Что называют коротким замыканием. Короткие замыкания и их классификация. Последствия КЗ на реальных примерах. Защита от короткого замыкания

Рассмотрим особый случай параллельного соединения проводников - так называемое короткое замыкание. Им называется параллельное включение в цепь проводника с очень маленьким сопротивлением. Рассмотрим пример.
Пусть лампы и выключатель соединены так, как показано на схемах. Обратите внимание, что выключатель и вторая лампа соединены параллельно, кроме того, замкнутый выключатель на правой схеме - проводник с очень маленьким сопротивлением. Следовательно, согласно определению, на правой схеме существует короткое замыкание лампы.

Пусть, например, напряжение источника тока подобрано так, что при разомкнутом выключателе обе лампы светятся не очень ярко - в полнакала (поэтому на первой схеме они наполовину закрашены). Если же выключатель замкнуть, то левая лампа будет гореть ярко, а правая лампа вообще погаснет. Таким образом, увеличение яркости левой лампы указывает нам, что при существовании в цепи короткого замыкания сила тока резко возрастает. Согласно закону Джоуля-Ленца, возрастание силы тока может привести к перегреванию проводов и возникновению пожара.
Объясним, почему левая лампа загорается ярче. Вспомним, что при параллельном соединении проводников их общее сопротивление становится меньше меньшего из них, то есть даже меньше, чем сопротивление выключателя (у которого оно и так почти равно нулю). Согласно закону Ома, уменьшение сопротивления приводит к возрастанию силы тока. А возрастание тока, согласно закону Джоуля-Ленца, приводит к более сильному накалу спирали левой лампы.
Объясним теперь, почему гаснет правая лампа. Поскольку при параллельном соединении проводников напряжение на каждом из них одинаково, то напряжения на правой лампе и на выключателе одинаковы. По закону Ома U=I·R. Как мы выяснили в предыдущем абзаце, сопротивление этого соединения почти равно нулю, то есть R»0. Подставляя ноль в формулу, получим: U=I·0=0. То есть, напряжение на выключателе и лампе равно нулю (точнее, очень маленькое). Такого напряжения явно недостаточно, чтобы поддерживать свечение лампы, поэтому она гаснет.

Для защиты электроприборов от короткого замыкания применяют предохранители. Их назначение - отключать электроэнергию в случае, если ток возрастает больше допустимой величины. На рисунке справа вы видите автоматический предохранитель с винтовым цоколем как у лампы. Такие предохранители (в просторечии «пробки») вворачивают в специальные патроны, которые укрепляют на стене.
Существуют также плавкие предохранители. В них основной деталью является тонкая (диаметром около 0,1 мм) проволочка из олова или свинца (см. рисунок ниже). В случае сильного возрастания тока она практически мгновенно плавится, и цепь размыкается, прерывая ток. В отличие от «многоразовых» автоматических предохранителей, плавкие предохранители являются одноразовыми электроприборами.

Если предположить, что провода, подводящие ток к квартирной проводке, сделаны из алюминия и имеют диаметр 1 мм, то площадь сечения свинцовой проволочки окажется в 100 раз меньше. Кроме того, заглянув в таблицу, мы увидим, что удельное сопротивление свинца примерно в 10 раз больше, чем у алюминия. Следовательно, сопротивление проволочки примерно в 1000 раз больше сопротивления алюминиевого провода такой же длины.
Поскольку провод и предохранитель (то есть проволочка внутри него) соединены последовательно, то сила тока в них одинакова. Так как по закону Джоуля-Ленца Q=I2Rt, следовательно, количество теплоты, выделяющееся в проволочке, в каждый момент времени в 1000 раз больше, чем в проводе. Именно поэтому проволочка плавится, а электропроводка остаётся в сохранности. В настоящее время плавкие предохранители практически не применяются в технике, уступив место автоматическим.

Ток короткого замыкания

На рисунке 1 показана схема включения электрической лампы накаливания в электрическую сеть. Если сопротивление этой лампы r л = 240 Ом, а напряжение сети U = 120 В, то по закону Ома ток в цепи лампы будет:

Рисунок 1. Схема короткого замыкания на зажимах рубильника

Разберем случай, когда провода, идущие к лампе накаливания, оказались замкнутыми через очень малое сопротивление, например толстый металлический стержень с сопротивлением r = 0,01 Ом, случайно попавший на два провода. В этом случае ток сети, проходя к точке А , будет разветвляться по двум путям: одна большая его часть, пойдет по металлическому стержню – пути с малым сопротивлением, а другая, небольшая часть тока, будет проходить по пути с большим сопротивлением – лампе накаливания.

Аварийный режим работы сети, когда вследствие уменьшения ее сопротивления ток в ней резко увеличивается против нормального, называется коротким замыканием .

Определим какова сила тока короткого замыкания, текущего по металлическому стержню:

На самом деле в случае короткого замыкания напряжение сети будет меньше 120 В, так как большой ток создаст в сети большое падение напряжения и поэтому ток, протекающий по металлическому стержню, будет меньше 12 000 А. Но все же этот ток будет во много раз превышать ток, потреблявшийся ранее лампой накаливания.

Мощность короткого замыкания при токе I кз = 12 000 А составит:

P кз = U × I кз = 120 ×12 000 = 1 440 000 Вт = 1 440 кВт.

Ток, проходя по проводнику, выделяет тепло, и проводник нагревается. В нашем примере сечение проводов электрической цепи было рассчитано на небольшой ток – 0,5 А. При замыкании проводов по цепи будет протекать очень большой ток – 12 000 А. Такой ток вызовет выделение громадного количества тепла, что безусловно приведет к обугливанию и сгоранию изоляции проводов, расплавлению материала проводов, порче электроизмерительных приборов, оплавлению контактов выключателей, ножей рубильников и так далее. Источник электрической энергии, питающий такую цепь, также может быть поврежден. Перегрев проводов может вызвать пожар.

Каждая электрическая сеть рассчитывается на свой, нормальный для нее ток.

Ввиду опасных, разрушительных, а иногда и непоправимых последствий короткого замыкания необходимо соблюдать определенные условия при монтаже и эксплуатации электрических установок, чтобы исключить причины короткого замыкания. Основные из них следующие:
1) изоляция проводов должна соответствовать своему назначению (напряжению сети и условиям ее работы);
2) сечение проводов должно быть таково, чтобы нагревание их при существующих условиях работы не достигало опасной величины;
3) проложенные провода должны быть надежно защищены от механических повреждений;
4) места соединений и ответвлений должны быть так же надежно изолированы, как и сами провода;
5) скрещивание проводов должно быть выполнено так, чтобы провода не касались друг друга;
6) через стены, потолки и полы провода должны быть проложены так, чтобы они были защищены от сырости, механических и химических повреждений и хорошо изолированы.

Защита от токов короткого замыкания

Чтобы избежать внезапного, опасного увеличения тока в электрической цепи при ее коротком замыкании, цепь защищают плавкими предохранителями или автоматическими выключателями.

Плавкие предохранители представляют собой легкоплавкую проволочку, включенную последовательно в сеть. При увеличении тока сверх определенной величины проволочка предохранителя нагревается и плавится, в результате чего электрическая цепь автоматически разрывается и ток в ней прекращается.

Автоматический выключатель более сложный и дорогостоящий аппарат защиты нежели плавкий предохранитель. Однако в отличии от плавкого предохранителя он рассчитан на многократные срабатывания при защите цепей при аварийных режимах работы. Конструктивно автоматический выключатель выполнен в диэлектрическом корпусе со встроенным внутрь механизмом расцепления. Механизм расцепления имеет неподвижный и подвижный контакты. Подвижный контакт подпружинен, пружина обеспечивает усилие для быстрого расцепления контактов. Механизм расцепления приводится в действие одним из двух расцепителей: тепловым или магнитным.

Тепловой расцепитель представляет собой биметаллическую пластину, нагреваемую протекающим током. При протекании тока выше допустимого значения биметаллическая пластина изгибается и приводит в действие механизм расцепления. Время срабатывания зависит от тока (времятоковая характеристика) и может изменяться от секунд до часа. В отличие от плавкого предохранителя, автоматический выключатель готов к следующему использованию после остывания пластины.

Электромагнитный расцепитель – расцепитель мгновенного действия, представляет собой соленоид (катушку выполненную из медного проводника), подвижный сердечник которого также может приводить в действие механизм расцепления. Ток, проходящий через выключатель, течет по обмотке соленоида и вызывает втягивание сердечника при превышении заданного порога тока. Мгновенный расцепитель, в отличие от теплового, срабатывает очень быстро (доли секунды), но при значительно большем превышении тока: в 2 ÷ 14 раз от номинального тока.

Видео 1. Короткое замыкание

Для 220 В или разноименных фаз между собой или с нулем не предусмотренные конструкцией электрической цепи или электроприборов, которое нарушает нормальную работу электросети.

Короткое замыкание возникает по причине нарушения изоляции электрических проводов, кабелей или токоведущих элементов в электроприборах, а также при механическом касании не изолированных элементов, поэтому важно всегда оголенные концы электропроводки изолировать отдельно друг от друга с использованием изоленты или электрических с электроизоляционным корпусом, т.е не проводящим электрический ток.

При возникновении короткого замыкания в электрической цепи мгновенно и многократно вырастает значение сила тока, приводящее к высокому тепловыделению, в результате которого происходит плавление электрических проводов с возникновением возгорания электропроводки и распространением пожара в помещении, где произошло КЗ.
В результате короткого замыкания нарушается нормальное функционирование не только в вашей квартире, но и у соседей- из-за падения питающего напряжения, что часто приводит к поломке электроприборов и бытовых техники.

В квартирах с 220 В возникает только однофазное замыкание (замыкание фазы на нулевой проводник или на ), а в некоторых частных домах или гаражах с трехфазным вводом на 380 Вольт- могут возникнуть гораздо более опасное двухфазное (замыкание двух фаз между собой+ на «Землю») или трёхфазное (замыкание трех фаз между собой + на «Землю»)

В электрических двигателях и аппаратах в случае поломки также возможны внутренние короткие замыкания:
Например межвитковые, которые возникают при замыкании между собой витков обмоток в статоре или ротора электродвигателя или между витками в обмотке трансформатора.

А если электроприбор имеет металлический корпус, то возможен пробой изоляции и замыкании на металлический корпус. В этом случае человека защитит от удара электрическим током только корпуса.

Внимание провода в полиэтиленовой и, особенно в резиновой оболочке больше склоны к возгоранию. Поэтому Я как профессиональный электрик много лет, занимающийся электромонтажом в Минске настоятельно рекомендую использовать в квартирах, домах, гаражах и т. для прокладки скрыто под штукатуркой кабель марки ВВГ Нг, с не горючей изоляцией, а открыто по несгораемому основанию более дорогой кабель- ВВГ Нг Ls, который даже не дымит при КЗ.

Перегрузка электросети в доме гараже или квартире нередко встречается в быту и также очень опасна и является аварийным случаем. И как показала практика более опасна, чем токи КЗ. Потому что электропроводка надежно защищена или .

Причиной возникновения перегрузки служит подключение, включение большого количества электроприборов на одну группу электрических розеток или повреждения потребителей электричества, при и котором суммарный ток, проходящий по электрическому кабелю или проводам превышает номинальное значение, на которое они рассчитаны. Для дома или квартиры, где в основном проложены кабеля или провода сечением 1.5 квадратных миллиметров номинальный ток должен быть не выше 16 Ампер или не более 3.5 Киловатт.

Важно знать и применять в практике только выключатели или розетки для подключения электроосвещения или электрооборудования с не менее значениями напряжения и тока, указанными на корпусе электрической розетки или выключателя. Например, на розетке написано «10 А; 250 В» , что означает она рассчитана на однофазную сеть 220 Вольт, а максимальное значение тока, проходящего через розетку, не должно быть выше 10 Ампер или, примерно по мощности не более 2 Киловатт. В такую розетку нельзя включать мощный электроприбор например с мощностью 2.5-3 Киловатта, что приведет к выгоранию контактов розетки.

Основная причина возникновения короткого замыкания – нарушение изоляции оборудования электроустановок, в том числе кабельных и воздушных линий электропередач. Приведем несколько примеров возникновения КЗ по причине нарушения изоляции.

При проведении земляных работ был поврежден высоковольтных кабель, что привело к возникновению междуфазного короткого замыкания. В данном случае повреждение изоляции произошло в результате механического воздействия на кабельную линию.

В открытом распределительном устройстве подстанции возникло однофазное замыкание на землю в результате пробоя опорного изолятора по причине старения его изоляционного покрытия.

Еще один достаточно распространенный пример – падение ветки или дерева на провода воздушной линии электропередач, что приводит к схлестыванию или обрыву проводов.

Способы защиты оборудования от коротких замыканий в электроустановках

Как и упоминалось выше, короткие замыкания сопровождаются значительным увеличением тока, что приводит к повреждению электрооборудования. Следовательно, защита оборудования электроустановок от данного аварийного режима – основная задача энергетики.

Для защиты от короткого замыкания, как аварийного режима работы оборудования, в электроустановках распределительных подстанций используют различные защитные устройства.

Основная цель всех устройств релейной защиты – это отключение выключателя (или нескольких), которые питаютучасток сети, на котором возникло короткое замыкание.

В электроустановках напряжением 6-35кВ для защиты линий электропередач от коротких замыканий используют максимально-токовую защиту (МТЗ). Для защиты линий напряжением 110 кВ от коротких замыканий используется дифференциально-фазная защита, как основная защита линий. Кроме того, для защиты ЛЭП 110 кВ в качестве резервных защит используются дистанционная защита и земляная защита (ТЗНП).

3Передача электроэнергии

Передача электроэнергии от электростанции к потребителям - одна из важнейших задач энергетики. Электроэнергия передаётся преимущественно по воздушным линиям электропередачи (ЛЭП) переменного тока, хотя наблюдается тенденция ко всё более широкому применению кабельных линий и линий постоянного тока. Необходимость П. э. на расстояние обусловлена тем, что электроэнергия вырабатывается крупными электростанциями с мощными агрегатами, а потребляется сравнительно маломощными электроприёмниками, распределёнными на значительной территории.. От эффективности П. э. на расстояние зависит работа единых электроэнергетических систем , охватывающих обширные территории.

Одной из основных характеристик электропередачи является её пропускная способность, то есть та наибольшая мощность, которую можно передать по ЛЭП с учётом ограничивающих факторов: предельной мощности по условиям устойчивости, потерь на корону, нагрева проводников и т.д. Мощность, передаваемая по ЛЭП переменного тока, связана с её протяжённостью и напряжениями зависимостью

где U 1 и U 2 - напряжения в начале и в конце ЛЭП, Z c - волновое сопротивление ЛЭП, a - коэффициент изменения фазы, характеризующий поворот вектора напряжения вдоль линии на единицу её длины (обусловленный волновым характером распространения электромагнитного поля), l - протяжённость ЛЭП, d - угол между векторами напряжения в начале и в конце линии, характеризующий режим электропередачи и её устойчивость. Предельная передаваемая мощность достигается при d = 90°, когда sind = 1. Для воздушных ЛЭП переменного тока можно приближённо считать, что максимальная передаваемая мощность примерно пропорциональна квадрату напряжения, а стоимость сооружения ЛЭП пропорциональна напряжению. Поэтому в развитии электропередач наблюдается тенденция к увеличению напряжения как к главному средству повышения пропускной способности ЛЭП.

В электропередачах постоянного тока отсутствуют многие факторы, свойственные электропередачам переменного тока и ограничивающие их пропускную способность. Предельная мощность, передаваемая по ЛЭП постоянного тока, имеет большие значения, чем у аналогичных ЛЭП переменного тока:

где Е в - напряжение на выходе выпрямителя, R å - суммарное активное сопротивление электропередачи, в которое, кроме сопротивления проводов ЛЭП, входят сопротивления выпрямителя и инвертора. Ограниченность применения электропередач постоянного тока связана главным образом с техническими трудностями создания эффективных недорогих устройств для преобразования переменного тока в постоянный (в начале линии) и постоянного тока в переменный (в конце линии). Электропередачи постоянного тока перспективны для объединения крупных удалённых друг от друга энергосистем. В этом случае отпадает необходимость в обеспечении устойчивости работы этих систем.

Качество электроэнергии определяется надёжной и устойчивой работой электропередачи, что обеспечивается, в частности, применением компенсирующих устройств и систем автоматического регулирования и управления (см. Автоматическое регулирование возбуждения , Автоматическое регулирование напряжения , Автоматическое регулирование частоты ).

В результате проведения научно-исследовательской работы были разработаны:

    схемы электропередачи постоянного тока, позволяющие наиболее рационально использовать особенности конструкции воздушных линий трехфазного переменного тока, предназначенные для передачи электрической энергии по трем проводам;

    методика расчета рабочего напряжения постоянного тока для воздушных линий электропередач, сооруженных на основе типовых конструкций опор трехфазного переменного тока классов напряжений 500-750кВ;

    методика расчета пропускной способности воздушных линий трехфазного переменного тока с рабочим напряжением 500-750кВ после их перевода на постоянный ток по предложенным автором схемам;

    методика расчета надежности воздушных линий трехфазного переменного тока с рабочим напряжением 500-750кВ после их перевода на постоянный ток по предложенным автором схемам.

Выполнен расчет критической длины линии, начиная с которой электропередача постоянного тока по разработанным автором схемам будет экономически более выгодной, чем электропередача переменного тока с напряжением 500, 750кВ.

На основе результатов научного исследования сформулированы рекомендации:

    по выбору типа подвесных тарельчатых изоляторов, входящих в состав изолирующих подвесок воздушных линий электропередач постоянного тока;

    по расчету длины пути утечки изолирующих подвесок воздушных линий электропередач постоянного тока;

    по выбору трехпроводной схемы электропередачи, применительно к воздушным линиям постоянного тока, выполненных на основе унифицированных конструкций опор трехфазного переменного тока;

    по применению унифицированных конструкций опор трехфазного переменного тока на воздушных линиях постоянного тока;

    по определению рабочего напряжения постоянного тока, применительно к воздушным линиям электропередач постоянного тока, выполненных на основе унифицированных конструкций опор трехфазного переменного тока;

    по расчету пропускной способности трехпроводной линии электропередачи постоянного тока.

Результаты выполненных расчетов показывают, что пропускную способность существующих ЛЭП трехфазного переменного тока можно существенно повысить путем их перевода на постоянный электрический ток с использованием тех же самых опор, гирлянд изоляторов и проводов. Увеличение передаваемой мощности в этом случае может составить от 50% до 245% для ВЛ 500кВ и от 70% до 410% для ВЛ 750кВ, в зависимости от марки и сечения применяемых проводов и величины установленной пропускной способности ВЛ на переменном токе. Перевод существующих линий трехфазного переменного тока на постоянный ток по предложенным схемам позволит, также, существенно улучшить их показатели надежности. При этом, использование разработанных схем позволит повысить надежность в 5-30 раз, в зависимости от класса напряжения ВЛ. В случае нового проектирования ВЛ постоянного тока по вышеназванным схемам, их показатели надежности будут эквивалентными.

В целом, возможность перевода существующих ВЛ трехфазного переменного тока является вполне осуществимой. Такое техническое решение может быть актуальным для повышения пропускной способности находящихся в эксплуатации ВЛ при сохранении их конфигурации, а так же позволит расширить сферу применения электропередач постоянного тока. Не исключается возможность сооружения новых линий электропередач постоянного тока с применением унифицированных конструкций опор трехфазного переменного тока

4 Реактивная мощность – составляющая полной мощности, которая в зависимости от параметров, схемы и режима работы электрической сети вызывает дополнительные потери активной электрической энергии и ухудшение показателей качества электрической энергии.

Реактивная электрическая энергия – вызванная электромагнитной несбалансированностью электроустановок технологически вредная циркуляция электрической энергии между источниками электроснабжения и приемниками переменного электрического тока.

Основными потребителями реактивной мощности в электрических системах являются трансформаторы, воздушные электрические линии, асинхронные двигатели, вентильные преобразователи, индукционные электропечи, сварочные агрегаты и другие нагрузки.

Реактивная мощность может генерироваться не только генераторами, но и компенсирующими устройствами-конденсаторами, синхронными компенсаторами или статистическими источниками реактивной мощности (ИРМ), которые можно установить на подстанциях электрической сети.

Для нормализации потоков реактивной мощности, при решении задач компенсации реактивной мощности собственными силами и усилиями потребителей для продвижения процесса решения проблем реактивной мощности и задач по оптимизации ее потоков, нормализации уровней напряжения, снижения потерь активной мощности в распределительных электрических сетях и повышения надежности электроснабжения потребителей должно быть произведено обследование объектов филиала ОАО «МРСК Северного Кавказа» – «Ставропольэнерго» на предмет состояния источников реактивной мощности, состояния средств учета реактивной энергии и мощности для функции контроля баланса реактивной энергии и мощности.

В «Ставропольэнерго» 866 банок компенсирующих устройств (БСК) располагаемой мощностью 38,66 МВар (фактическая загрузка в максимум по реактивной мощности - 25,4 МВар). На балансе потребителей установленная мощность 25,746 МВар (фактическая загрузка в максимум по реактивной мощности - 18,98 МВар)

Совместно с ОАО «Ставропольэнергосбыт» проведены обследования характера нагрузки потребителей с повышенным потреблением реактивной мощности (tg ? > 0,4). После издания «Порядка расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств потребителей электрической энергии», в соответствии с Постановлением Правительства РФ № 530, работа с потребителями будет организована в полном объеме. Условия работы с потребителями в соответствии с новым «Порядком…» включены в текст перезаключаемых в настоящее время договоров электроснабжения.

При обращении потребителей об осуществлении присоединения к электрическим сетям «Ставропольэнерго» или об увеличении присоединенной мощности 150 кВт и выше, осуществляется внесение в договора на присоединение потребителей к электрической сети требований по необходимости компенсации реактивной мощности, в размере, обеспечивающем соблюдение устанавливаемых предельных значений коэффициентов реактивной мощности.

Организовано подписание дополнительных соглашений к договорам на оказания услуг по передаче электрической энергии с ОАО «Ставропольэнергосбыт», ОАО «Пятигорские электрические сети», ООО «РН-энерго», КТ ЗАО «РЦЭР и К», ОАО «Невинномысский Азот», гарантирующими поставщиками условий по поддержанию Потребителями с присоединенной мощностью 150 кВт и более коэффициентов реактивной мощности, устанавливаемых федеральным органом исполнительной власти, осуществляющим функции по выработке государственной политики в сфере топливно-энергетического комплекса и требований по обеспечению учета реактивной энергии.

В ближайшие годы ожидается ввод новых промышленных мощностей, что определит рост потребления до 3 и более % в год. Это выдвигает задачу по балансу реактивной мощности в одно из приоритетных направлений, которому будет уделяться повышенное внимание.

Компенса́ция реакти́вной мо́щности - целенаправленное воздействие на баланс реактивной мощности в узле электроэнергетической системы с целью регулирования напряжения, а в распределительных сетях и с целью снижения потерь электроэнергии . Осуществляется с использованием компенсирующих устройств. Для поддержания требуемых уровней напряжения в узлах электрической сети потребление реактивной мощности должно обеспечиваться требуемой генерируемой мощностью с учетом необходимого резерва. Генерируемая реактивная мощность складывается из реактивной мощности, вырабатываемой генераторами электростанций и реактивной мощности компенсирующих устройств, размещенных в электрической сети и в электроустановках потребителей электрической энергии.

Компенсация реактивной мощности особенно актуальна для промышленных предприятий, основными электроприёмниками которых являются асинхронные двигатели, в результате чего коэффициент мощности без принятия мер по компенсации составляет 0,7- 0,75. Мероприятия по компенсации реактивной мощности на предприятии позволяют:

    уменьшить нагрузку на трансформаторы, увеличить срок их службы,

    уменьшить нагрузку на провода, кабели, использовать их меньшего сечения,

    улучшить качество электроэнергии у электроприемников (за счёт уменьшения искажения формы напряжения),

    уменьшить нагрузку на коммутационную аппаратуру за счет снижения токов в цепях,

    избежать штрафов за снижение качества электроэнергии пониженным коэффициентом мощности,

    снизить расходы на электроэнергию.

    Потребителями реактивной мощности, необходимой для создания магнитных полей, являются как отдельные звенья электропередачи (трансформаторы, линии, реакторы), так и такие электроприёмники, преобразующие электроэнергию в другой вид энергии, которые по принципу своего действия используют магнитное поле (асинхронные двигатели, индукционные печи и т.п.). До 80-85% всей реактивной мощности, связанной с образованием магнитных полей, потребляют асинхронные двигатели и трансформаторы. Относительно небольшая часть в общем балансе реактивной мощности приходится на долю прочих её потребителей, например на индукционные печи, сварочные трансформаторы, преобразовательные установки, люминисцентное освещение и т.п.

    Полная мощность, выдаваемая генераторами в сеть :

    (1)

    где P и Q - активная и реактивная мощности приемников с учетом потери мощности в сетях;

    cosφ - результирующий коэффициент мощности приемников электроэнергии.

    Генераторы рассчитываются для работы с их номинальным коэффициентом мощности, равным 0,8-0,85, при котором они способны выдавать номинальную активную мощность . Снижение cosφ у потребителей ниже определенного значения может привести к тому, что cosφ генераторов окажется ниже номинального и выдаваемая ими активная мощность при той же полной мощности будет меньше номинальной. Таким образом, при низких коэффициентах мощности у потребителей для обеспечения передачи им заданной активной мощности приходится вкладывать дополнительные затраты в сооружение более мощных электростанций, увеличивать пропускную мощность сетей и трансформаторов и вследствие этого нести дополнительные эксплуатационные расходы.

    Так как в современные электрические системы входит большое количество трансформаторов и протяженных воздушных линий, то реактивное сопротивление передающего устройства получается весьма значительным, а это вызывает немалые потери напряжения и реактивной мощности. Передача реактивной мощности по сети приводит к дополнительным потерям напряжения, из выражения :

    (2)

    видно, что передаваемая по сети реактивная мощность Q и реактивное сопротивление сети Х существенно влияют на уровень напряжения у потребителей.

    Размер передаваемой реактивной мощности влияет также на потери активной мощности и энергии в электропередаче, что следует из формулы:

    (3)

    Величиной, характеризующей передаваемую реактивную мощность, является коэффициент мощности
    . Подставляя в формулу потерь значение полной мощности, выраженной через cosφ, получаем:

    (4)

    Отсюда видно, что зависимость мощности конденсаторных батарей обратно пропорциональна квадрату напряжения сети, поэтому невозможно плавно регулировать реактивную мощность, а следовательно, и напряжение установки. Таким образом, сos (φ) уменьшается, когда потребление реактивной мощности нагрузкой увеличивается. Необходимо стремиться к повышению сos (φ), т.к. низкий сos (φ) несет следующие проблемы:

    Похожая статья: Компенсация возмущений и помех при управлении линейным объектом по выходу

    Высокие потери мощности в электрических линиях (протекание тока реактивной мощности);

    Большие перепады напряжения в электрических линиях;

    Необходимость увеличения габаритной мощности генераторов, сечения кабелей, мощности силовых трансформаторов.

    Из всего выше приведенного, понятно, что компенсация реактивной мощности необходима. Что легко можно достичь применением активных компенсирующих установок. Основными источниками реактивной мощности, устанавливаемыми на месте потребления, являются синхронные компенсаторы и статические конденсаторы. Наиболее широко используют статические конденсаторы на напряжении до 1000 В и 6-10 кВ. Синхронные конденсаторы устанавливаются на напряжении 6-10 кВ районных подстанций.

    Рис.1 Схемы электропередачи

    а-без компенсации; б - с компенсацией.

    Все эти устройства являются потребителями опережающей (емкостной) реактивной мощности или, что то же самое, - источниками отстающей реактивной мощности, выдаваемой ими в сеть. Сказанное иллюстрируется схемой на рис. 1. Так, на схеме рис. 1 а изо-бражена передача электроэнергии от электростанции А к потребительской подстанции Б. Передаваемая мощность составляет P + jQ. При установке у потребителя статических кон-денсаторов мощностью Q К (рис. 1 б) мощность, передаваемая по сети, будет Р + j(Q - Q К)

    Мы видим, что реактивная мощность, передаваемая от электростанции, уменьшилась или, как говорят, стала скомпенсированной на величину мощности, вырабатываемой конденсаторной батареей. Эту мощность потребитель получает теперь в значительной части непосредственно от компенсирующей установки. При компенсации реактивной мощности уменьшаются и потери напряжения в электропередачах. Если до компенсации мы имели потерю напряжения в районной сети

    (5)

    то при наличии компенсации она будет снижена до величины

    (6)

    где R и Х - сопротивления сети.

    Так как мощность отдельных конденсаторов сравнительно невелика, то обычно их соединяют параллельно в батареи, размещаемые в комплектных шкафах. Часто применяют установки, состоящие из нескольких групп или секций батарей конденсаторов, что делает возможным ступенчатое регулирование мощности конденсаторов, а стало быть, и напряжения установки.

    Батарея конденсаторов должна быть снабжена разрядным сопротивлением, наглухо присоединенным к ее зажимам. Разрядным сопротивлением для конденсаторных установок напряжением 6-10 кВ служат трансформаторы напряжения ТН, а для конденсаторных батарей напряжением до 380 В - лампы накаливания. Необходимость в разрядных сопротивлениях диктуется тем, что при отключении конденсаторов от сети в них остается электрический заряд и сохраняется напряжение, близкое по величине к напряжению сети. Будучи же замкнутыми (после отключения) на разрядное сопротивление, конденсаторы быстро теряют свой электрический заряд, спадает до нуля и напряжение, что обеспечивает безопасность обслуживания установки. От других компенсирующих устройств конденсаторные установки выгодно отличаются простотой устройства и обслуживания, отсутствием вращающихся частей и малыми потерями активной мощности.

    Рис 2 Схема включения конденсаторной батареи.

    При выборе мощности компенсирующих устройств надо стремиться к правильному распределению источников реактивной мощности и к наиболее экономичной загрузке сетей. Различают:

    а) мгновенный коэффициент мощности, подсчитываемый по формуле.

    (7)

    исходя из одновременных показаний ваттметра (Р), вольтметра (U} и амперметра (I) для данного момента времени или из показаний фазометра,

    б) средний коэффициент мощности, представляющий собой среднее арифметическое значение мгновенных коэффициентов мощности за равные промежутки времени, определяемый по формуле:

  • где n - число промежутков времени;

    в) средневзвешенный коэффициент мощности, определяемый по показаниям счетчиков активной Wa и реактивной Wr энергии за определенный промежуток времени (сутки, месяц, год) с помощью формулы:

    (9)

    Выбор типа, мощности, места установки и режима работы компенсирующих устройств должен обеспечивать наибольшую экономичность при соблюдении:

    а) допустимых режимов напряжения в питающей и распределительных сетях;

    б) допустимых токовых нагрузок во всех элементах сети;

    в) режимов работы источников реактивной мощности в допустимых пределах;

    г) необходимого резерва реактивной мощности.

    Критерием экономичности является минимум приведенных затрат, при определении которых следует учитывать:

    а) затраты на установку компенсирующих устройств и дополнительного оборудования к ним;

    б) снижение стоимости оборудования трансформаторных подстанций и сооружения распределительной и питающей сети, а также потерь электроэнергии в них и

    в) снижение установленной мощности электростанций, обусловленное уменьшением потерь активной мощности.

    Из всего вышесказанного, можно сделать вывод, что компенсация реактивной мощности в районных сетях с помощью конденсаторных батарей позволит увеличить пропускную способность линии, без изменения электротехнического оборудования. Кроме того, это целесообразно с экономической точки зрения.

5 Строго говоря, методы выбора сечений по допустимой потере напряжения, разработаны для проводников, выполненнных из цветного металла в сети нап-ряжением до 35 кВ включительно. Методы разработаны исходя из допущений принятых в сетях такого напряжения.

В основу методов определения сечения по допустимой потере напряжения положено то обстоятельство, что величина реактивного сопротивления проводни-ков x 0 практически не зависит от сечения провода F :

· для воздушных ЛЭП x 0 = 0,36 - 0,46 Ом/км;

· для кабельных ЛЭП напряжением 6 – 10 кВ x 0 = 0,06 - 0,09 Ом/км;

· для кабельных ЛЭП напряжением 35 кВ x 0 = 0,11 - 0,13 Ом/км.

Величина допустимой потери напряжения в ЛЭП рассчитывается по мощностям и сопротивлениям участков по формуле:

и складывается из двух составляющих – потери напряжения в активных сопротивлениях и потери напряжения в реактивных сопротивлениях .

Учитывая обстоятельство, что x 0 практически не зависит от сечения провода, величину можно вычислить до расчета сечения проводника, задавшись средним значением реактивного сопротивленияx 0ср в указанных диапазонах его изменения:

По заданной величине допустимой напряжения в ЛЭП рассчитывают долю потери напряжения в активных сопротивлениях:

В выражении для расчета потери напряжения в активных сопротивлениях

от сечения зависит параметр ,

где удельная проводимость материала провода.

Если ЛЭП состоит только из одного участка, то величину сечения можно определить из выражения для :

При большем количестве участков ЛЭП, для расчета сечений проводников нужны дополнительные условия. Их три:

· постоянство сечений на всех участках F=const ;

· минимальный расход проводникового материала min ;

· минимальные потери активной мощности min .

Одной из главных причин возникновения пожара является короткое замыкание. Это словосочетание постоянно на слуху, но что же оно означает?

Это соединение провода заземления или нулевого с фазовым либо двух фазовых проводов. Получается взаимодействие двух проводников с отличающимися потенциалами. Коротким контакт называется, потому что он произошел без электроприбора.

При соединении таких проводов происходит маленький взрыв. Объясняется это резким скачком силы тока, достигающей неприемлемого значения. Такое стремительное увеличение силы тока приводит к перегреву проводов и получению электрической дуги между ними, температура которой достигает 5000 градусов С.

Особо зрелищным получается замыкание фазных проводов в трехфазной электросети. Если человек замкнет фазы отверткой, его может отшвырнуть на несколько метров, он может получить серьезные увечья, ожоги. Отвертка при этом просто испарится. В бытовых условиях большого взрыва может и не быть, но оплавление провода и изоляции гарантировано, а это уже прямой путь к возгоранию предметов, которые окажутся поблизости.

Важно помнить, что при обрыве линии электропередачи (ЛЭП) из-за короткого замыкания, может случиться реальный взрыв с электромагнитным ударом. Поэтому ни в коем случае нельзя подходить к месту обрыва линии.

Причины возникновения короткого замыкания известны: старая или поврежденная электропроводка, монтаж, выполненный с нарушениями (это свойственно любителям, плохо разбирающимся в электрике), изоляция с дефектами, электроприборы, не отвечающие условиям электробезопасности (опять же старые или испорченные), ослабление мест соединения проводов, случайные обрывы линии.

Со всеми перечисленными причинами можно успешно бороться, если соблюдать некоторые правила:

1. Не использовать старые провода с несоответствующей изоляцией.

2. Быть внимательным при проведении электромонтажных работ. Не сверлить, не штробить, не резать стены в тех местах, где проложен силовой кабель.

3. Снимать изоляцию при монтаже крайне аккуратно, не резать провод ножом вдоль жил.

4. Следить за тем, чтобы сеть была отключена при работах с ней. На щитке нужно вывешивать табличку «идут работы, электричество не включать» или оставить дежурить человека.

5. Устанавливать защитные устройства отключения - автоматические выключатели , устройства защитного отключения, дифавтоматы.

6. Регулярно следить за состоянием электрических точек - розеток и выключателей. При необходимости сразу же их заменять.

7. Не эксплуатировать поврежденные электроприборы, от которых летят искры, за исключением некоторых инструментов, например, в которых есть угольные щетки - они при работе немного искрят (такое бывает в дрели, электролобзике и других инструментах).

8. При монтаже проводки не вести провода одним большим пучком, лучше пустить их параллельно рядом или использовать специальные короба.

Выполнение этих несложных правил позволит существенно сократить риск возникновения короткого замыкания и пожара. И важно помнить, что работу с электричеством лучше доверить профессиональному электрику. Тогда и жить будет спокойней и безопасней!



Понравилась статья? Поделиться с друзьями: