Геоинформационная система какие бывают. Что такое гис-технологии

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«Санкт-Петербургский государственный политехнический университет»

ИНСТИТУТ МЕНЕДЖМЕНТА И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

(филиал) Санкт-Петербургского государственного политехнического университета в г. Череповце

(ИМИТ СПбГПУ)

Кафедра «Менеджмента»

Реферат на тему «Геоинформационные системы»

Выполнил студент гр. 0.182

Преподаватель Шутикова

г. Череповец

ВВЕДЕНИЕ

Географическая Информационная Система - или ГИС - это компьютерная система, позволяющая показывать данные на электронной карте. Карты, созданные с помощью ГИС, можно смело назвать картами нового поколения. На карты ГИС можно нанести не только географические, но и статистические, демографические, технические и многие другие виды данных и применять к ним разнообразные аналитические операции. ГИС обладает уникальной способностью выявлять скрытые взаимосвязи и тенденции, которые трудно или невозможно заметить, используя привычные бумажные карты. Мы видим новый, качественный, смысл наших данных, а не механический набор отдельных деталей.

Электронная карта, созданная в ГИС, поддерживается мощным арсеналом аналитических средств, богатым инструментарием создания и редактирования объектов, а также базами данных , специализированными устройствами сканирования, печати и другими техническими решениями, средствами Интернет - и даже космическими снимками и информацией со спутников.

ГИС-система включает в себя пять ключевых составляющих:

· аппаратные средства. Это компьютер, на котором запущена ГИС. В настоящее время ГИС работают на различных типах компьютерных платформ, от централизованных серверов до отдельных или связанных сетью настольных компьютеров;

· программное обеспечение . Cодержит функции и инструменты, необходимые для хранения, анализа и визуализации географической информации. К таким программным продуктам относятся: инструменты для ввода и оперирования географической информацией; система управления базой данных (DBMS или СУБД); инструменты поддержки пространственных запросов, анализа и визуализации;

· данные. Данные о пространственном положении (географические данные) и связанные с ними табличные данные могут собираться и подготавливаться самим пользователем, либо приобретаться у поставщиков на коммерческой или другой основе. В процессе управления пространственными данными ГИС интегрирует пространственные данные с другими типами и источниками данных, а также может использовать СУБД, применяемые многими организациями для упорядочивания и поддержки имеющихся в их распоряжении данных;

· исполнители. Пользователями ГИС могут быть как технические специалисты, разрабатывающие и поддерживающие систему, так и обычные сотрудники, которым ГИС помогает решать текущие каждодневные дела и проблемы;

· методы.

2. История ГИС

Пионерский период (поздние 1950е - ранние 1970е гг.)

Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

· Появление электронных вычислительных машин (ЭВМ) в 50-х годах.

· Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х.

· Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров.

· Создание формальных методов пространственного анализа.

· Создание программных средств управления базами данных.

Период государственных инициатив (нач. 1970е - нач. 1980е гг.)

Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:

· Автоматизированные системы навигации.

· Системы вывоза городских отходов и мусора.

· Движение транспортных средств в чрезвычайных ситуациях и т. д.

Период коммерческого развития (ранние 1980е - настоящее время)

Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

Пользовательский период (поздние 1980е - настоящее время)

Повышенная конкуренция среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и «открытость» программных средств позволяет использовать и даже модифицировать программы, появление пользовательских «клубов», телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.

ГИС в России

Наибольшее распространение в России имеют программные продукты ArcGIS и ArcView компании ESRI, семейство продуктов GeoMedia корпорации Intergraph и MapInfo Professional компании Pitney Bowes MapInfo.

Используются также другие программные продукты отечественной и зарубежной разработки: Bentley "s MicroStation, IndorGIS, STAR-APIC, Zulu, ДубльГИС и пр.

3. Перспективы ГИС

ГеоДизайн это эволюционный этап развития ГИС. Он очень важен для процесса планирования и развития территорий, особенно в сфере землепользования и охраны окружающей среды , но широко востребован и практически во всех других прикладных и научных областях. Например, эта методология будет широко использоваться в розничной торговле для открытия новых магазинов и закрытия старых, инженерами-строителями для размещения объектов инфраструктуры, таких как дороги, в наиболее подходящих местах, организациями, обслуживающими коммунальные сети, в сельском, лесном и водном хозяйствах, силовыми ведомствами , энергетическими компаниями, военными и многими другими. Такой подход в еще большей мере усилит значение ГИС, выводя его за рамки простого описания мира «каков он есть» в направлении разработки и реализации концепций создания будущего, интеграции географического (пространственного) мышления во все направлению нашей деятельности.

Будущее за ГИС-технологиями с элементами искусственного интеллекта на базе интеграции ГИС и экспертных систем. Преимущества такого симбиоза вполне очевидны: экспертная система будет содержать в себе знания эксперта в конкретной области и может использоваться как решающая или советующая система.

Современный статус новых компьютерных геотехнологий определяется крупными государственными программами, зарубежными инвестициями, направленными на широкое использование аэрофотоснимков и космических снимков, цифровых карт, визуализации баз данных.

Городская ГИС будущего будет позволять не только получать по запросу семантическую информацию об объектах на карте, но и прогнозировать развитие территории, позволять руководству города проигрывать варианты директивных решений, возможного строительства нового района города и т. п. При этом ГИС вместе с системой имитационного моделирования сможет показать градостроителям, как перераспределятся нагрузки в городских инженерных сетях, мощность транспортных потоков, как изменится цена объектов недвижимости в зависимости от проведения дополнительных магистралей или постройки нового торгового центра в том или ином районе.

Заключение

В данный момент ГИС системы являются одними из самых быстро развивающихся и интересных в плане коммерциализаций , с их удобным пользовательским интерфейсом и огромным количеством содержавшейся в них информации делают их незаменимыми при всё ускоряющемся мире.

На данный момент в России около 200 организации занимаются разработкой и внедрением ГИС систем, создание земельного кадастра позволит на основе его карт строить другие, предметно ориентированные карты и дополнять их соответствующим атрибутивным наполнением, что позволит нашим системам конкурировать с западными образцами.

При большем развитии мобильного доступа в сеть через различные устройства Гис системы с применением спутниковых снимков в купе с трехмерным моделированием позволят даже заурядному пользователю безо всяких проблем ориентироваться на любой местности и получать от данных систем всю нужную информацию просто задав вопрос.

, экономике , обороне .

По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).

ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) Шаблон:Nobr ; среди них особое наименование, как особо широко распространённые, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.

Полимасштабные, или масштабно-независимые ГИС (multiscale GIS) основаны на множественных, или полимасштабных представлениях пространственных объектов (multiple representation, multiscale representation), обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС (spatio-temporal GIS) оперируют пространственно-временными данными. Реализация геоинформационных проектов (GIS project), создание ГИС в широком смысле слова, включает этапы: предпроектных исследований (feasibility study), в том числе изучение требований пользователя (user requirements) и функциональных возможностей используемых программных средств ГИС, технико-экономическое обоснование, оценку соотношения «затраты/прибыль» (costs/benefits); системное проектирование ГИС (GIS designing), включая стадию пилот-проекта (pilot-project), разработку ГИС (GIS development); её тестирование на небольшом территориальном фрагменте, или тестовом участке (test area), прототипирование, или создание опытного образца, или прототипа (prototype); внедрение ГИС (GIS implementation); эксплуатацию и использование. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой .

Задачи ГИС

  • Ввод данных. Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат (оцифрованы). В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, либо, при небольшом объеме работ, данные можно вводить с помощью дигитайзера .
  • Манипулирование данными (например, масштабирование).
  • Управление данными. В небольших проектах географическая информация может храниться в виде обычных файлов, а при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными применяются СУБД .
  • Запрос и анализ данных - получение ответов на различные вопросы (например, кто владелец данного земельного участка? На каком расстоянии друг от друга расположены эти объекты? Где расположена данная промышленная зона? Где есть места для строительства нового дома? Каков основный тип почв под еловыми лесами? Как повлияет на движение транспорта строительство новой дороги?).
  • Визуализация данных. Например, представление данных в виде карты или графика.

Возможности ГИС

ГИС включают в себя возможности СУБД , редакторов растровой и векторной графики и аналитических средств и применяются в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне. ГИС позволяют решать широкий спектр задач - будь то анализ таких глобальных проблем как перенаселение, загрязнение территории, сокращение лесных угодий, природные катастрофы, так и решение частных задач, таких как поиск наилучшего маршрута между пунктами, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода на местности, различные муниципальные задачи.

ГИС-система позволяет:

  • определить какие объекты располагаются на заданной территории;
  • определить местоположение объекта (пространственный анализ);
  • дать анализ плотности распределения по территории како-то явления(например плотность расселения);
  • определить временные изменения на определенной площади);
  • смоделировать, что произойдет при внесении изменений в расположение объектов (например, если добавить новую дорогу).

Классификация ГИС

По территориальному охвату:

  • глобальные ГИС;
  • субконтинентальные ГИС;
  • национальные ГИС;
  • региональные ГИС;
  • субрегиональные ГИС;
  • локальные или местные ГИС.

По уровню управления:

  • федеральные ГИС;
  • региональные ГИС;
  • муниципальные ГИС;
  • корпоративные ГИС.

По функциональности:

  • полнофункциональные;
  • ГИС для просмотра данных;
  • ГИС для ввода и обработки данных;
  • специализированные ГИС.

По предметной области:

  • картографические;
  • геологические;
  • городские или муниципальные ГИС;
  • природоохранные ГИС и т. п.

Если помимо функциональных возможностей ГИС в системе присутствуют возможности цифровой обработки изображений, то такие системы называются интегрированными ГИС (ИГИС). Полимасштабные, или масштабно-независимые ГИС основаны на множественных, или полимасштабных представлениях пространственных объектов, обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС оперируют пространственно-временными данными.

Области применения ГИС

  • Управление земельными ресурсами, земельные кадастры. Для решения проблем, имеющих пространственную привязку и начали создавать ГИС. Типичные задачи - составление кадастров, классификационных карт, определение площадей участков и границ между ними и т. д.
  • Инвентаризация, учет, планирование размещения объектов распределенной производственной инфраструктуры и управление ими. Например, нефтегазодобывающие компании или компании, управляющие энергетической сетью, системой бензоколонок, магазинов и т. п.
  • Проектирование, инженерные изыскания, планировка в строительстве, архитектуре. Такие ГИС позволяют решать полный комплекс задач по развитию территории, оптимизации инфраструктуры строящегося района, требующегося количества техники, сил и средств.
  • Тематическое картографирование.
  • Управление наземным, воздушным и водным транспортом. ГИС позволяет решать задачи управления движущимися объектами при условии выполнения заданной системы отношений между ними и неподвижными объектами. В любой момент можно узнать, где находится транспортное средство, рассчитать загрузку, оптимальную траекторию движения, время прибытия и т. п.
  • Управление природными ресурсами, природоохранная деятельность и экология. ГИС помогает определить текущее состояние и запасы наблюдаемых ресурсов, моделирует процессы в природной среде, осуществляет экологический мониторинг местности.
  • Геология, минерально-сырьевые ресурсы, горнодобывающая промышленность. ГИС осуществляет расчеты запасов полезных ископаемых по результатам проб (разведочное бурение, пробные шурфы) при известной модели процесса образования месторождения.
  • Чрезвычайные ситуации. С помощью ГИС производится прогнозирование чрезвычайных ситуаций (пожаров, наводнений, землетрясений, селей, ураганов), расчет степени потенциальной опасности и принятие решений об оказании помощи, расчет требуемого количества сил и средств для ликвидации чрезвычайных ситуаций, расчет оптимальных маршрутов движения к месту бедствия, оценка нанесенного ущерба.
  • Военное дело. Решение широкого круга специфических задач, связанных с расчетом зон видимости, оптимальных маршрутов движения по пересеченной местности с учетом противодействия и т. п.
  • Сельское хозяйство. Прогнозирование урожайности и увеличения производства сельскохозяйственной продукции, оптимизация ее транспортировки и сбыта.

Сельское хозяйство

Перед началом каждого сельскохозяйственного сезона фермеры должны принять 50 важнейших решений: что выращивать, когда сеять, использовать ли удобрения и т. д. Любое из них может отразиться на урожайности и на конечном результате. Прежде фермеры принимали такие решения, основываясь на прошлом опыте, традиции или даже разговорах с соседями и другими знакомыми. Сегодня сельское хозяйство порождает больше данных с географической привязкой, чем большинство других отраслей. Данные поступают из различных источников: телеметрии машин, метеорологических станций, наземных датчиков, образцов почвы, наземного наблюдения, спутников и беспилотников. С помощью ГИС сельскохозяйственные компании могут собирать, обрабатывать и анализировать данные для максимизации ресурсов, мониторинга сохранности урожая и повышения урожайности .

Перевозки и логистика

Перемещение людей и вещей часто сопряжено с огромными логистическими трудностями. Представьте себе больницу, которая хочет предоставить своим пациентам в определенное время лучший и самый быстрый маршрут до дома, или орган местного самоуправления, который хочет организовать оптимальные маршруты автобусов и скоростных трамваев, или производителя, который хочет как можно эффективнее и экономичнее доставлять свои продукты, или нефтяную компанию, которая планирует прокладку трубопроводов. В каждом из этих случаев для принятия бизнес-решений на основе полной информации необходим анализ данных о местополождении.

Энергетика

В разведке запасов энергоносителей для определения экономической целесообразности добычи в той или иной местности используются спутниковые фотографии, геологические карты поверхности земли и дистанционное зондирование пластов. Энергетические компании используют огромный объем географических данных, поскольку промышленные сенсоры сейчас устанавливаются везде: лазерные сенсоры на самолетах, датчики на поверхности земли при бурении скважин, мониторы трубопроводов и т. д. Картографирование и пространственный анализ дают необходимые знания для принятия решений с соблюдением требований регуляторов о выборе площадок и локализации ресурсов.

Розничная торговля

В связи с тем, что потребители все шире используют смартфоны и носимые устройства, традиционные продавцы могут использовать геопространственную технологию для получения более полной картины поведения покупателей в прошлом и настоящем. Потому что геопространственные данные не сводятся к определению местоположения, а охватывают связанные с этим положением данные, такие как демографические характеристики покупателей или информацию о том, где в магазине люди проводят больше всего времени. Все эти данные можно использовать при выборе места для магазина, определении набора товаров и их размещении и т. д.

Оборона и разведка

Геопространственная технология изменила военные и разведывательные операции в любой части мира, где размещены воинские контингенты. Командование, аналитики и другие специалисты нуждаются в точных данных ГИС для решения своих задач. ГИС помогает оценивать ситуацию (создает полное визуальное представление тактической информации), проводить операции на суше (показывает условия местности, высоты, маршруты, растительный покров, объекты и населенные пункты), в воздухе (передает данные о погоде и видимости пилотам; направляет войска и снабжение, дает целеуказание) и на море (показывает течения, высоту волн, приливы и погоду).

Федеральное правительство

Своевременная и точная геопространственная разведка имеет важнейшее значение для принятия решений федеральными агентствами, которые отвечают за охрану и безопасность, инфраструктуру, управление ресурсами и качество жизни. ГИС позволяет организовать охрану и безопасность с операционной поддержкой, координировать оборону, реагирование на природные катастрофы, действия правоохранительных органов, органов национальной безопасности и экстренных служб. Что касается инфраструктуры, то ГИС помогает управлять ресурсами и активами, предназначенными для автомагистралей, портов, общественного транспорта и аэропортов. Федеральные агентства также используют ГИС для лучшего понимания актуальных и исторических данных, необходимых для управления сельским и лесным хозяйством, горнодобывающей промышленностью, водными и другими природными ресурсами.

Местные органы власти

Местные органы ежедневно принимают решения, напрямую затрагивающие жителей и приезжих. Начиная с ремонта дорог и коммунальных услуг и заканчивая оценкой стоимости земли и развитием территорий - везде картографические приложения применяются для анализа и интерпретации данных ГИС. Кроме того, население и ландшафт городов и поселков может сильно измениться за сравнительно короткое время. Чтобы адаптироваться к этим изменениям и обеспечить людям тот уровень обслуживания, которого они ожидают, местные органы власти широко применяют современную технологию ГИС для наблюдения за дорожным движением и дорожными условиями, качеством окружающей среды, распространением заболеваний, распределением предприятий коммунального хозяйства (например, электро- и водоснабжения и канализации), для управления парками и другими общественными участками земли, а также для выдачи разрешений на создание кемпингов, на охоту, рыбалку и т. д.

Структура ГИС

Состав ГИС.

ГИС-система включает в себя пять ключевых составляющих:

  • аппаратные средства. Это компьютер, на котором запущена ГИС. В настоящее время ГИС работают на различных типах компьютерных платформ, от централизованных серверов до отдельных или связанных сетью настольных компьютеров;
  • программное обеспечение. Cодержит функции и инструменты, необходимые для хранения, анализа и визуализации географической информации. К таким программным продуктам относятся: инструменты для ввода и оперирования географической информацией; система управления базой данных (DBMS или СУБД); инструменты поддержки пространственных запросов, анализа и визуализации;
  • данные. Данные о пространственном положении (географические данные) и связанные с ними табличные данные могут собираться и подготавливаться самим пользователем, либо приобретаться у поставщиков на коммерческой или другой основе. В процессе управления пространственными данными ГИС интегрирует пространственные данные с другими типами и источниками данных, а также может использовать СУБД , применяемые многими организациями для упорядочивания и поддержки имеющихся в их распоряжении данных;
  • исполнители. Пользователями ГИС могут быть как технические специалисты, разрабатывающие и поддерживающие систему, так и обычные сотрудники, которым ГИС помогает решать текущие каждодневные дела и проблемы;
  • методы.

История ГИС

Пионерский период (поздние 1950е - ранние 1970е гг.)

Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

  • Появление электронных вычислительных машин (ЭВМ) в 50-х годах.
  • Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х.
  • Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров.
  • Создание формальных методов пространственного анализа.
  • Создание программных средств управления базами данных.

Период государственных инициатив (нач. 1970е - нач. 1980е гг.)

Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:

  • Автоматизированные системы навигации.
  • Системы вывоза городских отходов и мусора.
  • Движение транспортных средств в чрезвычайных ситуациях и т. д.

Период коммерческого развития (ранние 1980е - настоящее время)

Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

Пользовательский период (поздние 1980е - настоящее время)

Повышенная конкуренция среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и «открытость» программных средств позволяет использовать и даже модифицировать программы, появление пользовательских «клубов», телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.

Структура ГИС

  1. Данные (пространственные данные):
    • позиционные (географические): местоположение объекта на земной поверхности.
    • непозиционные (атрибутивные): описательные.
  2. Аппаратное обеспечение (ЭВМ, сети, накопители, сканер, дигитайзеры и т. д.).
  3. Программное обеспечение (ПО).
  4. Технологии (методы, порядок действий и т. д.).

Как работает ГИС?

ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы.

Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам, или ссылки на адрес, почтовый индекс, избирательный округ или округ переписи населения, идентификатор земельного или лесного участка, название дороги и т.п. При использовании подобных ссылок для автоматического определения местоположения или местоположений объекта (объектов) применяется процедура, называемая геокодированием. С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект или явление, такие как дом, в котором проживает ваш знакомый или находится нужная вам организация, где произошло землетрясение или наводнение, по какому маршруту проще и быстрее добраться до нужного вам пункта или дома.

Векторная и растровая модели. ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми. В векторной модели информация о точках, линиях и полигонах кодируется и хранится в виде набора координат X,Y. Местоположение точки (точечного объекта), например буровой скважины, описывается парой координат (X,Y). Линейные объекты, такие как дороги, реки или трубопроводы, сохраняются как наборы координат X,Y. Полигональные объекты, типа речных водосборов, земельных участков или областей обслуживания, хранятся в виде замкнутого набора координат. Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как типы почв или доступность объектов. Растровая модель оптимальна для работы с непрерывными свойствами. Растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке. Обе модели имеют свои преимущества и недостатки. Современные ГИС могут работать как с векторными, так и с растровыми моделями.

Задачи, которые решает ГИС. ГИС общего назначения, в числе прочего, обычно выполняет пять процедур (задач) с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию.

Ввод. Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных с бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов, либо, при небольшом объеме работ, данные можно вводить с помощью дигитайзера. Многие данные уже переведены в форматы, напрямую воспринимаемые ГИС-пакетами.

Манипулирование. Часто для выполнения конкретного проекта имеющиеся данные нужно дополнительно видоизменить в соответствии с требованиями вашей системы. Например, географическая информация может быть в разных масштабах (осевые линии улиц имеются в масштабе 1: 100 000, границы округов переписи населения - в масштабе 1: 50 000, а жилые объекты - в масштабе 1: 10 000). Для совместной обработки и визуализации все данные удобнее представить в едином масштабе. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи.

Управление. В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять системы управления базами данных (СУБД), то специальными компьютерными средствами для работы с интегрированными наборами данных (базами данных). В ГИС наиболее удобно использовать реляционную структуру, при которой данные хранятся в табличной форме. При этом для связывания таблиц применяются общие поля. Этот простой подход достаточно гибок и широко используется во многих, как ГИС, так и не ГИС приложениях.

Запрос и анализ. При наличии ГИС и географической информации Вы сможете получать ответы простые вопросы (Кто владелец данного земельного участка? На каком расстоянии друг от друга расположены эти объекты? Где расположена данная промзона?) и более сложные, требующие дополнительного анализа, запросы (Где есть места для строительства нового дома? Каков основный тип почв под еловыми лесами? Как повлияет на движение транспорта строительство новой дороги?). Запросы можно задавать как простым щелчком мышью на определенном объекте, так и с посредством развитых аналитических средств. С помощью ГИС можно выявлять и задавать шаблоны для поиска, проигрывать сценарии по типу “что будет, если…”. Современные ГИС имеют множество мощных инструментов для анализа, среди них наиболее значимы два: анализ близости и анализ наложения. Для проведения анализа близости объектов относительно друг друга в ГИС применяется процесс, называемый буферизацией. Он помогает ответить на вопросы типа: Сколько домов находится в пределах 100 м от этого водоема? Сколько покупателей живет не далее 1 км от данного магазина? Какова доля добытой нефти из скважин, находящихся в пределах 10 км от здания руководства данного НГДУ? Процесс наложения включает интеграцию данных, расположенных в разных тематических слоях. В простейшем случае это операция отображения, но при ряде аналитических операций данные из разных слоев объединяются физически. Наложение, или пространственное объединение, позволяет, например, интегрировать данные о почвах, уклоне, растительности и землевладении со ставками земельного налога.

Визуализация. Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. Карта - это очень эффективный и информативный способ хранения, представления и передачи географической (имеющей пространственную привязку) информации. Раньше карты создавались на столетия. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками и таблицами, фотографиями и другими средствами, например, мультимедийными.

Связанные технологии. ГИС тесно связана рядом других типов информационных систем. Ее основное отличие заключается в способности манипулировать и проводить анализ пространственных данных. Хотя и не существует единой общепринятой классификации информационных систем, приведенное ниже описание должно помочь дистанциировать ГИС от настольных картографических систем (desktop mapping), систем САПР (CAD), дистанционного зондирования (remote sensing), систем управления базами данных (СУБД или DBMS) и технологии глобального позиционирования (GPS).

Системы настольного картографирования используют картографическое представление для организации взаимодействия пользователя с данными. В таких системах все основано на картах, карта является базой данных. Большинство систем настольного картографирования имеет ограниченные возможности управления данными, пространственного анализа и настройки. Соответствующие пакеты работают на настольных компьютерах - PC, Macintosh и младших моделях UNIX рабочих станций.

Системы САПР способны чертежи проектов и планы зданий и инфраструктуры. Для объединения в единую структуру они используют набор компонентов с фиксированными параметрами. Они основываются на небольшом числе правил объединения компонентов и имеют весьма ограниченные аналитические функции. Некоторые системы САПР расширены до поддержки картографического представления данных, но, как правило, имеющиеся в них утилиты не позволяют эффективно управлять и анализировать большие базы пространственных данных.

Дистанционное зондирование и GPS. Методы дистанционного зондирования - это искусство и научное направление для проведения измерений земной поверхности с использованием сенсоров, таких как различные камеры на борту летательных аппаратов, приемники системы глобального позиционирования или других устройств. Эти датчики собирают данные в виде изображений и обеспечивают специализированные возможности обработки, анализа и визуализации полученных изображений. Ввиду отсутствия достаточно мощных средств управления данными и их анализа, соответствующие системы вряд ли можно отнести к настоящим ГИС.

Системы управления базами данных предназначены для хранения и управления всеми типами данных, включая географические (пространственные) данные. СУБД оптимизированы для подобных задач, поэтому во многие ГИС встроена поддержка СУБД. Эти системы не имеют сходных с ГИС инструментов для анализа и визуализации.

географический информационный система картографирование

56. Геоинформационные системы (ГИС).

Понятие о геоинформационных системах

Геоинформационные системы (ГИС) – это автоматизированные системы, основными функциями которых являются сбор, хранение, интеграция, анализ и графическая визуализация в виде карт или схем пространственно-временных данных, а также связанной с ними атрибутивной информации о представленных в ГИС объектах.

ГИС возникли в 1960–70 гг. на стыке технологий обработки информации в системах управления базами данных и визуализации графических данных в системах автоматизированного проектирования (САПР), автоматизированного производства карт, управления сетями. Интенсивное использование ГИС началось в середине 90-х гг. ХХ в. В это время появляются мощные и относительно дешевые персональные компьютеры, становится более доступным и понятным программное обеспечение.

В качестве источников данных для создания ГИС служат:

Картографические материалы (топографические и общегеографические карты, карты административно-территориального деления, кадастровые планы и др.). Так как получаемые с карт данные имеют пространственную привязку, они используются в качестве базового слоя ГИС;

Данные дистанционного зондирования (ДДЗ), прежде всего, материалы, получаемые с космических аппаратов и спутников. При дистанционном зондировании изображения получают и передают на Землю с носителей съемочной аппаратуры, размещенных на разных орбитах. Полученные снимки отличаются разным уровнем обзорности и детальности отображения объектов природной среды в нескольких диапазонах спектра (видимый и ближний инфракрасный, тепловой инфракрасный и радиодиапазон). Благодаря этому с применением ДДЗ решают широкий спектр экологических задач. К методам дистанционного зондирования относятся также аэро- и наземные съемки, и другие неконтактные методы, например гидроакустические съемки рельефа морского дна. Материалы таких съемок обеспечивают получение как количественной, так и качественной информации о различных объектах природной среды;

Результаты геодезических измерений на местности, выполняемые нивелирами, теодолитами, электронными тахеометрами, GPS приемниками и т. д.; - данные государственных статистических служб по самым разным отраслям народного хозяйства, а также данные стационарных измерительных постов наблюдений (гидрологические и метеорологические данные, сведения о загрязнении окружающей среды и т. д).

Литературные данные (справочные издания, книги, монографии и статьи, содержащие разнообразные сведения по отдельным типам географических объектов). В ГИС редко используется только один вид данных, чаще всего это сочетание разнообразных данных на какую-либо территорию.

Классификация геоинформационных систем.

ГИС системы разрабатывают и применяют для решения научных и прикладных задач инфраструктурного проектирования, городского и регионального планирования, рационального использования природных ресурсов, мониторинга экологических ситуаций, а также для принятия оперативных мер в условиях чрезвычайных ситуаций и др. Множество задач, возникающих в жизни, привело к созданию различных ГИС, которые могут классифицироваться по следующим признакам:

По функциональным возможностям: - полнофункциональные ГИС общего назначения;

Специализированные ГИС, ориентированные на решение конкретной задачи в какой либо предметной области;

Информационно-справочные системы для домашнего и информационно-справочного пользования. Функциональные возможности ГИС определяются также архитектурным принципом их построения:

Закрытые системы не имеют возможностей расширения, они способны выполнять только тот набор функций, который однозначно определен на момент покупки; - открытые системы отличаются легкостью приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования).

По пространственному (территориальному) охвату ГИС подразделяются на глобальные (планетарные), общенациональные, региональные, локальные (в том числе муниципальные).

По проблемно-тематической ориентации – общегеографические, экологические и природопользовательские, отраслевые (водных ресурсов, лесопользования, геологические, туризма и т. д.).

По способу организации географических данных – векторные, растровые, векторно-растровые ГИС.

Основные компоненты геоинформационных систем.

К основным компонентам ГИС относят: технические (аппаратные) и программные средства, информационное обеспечение.

Технические средства – это комплекс аппаратных средств, применяемых при функционировании ГИС. К ним относятся рабочая станция (персональный компьютер), устройства ввода-вывода информации, устройства обработки и хранения данных, средства телекоммуникации.

Рабочая станция используется для управления работой ГИС и выполнения процессов обработки данных, основанных на вычислительных и логических операциях. Современные ГИС способны оперативно обрабатывать огромные массивы информации и визуализировать результаты.

Ввод данных реализуется с помощью разных технических средств и методов: непосредственно с клавиатуры, с помощью дигитайзера или сканера, через внешние компьютерные системы. Пространственные данные могут быть получены с электронных геодезических приборов, с помощью дигитайзера или сканера, либо с использованием фотограмметрических приборов.

Устройства для обработки и хранения данных интегрированы в системном блоке компьютера, включающем в себя центральный процессор, оперативную память, запоминающие устройства (жесткие диски, переносные магнитные и оптические носители информации, карты памяти, флеш-накопители и др.). Устройства вывода данных – монитор, графопостроитель, плоттер, принтер, с помощью которых обеспечивается наглядное представление результатов обработки пространственно-временных данных.

Программные средства – программное обеспечение (ПО) для реализации функциональных возможностей ГИС. Оно подразделяется на базовое и прикладное ПО.

Базовые программные средства включают: операционные системы (ОС), программные среды, сетевое программное обеспечение, системы управления базами данных, а также модули управления средствами ввода и вывода данных, систему визуализации данных и модули для выполнения пространственного анализа.

К прикладному ПО относятся программные средства, предназначенные для решения специализированных задач в конкретной предметной области. Они реализуются в виде отдельных модулей (приложений) и утилит (вспомогательных средств).

Информационное обеспечение – совокупность массивов информации, систем кодирования и классификации информации. Особенность хранения пространственных данных в ГИС – их разделение на слои. Многослойная организация электронной карты, при наличии гибкого механизма управления слоями, позволяет объединить и отобразить гораздо большее количество информации, чем на обычной карте.

(Тут всё обычно. По пунктам.)

Геоинформационная система (ГИС , также географическая информационная система ) - это интегрированные в единой информационной среде электронные пространственно-ориентированные изображения (карты, схемы, планы и т.п.) и базы данных. ГИС включают в себя возможности систем управления базами данных (СУБД), редакторов растровой и векторной графики и аналитических средств и применяются в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне и многих других областях.

По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).

Как работает ГИС

ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы.

Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам, или ссылки на адрес, почтовый индекс, избирательный округ или округ переписи населения, идентификатор земельного или лесного участка, название дороги или километровый столб на магистрали и т.п.

послойное представление географической информации в ГИС

Ключевые преимущества ГИС

  • удобное для пользователя отображение пространственных данных
    Картографирование пространственных данных, в том числе в трехмерном измерении, наиболее удобно для восприятия, что упрощает построение запросов и их последующий анализ.
  • интеграция данных внутри организации
    Геоинформационные системы объединяют данные, накопленные в различных подразделениях компании или даже в разных областях деятельности организаций целого региона. Коллективное использование накопленных данных и их интеграция в единый информационный массив дает существенные конкурентные преимущества и повышает эффективность эксплуатации геоинформационных систем.
  • принятие обоснованных решений
    Автоматизация процесса анализа и построения отчетов о любых явлениях, связанных с пространственными данными, помогает ускорить и повысить эффективность процедуры принятия решений.
  • удобное средство для создания карт
    Геоинформационные системы оптимизируют процесс расшифровки данных космических и аэросъемок и используют уже созданные планы местности, схемы, чертежи. ГИС существенно экономят временные ресурсы, автоматизируя процесс работы с картами, и создают трехмерные модели местности.

Отраслевое использование ГИС

Возможности геоинформационных систем могут быть задействованы в самых различных областях деятельности. Вот лишь некоторые примеры использования ГИС:

административно-территориальное управление

  • городское планирование и проектирование объектов;
  • ведение кадастров инженерных коммуникаций, земельного, градостроительного, зеленых насаждений;
  • прогноз чрезвычайных ситуаций техногенно-экологического характера;
  • управление транспортными потоками и маршрутами городского транспорта;
  • построение сетей экологического мониторинга;
  • инженерно-геологическое районирование города.

телекоммуникации

  • транковая и сотовая связь, традиционные сети;
  • стратегическое планирование телекоммуникационных сетей;
  • выбор оптимального расположения антенн, ретрансляторов и др.;
  • определение маршрутов прокладки кабеля;
  • мониторинг состояния сетей;
  • оперативное диспетчерское управление.

инженерные коммуникации

  • оценка потребностей в сетях водоснабжения и канализации;
  • моделирование последствий стихийных бедствий для систем инженерных коммуникаций;
  • проектирование инженерных сетей;
  • мониторинг состояния инженерных сетей и предотвращение аварийных ситуаций.

транспорт

  • автомобильный, железнодорожный, водный, трубопроводный, авиатранспорт;
  • управление транспортной инфраструктурой и ее развитием;
  • управление парком подвижных средств и логистика;
  • управление движением, оптимизация маршрутов и анализ грузопотоков.

нефтегазовый комплекс

  • геологоразведка и полевые изыскательные работы;
  • мониторинг технологических режимов работы нефте- и газопроводов;
  • проектирование магистральных трубопроводов;
  • моделирование и анализ последствий аварийных ситуаций.

силовые ведомства

  • службы быстрого реагирования, вооруженные силы, милиция, пожарные службы;
  • планирование спасательных операций и охранных мероприятий;
  • моделирование чрезвычайных ситуаций;
  • стратегическое и тактическое планирование военных операций;
  • навигация служб быстрого реагирования и других силовых ведомств.

экология

  • оценка и мониторинг состояния природной среды;
  • моделирование экологических катастроф и анализ их последствий;
  • планирование природоохранных мероприятий.

лесное хозяйство

  • стратегическое управление лесным хозяйством;
  • управление лесозаготовками, планирование подходов к лесу и проектирование дорог;
  • ведение лесных кадастров.

сельское хозяйство

  • планирование обработки сельскохозяйственных угодий;
  • учет землевладельцев и пахотных земель;
  • оптимизация транспортировки сельскохозяйственных продуктов и минеральных удобрений.

Примеры ГИС

Google Earth

Проект компании Google, в рамках которого в сети Интернет были размещены спутниковые фотографии всей земной поверхности. Фотографии некоторых регионов имеют беспрецедентно высокое разрешение.

В отличие от других аналогичных сервисов, показывающих спутниковые снимки в обычном браузере (например, Google Maps), в данном сервисе используется специальная, загружаемая на компьютер пользователя клиентская программа Google Earth. Такой подход хотя и требует закачивания и установки программы, но зато в дальнейшем обеспечивает дополнительные возможности, трудно реализуемые с помощью веб-интерфейса. Эта программа изначально была выпущена компанией Keyhole, а затем куплена компанией Google, которая и сделала программу общедоступной. Существуют также платные версии Google Earth Plus и Google Earth Pro, отличающиеся поддержкой GPS навигации, средств презентаций и повышенным разрешением распечатки.

Возможности:

  • Google Earth автоматически подкачивает из интернета необходимые пользователю изображения и другие данные, сохраняет их в памяти компьютера и на жёстком диске для дальнейшего использования. Скачанные данные сохраняются на диске, и при последующих запусках программы закачиваются только новые данные, что позволяет существенно экономить трафик.
  • Для визуализации изображения используется трёхмерная модель всего земного шара (с учётом высоты над уровнем моря), которая отображается на экране при помощи интерфейсов DirectX или OpenGL. Именно в трёхмерности ландшафтов поверхности Земли и состоит главное отличие программы Google Earth от её предшественника Google Maps. Пользователь может легко перемещаться в любую точку планеты, управляя положением «виртуальной камеры».
  • Практически вся поверхность суши покрыта изображениями, полученными от компании DigitalGlobe, и имеющими разрешение 15 м на пиксель. Есть отдельные участки поверхности (как правило, покрывающие столицы и некоторые крупные города большинства стран мира), имеющие более подробное разрешение. Например, Москва снята с разрешением 0,6 м/пк, а многие города США - c разрешением 0,15 м/пк. Данные ландшафта имеют разрешение порядка 100 м.
  • Также имеется огромное количество дополнительных данных, которые можно подключить по желанию пользователя. Например, названия населённых пунктов, водоёмов, аэропортов, дороги, ж/д, и др. информация. Кроме этого, для многих городов имеется более подробная информация - названия улиц, магазины, заправки, гостиницы, и т. д. Имеется слой геоданных (синхронизированный через Интернет с соответствующей базой данных), на котором отображены (с пространственной привязкой) ссылки на статьи из Википедии. В России можно видеть названия улиц всех городов в центральных областях.
  • Пользователи могут создавать свои собственные метки и накладывать свои изображения поверх спутниковых (это могут быть карты, или более детальные снимки, полученные из других источников). Этими метками можно обмениваться с другими пользователями программы через форум Google Earth Community. Отправленные на этот форум метки становятся примерно через месяц видны всем пользователям Google Earth.
  • В программе есть слой «3D Здания», с трёхмерными моделями, добавляемыми разработчиками или самими пользователями, посредством сервиса 3D Warehouse. В городах России можно найти модели некоторых значимых памятников архитектуры.
  • Есть также упрощённая Java-версия программы для сотовых телефонов.
  • Имеется функция измерения расстояний.
  • В версии 4.2 появилась технология Google Sky, позволяющая рассматривать звёздное небо.
  • В версии 5.0 была введена возможность просматривать трёхмерную карту дна морей и океанов.

Технология GeoMedia является архитектурой ГИС нового поколения, позволяющая работать напрямую без импорта/экспорта одновременно с множеством пространственных данных в различных форматах. Это достигается применением специальных компонентов доступа к данным - Intergraph GeoMedia Data Server.

Позволяет визуализировать и анализировать пространственную информацию (поиск, фильтрация по условию, динамическая визуализация по условию или от изменения информации в БД, буферные зоны, статистика, анализ близости, топологический анализ (типа «находится ли объект А внутри объекта Б» и пр.) и мн. другое), подготовка карт к печати. Для конечных пользователей (не ГИС-конструкторов и администраторов) выполнение запросов по шаблону в среде настроенного рабочего сеанса. Напрямую (без конвертации и порчи в этот момент данных) подключается к следующим источникам информации (серверам и файлам в соотв. форматах): ArcGIS, MapInfo, MGE, GeoMedia (хранилище на платформе Microsoft Access, Microsoft SQL Server, Oracle Server), универсальные базы данных Oracle Server, IBM DB2 и Microsoft SQL Server, векторные карты или графика в форматах MicroStation (Bentley Systems), AutoCAD (Autodesk) и др., растровые данные (с и без геопривязки) такие, как аэрокосмические снимки и сканированные бумажные картматериалы в форматах TIFF, JPEG, CIT, RLE и пр., Веб-серверы WMS, электронные таблицы, табличные источники данных ODBC и даже ASCII тексты (в качестве полноценного хранилища, но, конечно же, форматированные). Не подходит для редактирования и/или создания данных (цифровых карт).

NASA World Wind

Полностью трёхмерный интерактивный виртуальный глобус, созданный NASA. Использует спутниковые снимки NASA и аэрофотосъёмку USGS для построения трёхмерных моделей планеты. Первоначально в программе содержатся карты с низким разрешением. При приближении некоторой рассматриваемой области на карте, изображения с высоким разрешением скачиваются с серверов NASA.

Программа позволяет выбирать масштаб, направление и угол зрения, видимые слои, производить поиск по географическим названиям. Возможно отображение названий географических объектов и политических границ.

Функция изменения масштаба реализована в World Wind как изменение высоты, с которой на поверхность смотрит камера. С большой высоты изображение выглядит плоским, однако с высоты несколько десятков километров в горах отчетливо заметен эффект перспективы, а плавная прокрутка изображения создает впечатление полета над реальной местностью.

Кроме изображения Земли, программа показывает также и поверхность Луны. Изображения получены со спутника «Клементина», запущенного в 1994 году и сделавшего за это время около 1.8 миллионов снимков. NASA World Wind позволяет наблюдать Луну почти в любой ей точке, регулируя приближение изображения. На изображении отчётливо просматривается рельеф естественного спутника, горы, кратеры и расщелины. Некоторые изображения настолько детализированы, что даёт возможность настройки вида поверхности Луны с двадцати метров.

gvSIG


Свободная геоинформационная система с открытым исходным кодом . Первая рабочая версия появилась в конце 2006 года и распространялась через интернет. Является инструментарием управления географической информацией с интуитивно понятным интерфейсом, прекрасно работающим как с растровым, так и с векторным форматом. gvSIG развивается с правительственного гранта Испании.

Программа поддерживает все необходимые функции ГИС:

  • Pабота со слоями, благодаря которой можно отображать лишь необходимые в данный момент объекты;
  • Функции масштабирования карты;
  • Поддержка сохранения необходимых ракурсов карты;
  • Автоматические расчёты расстояния между объектами и площадей областей;
  • Размещение активных объектов на карту;
  • Создание профессиональных географических карт с необходимыми элементами, которые можно впоследствии печатать.

ArcGIS

Семейство программных продуктов американской компании ESRI, одного из лидеров мирового рынка геоинформационных систем. ArcGIS построена на основе технологий COM, .NET, Java, XML, SOAP. Новейшая версия - ArcGIS 10.

ArcGIS позволяет визуализировать (представить в виде цифровой карты) большие объёмы статистической информации, имеющей географическую привязку. В среде создаются и редактируются карты всех масштабов: от планов земельных участков до карты мира.

Также в ArcGIS встроен широкий инструментарий анализа пространственной информации.

ArcGis используется в самых различных областях:

  • Земельный кадастр, землеустройство
  • Учёт объектов недвижимости (см.: АИС учёта объектов недвижимости, ИСОГД )
  • Инженерные коммуникации
  • МВД и МЧС
  • Телекоммуникации
  • Нефть и газ
  • Экология
  • Государственная пограничная служба
  • Транспорт
  • Лесное хозяйство
  • Водные ресурсы
  • Дистанционное зондирование
  • Недропользование
  • Геодезия, картография, география
  • Бизнес
  • Торговля и услуги
  • Сельское хозяйство
  • Образование

Следует отметить, что GRASS GIS одна из старейших геоинформационных систем. Ее разработку инициировала лаборатория U. S. Army Construction Engineering Research в 1982 году. В 1995 исходные тексты GRASS были опубликованы под лицензией GPL.

Главнейшей особенностью GRASS является модульная структура, позволяющая формировать из отдельных функциональных единиц ГИС, оптимизированную под нужды конечного пользователя.

Основные группы модулей:

  • визуализация;
  • взаимодействие с СУБД (хранение пространственной и атрибутивной информации);
  • image processing (обработка спутниковых снимков, создание композитных снимков, геометрическая и хроматическая коррекция);
  • управление печатью;
  • работа с растровыми картами (shade-модели, масштабирование);
  • работа с векторными картами (операции пространственного анализа, атрибутивные запросы);
  • и др.
  • GeoMedia - это и ГИС-технология, и семейство ГИС-продуктов. Технология GeoMedia является архитектурой ГИС нового поколения, позволяющая работать напрямую без импорта/экпорта одновременно с множеством пространственных данных в различных форматах. Это достигается применением специальных компонентов доступа к данным - Intergraph GeoMedia Data Server. На сегодняшний день пользователям GeoMedia доступны компоненты для всех основных индустриальных форматов хранилищ цифровых картографических данных: ArcInfo, ArcView, ASCII, AutoCAD, FRAMME, GeoMedia, GML, MapInfo, MGE, MicroStation, Oracle Spatial и др., включая растровые, табличные и мультимедийные данные. При этом пользователи могут разработать собственный GeoMedia Data Server на основе шаблона для произвольного формата. Компоненты Intergraph GeoMedia Data Server позволяют на одной карте увидеть и одновременно проанализировать данные из произвольного количества источников, хранящихся в разных форматах, системах координат, имеющие различную точность. Понравилось это:


Понравилась статья? Поделиться с друзьями: