков между терминалами. Процессоры занимаются коммутированием, микшированием и обработкой этих потоков.

Конфигурация многоточечной конференции может быть централизованной, децентрализованной, гибридной и смешанной.

Рис. 3. Схемы централизованной и децентрализованной организаций конференции в H.323

Централизованная многоточечная конференция требует наличия устройства MCU. Каждый терминал обменивается с MCU потоками аудио, видео, данными и командами управления по схеме "точка-точка". Контроллер MCU, используя протокол H.245, определяет возможности каждого терминала. Процессор MP формирует необходимые для каждого терминала мультимедийные потоки и рассылает их. Кроме того, процессор может обеспечивать преобразования потоков от различных кодеков с различными скоростями данных.

Децентрализованная многоточечная конференция использует технологию групповой адресации. Участвующие в конференции H.323-терминалы осуществляют многоадресную передачу мультимедиа потока остальным участникам без посылки на MCU. Передача контрольной и управляющей информации осуществляется по схеме "точка-точка" между терминалами и MCU. В этом случае контроль многоточечной рассылки осуществляется контроллером MCU.

Гибридная схема организации конференц-связи является комбинацией двух предыдущих. Участвующие в конференции H.323-терминалы осуществляют многоадресную передачу только аудио- или только видеопотока остальным участникам без посылки на MCU. Передача остальных потоков осуществляется по схеме "точка-точка" между терминалами и MCU. В этом случае задействуются как контроллер, так и процессор MCU.

Рис. 4. Схемы децентрализованной и смешанной организаций конференции в H.323

В смешанной схеме организации конференц-связи одна группа терминалов может работать по централизованной схеме, а другая группа - по децентрализованной.

Контроллер зоны (или Gatekeeper) - рекомендуемое, но не обязательное устройство, обеспечивающее сетевое управление и исполняющее роль виртуальной телефонной станции.

Контроллер зоны обеспечивает услуги управления вызовами для H.323-оконечных точек, типа трансляции адреса и управления шириной полосы пропускания в соответствии с протоколом RAS. Контроллер зоны в H.323-сети не обязательный компонент. Однако если он присутствует в сети, то терминалы и шлюзы должны использовать его услуги. H.323-стандарт определяет как обязательные услуги контроллера зоны, так и дополнительные (факультативные) функциональные возможности, которые он может обеспечивать.

Факультативной возможностью контроллера зоны является маршрутизация сигналов вызова. Оконечные точки посылают сообщения сигналов вызова контроллеру зоны, который направляет их к оконечным точкам адресатов. Поочередно оконечные точки могут посылать сообщения сигнализации вызова непосредственно друг другу. Эта возможность ценна для текущего контроля обращений и управления обращениями в сети. Маршрутизация обращений через контроллер зоны обеспечивает лучшую эффективность работы сети, поскольку контроллер может принимать решения о маршрутизации, основанные на ряде факторов, например, о балансировке загрузки среди шлюзов.

Услуги, предлагаемые контроллером зоны, определены в RAS и включают трансляцию адреса, управление приемами, управление шириной полосы частот и зональное управление. H.323-сети, не имеющие контроллер шлюза, не имеют этих возможностей. H.323-сети, содержащие IP-телефоны и шлюзы, должны обязательно содержать контроллер зоны, чтобы транслировать входящие E.164-телефонные адреса в транспортные адреса. Контроллер зоны - логический компонент H.323, но он может быть выполнен и как часть шлюза.

Обязательные функции контроллера зоны

· Трансляция адреса

Вызов, порожденный внутри H.323-сети, может использоваться для адресования нужного терминала с помощью его псевдонима (краткого названия). Вызов, порожденный вне H.323-сети и полученный через шлюз для адресования терминалу получателя, может использовать номер телефона в соответствии с рекомендацией E.164 (например, 310-442-9222). Данная рекомендация используется для адресования абонентов сети ISDN. Контроллер зоны преобразует полученный E.164-номер телефона или псевдоним в сетевой адрес (например, 204.252.32.156 для IP-сети) терминала адресата. Оконечная точка адресата может быть достигнута с использованием этого сетевого адреса.

· Управление регистрацией

Контроллер зоны может управлять регистрацией оконечных точек в H.323-сети. При этом используются RAS-сообщения: запрос регистрации (ARQ ), подтверждение (ACF ) и отклонение (ARJ ). Управление регистрацией может быть фиктивной функцией, которая допускает все оконечные точки к H.323-сети.

· Управление полосой пропускания

Контроллер обеспечивает управление полосой пропускания, используя RAS-сообщения: запрос ширины полосы пропускания (BRQ ), подтверждение (BCF) и отклонение (BRJ ). Например, если сетевой диспетчер определил порог для числа одновременных соединений для H.323-сети, контроллер зоны может отказываться устанавливать новые соединения, если только этот порог достигнут. В результате имеется возможность ограничивать общее значение распределенной полосы пропускания некоторой частью общей полосы сети передачи данных, оставляя остающуюся ширину полосы пропускания для приложений передачи данных. Управление полосой пропускания может также быть фиктивной функцией, которая просто получает запросы без их обработки.

· Факультативные функции контроллера зоны

· Управление вызовами

Контроллер зоны может маршрутизировать вызовы между H.323-оконечными точками. В двухточечной конференции контроллер зоны может обрабатывать H.225 сообщения сигналов вызовов. В качестве альтернативы контроллер зоны может разрешать оконечным точкам самостоятельный обмен H.225-сообщениями сигналов вызовов непосредственно друг с другом.

Когда оконечная точка посылает сообщения вызова контроллеру зоны, он, в соответствии со стандартом H.225, может принимать или отклонять вызов. Причинами для отклонения могут быть ограничения по доступу или времени, заданные для конкретных терминалов или шлюзов.

· Управление вызовом

Контроллер зоны может отслеживать данные относительно всех активных H.323-соединений, что позволяет управлять зоной, обеспечивая контроль ширины полосы пропускания, и обеспечивать балансировку загрузки сети за счет перенаправления вызовов между терминалами и шлюзами.

Процедура соединения по H.323

Рассмотрим по шагам сценарий установления соединения между двумя терминалами H.323 без использования контроллера зоны (рис. 5).

1. Оконечный пункт A (вызывающая сторона) соединяется с оконечным пунктом B (вызываемая сторона) и посылает сообщение Setup (установка, как определено в H.225.0), включающее тип вызова (например, только звуковые сигналы), номер вызываемой и вызывающей стороны и адрес.

Рис. 5. Сценарий установки соединения по протоколу H.323

2. Оконечный пункт B откликается сообщением уведомления (Alerting ). Оконечный пункт A должен принять это сообщение прежде, чем истечет время, отведенное на установку.

3. Когда пользователь в оконечном пункте B отвечает на вызов (снимает трубку), сообщение Connect (соединение) передается в оконечный пункт A .

4. Оба терминала передают информацию о своих возможностях (типы среды, выбор кодека и информация о мультиплексировании) в сообщении TerminalCapabilitySet (установка возможностей терминала).

5. Каждый терминал отвечает сообщением TerminalCapabilitySetAck (подтверждение установки возможностей терминала). В случае если удаленный оконечный пункт не обладает какими-то возможностями, будет передано сообщение TerminalCapabilitySetReject (отклонение установки возможностей терминала), и терминалы продолжат передавать эти сообщения, пока не определят, что устанавливаемые возможности поддерживаются обоими оконечными пунктами.

6. Каждый терминал передает сообщение H.245 OpenLogicalChannel (открыть логический канал), позволяющее открыть логический канал с удаленным оконечным пунктом, чтобы настроить речевые каналы, по которым будет производиться обмен мультимедийными потоками.

7. В случае готовности к приемке данных каждый терминал передает OpenLogicalChannelAck (подтверждение открытия логического канала) в удаленный оконечный пункт, определяя номер порта, на который удаленному оконечному пункту следует передавать данные RTP, и номер порта, на который следует передавать данные RTCP удаленному оконечному пункту.

8. Оконечные пункты обмениваются информацией в пакетах RTP. Во время этого обмена передаются пакеты RTCP для контроля качества передачи данных.

9. Когда оконечный пункт A дает отбой (вешает трубку), он должен передать сообщение H.245 CloseLogicalChannel (закрыть логический канал) для каждого канала, открытого с оконечным пунктом B .

10. Оконечный пункт B отвечает сообщением CloseLogicalChannelAck (подтверждение закрытия логического канала).

11. Оконечный пункт А посылает команду H.245 EndSessionCommand (команда завершения сеанса) и закрывает канал после приема такого же сообщения от оконечного пункта B .

12. Оба терминала посылают сообщение H.225.0 ReleaseComplete (освобождение завершено) по каналу сигнализации вызова, которое закрывает канал и завершает соединение.

Характеристики шлюзов IP-телефонии

В общем случае IP-телефония опирается на две основных операции: преобразование двунаправленной аналоговой речи в цифровую форму внутри кодирующего/декодирующего устройства (кодека) и упаковку в пакеты для передачи по IP-сети. Эти функции чаще всего выполняют автономные шлюзы, которые имеют несколько разновидностей. Это могут быть выделенные устройства или совмещенные маршрутизаторы/коммутаторы со встроенным аппаратным и программным обеспечением шлюза. Другой тип - когда шлюз объединен с оборудованием удаленного доступа и пулом модемов.

Независимо от способа аппаратной реализации шлюзы IP-телефонии должны обладать рядом необходимых свойств.

· Совместимость со стандартом H.323.

Базовым протоколом для работы IP-оборудования подавляющим большинством производителей был принят протокол, описанный МСЭ-Т в рекомендации H.323v2, которая стандартизирует мультимедийную связь в сетях с коммутацией пакетов

Пользователи мультимедийных персональных компьютеров с программным обеспечением H.323 могут подключиться к такой системе шлюзов. Вызовы при этом могут быть направлены на поддерживающие H.323 шлюзы других производителей. В результате данная система будет обеспечивать интеграцию речи, видео и данных в реальном масштабе времени (как, например, система Microsoft NetMeeting).

Рис. 6. Положение шлюза в сети IP-телефонии

· Наличие механизмов резервирования ресурсов.

Поддержка какой-либо схемы приоритезации (протокол резервирования RSVP или байт дифференциации услуг - DS byte ) для осуществления возможности выбора приоритета между передаваемой речью или данными является важной характеристикой шлюза. При этом протокол RSVP позволяет маршрутизаторам резервировать часть полосы пропускания для организации голосового трафика.

· Поддержка основных телефонных интерфейсов и типов сигнализаций.

Важным критерием при оценке характеристик шлюзов является возможно большее разнообразие телефонных интерфейсов, поддерживаемых IP-шлюзом (E1, PRI, BRI), и аналогового в частности, а также поддержка основных типов телефонной сигнализации: CAS, DTMF, PRI и ОКС № 7. Существенную роль играет поддержка оборудованием механизмов безопасности в соответствии с упомянутой рекомендацией Н.235.

· Транспортные архитектуры.

Диапазон транспортных архитектур, с которыми работают современные шлюзы, достаточно широк: выделенные линии, ISDN, Frame Relay, ATM, Ethernet.

· Масштабируемость.

Важной характеристикой шлюза является его масштабируемость, что обеспечивается модульным построением оборудования. На первом этапе развертывания сети IP-телефонии возможно использование неполного ресурса имеющихся портов при постепенном дальнейшем увеличении числа задействованных голосовых портов. При этом число портов соответствует количеству одновременных вызовов, которые может сделать шлюз, поскольку каждый его порт оснащен собственным цифровым сигнальным процессором (DSP - Digital Signal Processor) для оцифровки голосовых сигналов.

· Обеспечение факс-связью.

Подавляющее большинство производимых шлюзов имеют возможность обеспечивать факсимильную связь на базе протокола IP. Она опирается на два основных стандарта, предложенных МСЭ-Т. Стандарт Т.37 сводит передачу факсов к доставке с промежуточным хранением, так как изображения факсов передаются в виде вложений электронной почты. Благодаря Т.37 факс-аппараты и факс-серверы могут взаимодействовать друг с другом так же согласованно, как и традиционные факсы. Еще один стандарт Т.38 описывает передачу факсов в реальном масштабе времени либо посредством имитации соединения с факс-аппаратом, либо с помощью метода модуляции под названием FaxRelay. Т.38 может использоваться для реализации функциональности, более схожей с традиционной факсимильной связью, например, для немедленного подтверждения.

· Управление шлюзом.

Шлюзы могут отличаться предусмотренными средствами управления. Данные средства управления имеют своей функцией маршрутизацию вызовов между шлюзами и перекодировки телефонных номеров в IP-адреса. Они конструктивно могут быть интегрированы со шлюзом либо представлять собой отдельный "мультимедийный менеджер конференций" или "многоголосовый менеджер доступа". Одним из решений является использование единого пакета, включающего в себя средства биллинга, маршрутизации вызовов и сетевого администрирования.

· Возможность установки различных алгоритмов кодирования речи.

На показатели качества передаваемого голоса по IP-сети существенно влияет схема кодирования, используемая в шлюзе VoIP при сжатии голосовой информации. Самой распространенной является схема, обеспечивающая наибольшую степень сжатия информации и соответствующая спецификации G.723.1 (до 5.3 кбит/с). Применяются и другие схемы - G.729a, G.711, G.726, G.728. При этом чрезвычайно важно оснащение шлюза дополнительной установкой используемой схемы сжатия голоса.

Классификация шлюзов IP-телефонии

По масштабности применения их можно разделить на два основных типа: шлюзы, ориентированные на корпоративное применение, и шлюзы, предназначенные для операторов и поставщиков услуг связи. Продукты последнего типа отличаются большой емкостью и масштабируемостью, присутствием средств аутентификации и мониторинга, а также дополнительных возможностей биллинга.

По исполнению шлюзы могут быть:

· Автономные.

Большинство производителей шлюзов предлагает автономные IP-шлюзы, которые обычно состоят из серверов на базе персональных компьютеров с комплектом голосовых плат. Голосовые платы не предназначены для компрессии/декомпрессии звука, поэтому данная операция должна выполняться главным процессором ПК.

· Маршрутизаторы-шлюзы.

В мире производителей оборудования телекоммуникаций наметилась тенденция к тому, что крупные компании традиционное сетевое оборудование оснащают узлами, отвечающими за IP-телефонию. Эта продукция - маршрутизаторы и устройства доступа к распределенным сетям со встроенными шлюзами IP-телефонии - занимает отдельную важную нишу на рынке сетевого оборудования.

· RAS-шлюзы.

Свою часть рынка оборудования для IP-телефонии занимают шлюзы для VoIP, которые состоят из плат, устанавливаемых в серверы дистанционного доступа (RAS). Установка устройств данного типа при построении IP-сетей оправдана при работе с приложениями с множеством голосовых портов.

· Шлюзы-модули для УПАТС.

В настоящее время получили распространение шлюзы IP-телефонии, конструктивно представляющие собой модули для классических учрежденческих АТС. Подобная система перед тем, как установить соединение через IP-сеть, проверяет качество связи. В случае достаточного ее качества (норма устанавливается администратором системы) соединение устанавливается. Если дело обстоит иначе, вызов направляется по традиционным линиям связи. Таким образом, налицо стремление фирм-производителей постепенно заменять транспортную среду, не затрагивая при этом телефонный сервис, предоставляемый конечным пользователям.

· Шлюзы с интеграцией бизнес-приложений.

По мере развития систем IP-телефонии на ведущие роли выходят сервис-функции. При этом оборудование должно ориентироваться не только на интеграцию трафика, но и на интеграцию бизнес-приложений, позволяющую повысить продуктивность работы предприятий. Она позволяет реализовать службу типа "щелкни и говори", например, для установления телефонной связи между посетителями Web-узла компании и ее сотрудниками.

· Учрежденческие АТС на базе шлюзов.

Еще одно направление развития оборудования IP-телефонии - построение учрежденческих телефонных систем на базе инфраструктур ЛВС. В случае, когда нецелесообразна установка отдельного сервера для преобразования телефонных сигналов в IP-пакеты, используются сетевые устройства, подключаемые напрямую к сети 10BaseT (по типу концентраторов Ethernet). При этом каждый концентратор представляет, по сути, небольшую УАТС с голосовой почтой и автоматическим секретарем, подключаемую через разъем RJ-14 к внешним и внутренним телефонным линиям и через соединители RJ-45 к локальной сети Ethernet. Обладая простотой управления и наличием встроенных средств компьютерно-телефонной интеграции, эти системы в состоянии составить конкуренцию обычным учрежденческим АТС.

· Сетевые платы с функциями телефонии.

Одним из решений IP-телефонии являются многоцелевые сетевые платы с функциями телефонии. Такие устройства оборудованы портами RJ-11 для подключения обычного телефонного аппарата.

· Автономные IP-телефоны.

Представляют собой решение "все в одном" для одной линии. По внешнему виду и базовым сервисным возможностям аппаратные реализации IP-телефонов ничем особо не отличаются от обычных телефонов, но их электронная "начинка" позволяет существенно уменьшить нагрузку на персонал, отвечающий за телефонную связь.

Помимо аппаратной существуют и программные реализации IP-телефонов. В этом случае персональный компьютер (ПК), оборудованный телефонной гарнитурой или микрофоном и акустическими системами, превращается в многофункциональный коммуникационный центр. Пользователь ПК, кроме доступа к обычному телефонному сервису, получает набор дополнительных возможностей: получение информации о звонящем клиенте (благодаря наличию стандартного интерфейса TAPI к другим программам), контроль телефонных вызовов и работу с речевой почтой. Недостатками таких систем является неполная совместимость с H.323 версии 2, а также отсутствие поддержки функций по обеспечению безопасности в работе с gatekeeper.

Достоинства и недостатки H.323

Достоинства

Стандарт H.323 является всеобъемлющим и гибким. Его можно использовать при разработке решений для аудио или для полных сетей конференц-связи для передачи сигналов видео/аудио/данных. Существует множество выгод от реализации конференц-связи с помощью H.323:

· Технология H.323 обеспечивает высококачественную наращиваемую конференц-связь на базе мультимедиа. Мультимедийная конференц-связь H.323 может поддерживать такие приложения, как коллективное редактирование растровых изображений, совместная работа по передаче данных или видеоконференция.

· Технология H.323 допускает возможность взаимодействия оборудования на базе H.320 и H.323 от разных производителей.

· Технология H.323 использует с выгодой имеющиеся капиталовложения в инфраструктуру корпоративной сети.

· Технология H.323 может применяться для организации междугородных и международных телефонных соединений для снижения их стоимости.

· Технология H.323 позволяет более эффективно использовать технологию ISDN с применением шлюзов H.320 и меньшего числа линий ISDN.

· В корпоративной интрасети H.323 может обеспечивать более надежные соединения и уменьшать проблемы поддержки.

· Технология H.323 предлагает и более сложные возможности управления конференц-связью в сети.

· Технология H.323 не зависит от аппаратного обеспечения и операционной системы.

Технология SIP в некоторой степени близка к компонентам Q.931 и H.225 технологии H.323. Есть некоторые недостатки H.323 по сравнению с SIP:

· Технология H.323 расходует больше времени на установку соединения.

· Технология H.323 требует около 12 пакетов для установки соединения (тогда как для SIP требуется около 4 пакетов).

· Технология H.323 требует и TCP, и UDP во время установки соединения.

· Реализация H.323 намного сложнее реализации SIP.

· В настоящее время с помощью H.323 недоступно управление вызовом третьей стороны.

Список литературы

1. http://ru.wikipedia.org/wiki/H.323

2. http://www.protocols.ru/files/Protocols/H323.pdf

3. http://www.ericsson.com/hr/etk/revija/Br_2_2005_RU/protokol.pdf

4. http://www.bytemag.ru/articles/detail.php?ID=6653

5. http://mobile.asterisk.ru/knowledgebase/H.323

6. http://www.intuit.ru/department/network/iptele/



Понравилась статья? Поделиться с друзьями: