Инструкции avx что такое. Смотреть что такое "AVX" в других словарях

В моем коде на С++ используется SSE, и теперь я хочу улучшить его, чтобы поддерживать AVX, когда он доступен. Поэтому я обнаруживаю, что AVX доступен и вызывает функцию, использующую команды AVX. Я использую Win7 SP1 + VS2010 SP1 и процессор с AVX.

Чтобы использовать AVX, необходимо включить следующее:

#include "immintrin.h"

а затем вы можете использовать встроенные функции AVX, такие как _mm256_mul_ps , _mm256_add_ps и т.д. Проблема заключается в том, что по умолчанию VS2010 производит код, который работает очень медленно и показывает предупреждение:

предупреждение C4752: найдено расширенные векторные расширения Intel (R); рассматривать использование /arch: AVX

Кажется, VS2010 фактически не использует инструкции AVX, но вместо этого имитирует их. Я добавил /arch:AVX в параметры компилятора и получил хорошие результаты. Но этот параметр говорит компилятору, когда это возможно, использовать команды AVX. Так что мой код может упасть на CPU, который не поддерживает AVX!

Итак, вопрос заключается в том, как заставить VS2010-компилятор создавать AVX-код, но только когда я прямо указываю встроенные функции AVX. Для SSE он работает, я просто использую внутренние функции SSE, и он генерирует код SSE без каких-либо параметров компилятора, таких как /arch:SSE . Но для AVX он по какой-то причине не работает.

2 ответов

Поведение, которое вы видите, является результатом дорогостоящего переключения состояний.

См. стр. 102 руководства Agner Fog:

Каждый раз, когда вы неправильно переключаетесь между командами SSE и AVX, вы платите чрезвычайно высокий штраф (~ 70).

Когда вы компилируете без /arch:AVX , VS2010 будет генерировать инструкции SSE, но все равно будет использовать AVX везде, где у вас есть встроенные функции AVX. Поэтому вы получите код с инструкциями SSE и AVX, которые будут иметь такие штрафы за переключение состояний. (VS2010 знает это, поэтому он выдает предупреждение, которое вы видите.)

Следовательно, вы должны использовать либо все SSE, либо все AVX. Задание /arch:AVX указывает компилятору использовать все AVX.

Похоже, вы пытаетесь создать несколько путей кода: один для SSE и один для AVX. Для этого я предлагаю вам разделить ваш SSE и AVX-код на два разных блока компиляции. (один скомпилирован с /arch:AVX и один без него). Затем соедините их вместе и сделайте диспетчер для выбора на основе того, на каком оборудовании оно работает.

Если вам требуется для объединения SSE и AVX, обязательно используйте _mm256_zeroupper() или _mm256_zeroall() , чтобы избежать штрафов за переключение состояний.

/* Use VZEROUPPER to avoid the penalty of switching from AVX to SSE. See Intel Optimization Manual (April 2011, version 248966), Section 11.3 */ #define VLEAVE _mm256_zeroupper

Затем VLEAVE(); вызывается в конце каждой функции, используя встроенные инструкции для AVX.

Улучшения

  • Новая схема кодирования инструкций VEX
  • Размер векторных регистров SIMD увеличивается со 128 (XMM) до 256 бит (регистры YMM0 - YMM15). Существующие 128-битные SSE инструкции будут использовать младшую половину новых YMM регистров, не изменяя старшую часть. Для работы с YMM регистрами добавлены новые 256-битные AVX инструкции. В будущем возможно расширение векторных регистров SIMD до 512 или 1024 бит.

Новая схема кодирования

Новая схема кодирования инструкций VEX использует VEX префикс. В настоящий момент существуют два VEX префикса, длиной 2 и 3 байта. Для 2-х байтного VEX префикса первый байт равен 0xC5, для 3-х байтного 0xC4. В 64-битном режиме первый байт VEX префикса уникален. В 32-битном режиме возникает конфликт с инструкциями LES и LDS, который разрешается старшим битом второго байта, он имеет значение только в 64-битном режиме, через неподдерживаемые формы инструкций LES и LDS. Длина существующих AVX инструкций, вместе с VEX префиксом, не превышает 11 байт. В следующих версиях ожидается появление более длинных инструкций.

Новые инструкции

Инструкция Описание
VBROADCASTSS, VBROADCASTSD, VBROADCASTF128 Копирует 32-х, 64-х или 128-ми битный операнд из памяти во все элементы векторного регистра XMM или YMM.
VINSERTF128 Замещает младшую или старшую половину 256-ти битного регистра YMM значением 128-ми битного операнда. Другая часть регистра-получателя не изменяется.
VEXTRACTF128 Извлекает младшую или старшую половину 256-ти битного регистра YMM и копирует в 128-ми битный операнд-назначение.
VMASKMOVPS, VMASKMOVPD Условно считывает любое количество элементов из векторного операнда из памяти в регистр-получатель, оставляя остальные элементы несчитанными и обнуляя соответствующие им элементы регистра-получателя. Также может условно записывать любое количество элементов из векторного регистра в векторный операнд в памяти, оставляя остальные элементы операнда памяти неизменёнными
VPERMILPS, VPERMILPD Переставляет 32-х или 64-х битные элементы вектора согласно операнду-селектору (из памяти или из регистра).
VPERM2F128 Переставляет 4 128-ми битных элемента двух 256-ти битных регистров в 256-ти битный операнд-назначение с использованием непосредственной константы (imm) в качестве селектора.
VZEROALL Обнуляет все YMM регистры и помечает их как неиспользуемые. Используется при переключении между 128-ми битным режимом и 256-ти битным.
VZEROUPPER Обнуляет старшие половины всех регистров YMM. Используется при переключении между 128-ми битным режимом и 256-ти битным.

Также в спецификации AVX описана группа инструкций PCLMUL (Parallel Carry-Less Multiplication, Parallel CLMUL)

  • PCLMULLQLQDQ xmmreg,xmmrm
  • PCLMULHQLQDQ xmmreg,xmmrm
  • PCLMULLQHQDQ xmmreg,xmmrm
  • PCLMULHQHQDQ xmmreg,xmmrm
  • PCLMULQDQ xmmreg,xmmrm,imm

Применение

Подходит для интенсивных вычислений с плавающей точкой в мультимедиа программах и научных задачах. Там, где возможна более высокая степень параллелизма, увеличивает производительность с вещественными числами.

Поддержка в операционных системах

Использование YMM регистров требует поддержки со стороны операционной системы. Следующие системы поддерживают регистры YMM:

Микропроцессоры с AVX

Совместимость между реализациями Intel и AMD обсуждается в XOP instruction set .

Будущие расширения

Схема кодирования инструкций VEX легко допускает дальнейшее расширение набора инструкций AVX. В следующей версии, AVX2, планируется добавить инструкции для работы с целыми числами, FMA3 (увеличит производительность при обработке чисел с плавающей запятой в 2 раза ), загрузку распределенного в памяти вектора (gather) и прочее.

Различные планируемые дополнения системы команд x86 :

  • CLMUL
  • AMD FMA4
  • AMD XOP
  • AMD CVT16

Примечания


Наборы расширения базовых инструкций процессоров семейства x86
MMX | MMXEXT | SSE | SSE2 | SSE3 | SSSE3 | SSE4 | ATA | 3DNow! | 3DNowExt | SSE5 | AVX | AES

Wikimedia Foundation . 2010 .

  • Управление государственной безопасности (Венгрия)

Смотреть что такое "AVX" в других словарях:

    Avx - {{{image}}} Sigles d une seule lettre Sigles de deux lettres > Sigles de trois lettres AAA à DZZ EAA à HZZ IAA à LZZ MAA à PZZ QAA à TZZ UAA à XZZ … Wikipédia en Français

    AVX - Sigles d’une seule lettre Sigles de deux lettres > Sigles de trois lettres Sigles de quatre lettres Sigles de cinq lettres Sigles de six lettres Sigles de sept… … Wikipédia en Français

Описание тестовых систем и методики тестирования

Основанная цель тестирования - выявление того прироста производительности, который можно получить благодаря разгону неоверклокерских процессоров. Поэтому взятые нами для испытаний младшие представители в линейках Core i5 и i3, процессоры Core i5-6400 и i3-6100, были протестированы дважды: в номинальном режиме работы и на частоте 4,7 ГГц, которую, основываясь на полученном опыте, можно считать достаточно типичным оверклокерским режимом для CPU поколения Skylake. Кроме того, в тестах принял участие и полноценный оверклокерский процессор K-серии, Core i5-6600K. Его присутствие в испытаниях необходимо для того, чтобы оценить, различается ли быстродействие в разгоне у процессоров, предназначенных и не предназначенных для эксплуатации во внештатных режимах, и если да, то насколько. Core i5-6600K был протестирован нами дважды: как в номинальном режиме, так и при разгоне до 4,6 ГГц (это - предельно достижимая частота для нашего экземпляра с повышением напряжения питания до 1,425 В).

Полный список задействованных в тестовых системах комплектующих выглядит следующим образом:

  • Процессоры:
    • Intel Core i5-6600K (Skylake, 4 ядра, 3,5-3,9 ГГц, 6 Мбайт L3);
    • Intel Core i5-6400 (Skylake, 4 ядра, 2,7-3,3 ГГц, 6 Мбайт L3);
    • Intel Core i3-6100 (Skylake, 2 ядра + HT, 3,7 ГГц, 3 Мбайт L3).
    • Процессорный кулер: Noctua NH-U14S.
    • Материнская плата: ASUS Maximus VIII Ranger (LGA1151, Intel Z170).
    • Память: 2 × 8 Гбайт DDR4-3200 SDRAM, 16-18-18-36 (Corsair Vengeance LPX CMK16GX4M2B3200C16R).
    • Видеокарта: NVIDIA GeForce GTX 980 Ti (6 Гбайт/384-бит GDDR5, 1000-1076/7010 МГц).
    • Дисковая подсистема: Kingston HyperX Savage 480 GB (SHSS37A/480G).
    • Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 10586 с использованием следующего комплекта драйверов:

  • Intel Chipset Driver 10.1.1.8;
  • Intel Management Engine Interface Driver 11.0.0.1157;
  • NVIDIA GeForce 361.43 Driver.

Описание использовавшихся для измерения вычислительной производительности инструментов:

Бенчмарки :

  • BAPCo SYSmark 2014 ver 1.5 - тестирование в сценариях Office Productivity (офисная работа: подготовка текстов, обработка электронных таблиц, работа с электронной почтой и посещение интернет-сайтов), Media Creation (работа над мультимедийным контентом — создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео) и Data/Financial Analysis (статистический анализ и прогнозирование инвестиций на основе некой финансовой модели).
  • Futuremark 3DMark Professional Edition 1.5.915 — тестирование в сценах Sky Diver, Cloud Gate и Fire Strike.

Приложения :

  • Adobe After Effects CC 2015 — тестирование скорости рендеринга методом трассировки лучей. Измеряется время, затрачиваемое системой на обсчёт в разрешении 1920 × 1080@30fps заранее подготовленного видеоролика.
  • Adobe Photoshop CC 2015 — тестирование производительности при обработке графических изображений. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.
  • Adobe Photoshop Lightroom 6.1 - тестирование производительности при пакетной обработке серии изображений в RAW-формате. Тестовый сценарий включает постобработку и экспорт в JPEG с разрешением 1920 × 1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.
  • Adobe Premiere Pro CC 2015 — тестирование производительности при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.
  • Autodesk 3ds max 2016 — тестирование скорости финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920 × 1080 с применением рендерера mental ray стандартной сцены Hummer.
  • Blender 2.76 - тестирование скорости финального рендеринга в одном из популярных свободных пакетов для создания трёхмерной графики. Измеряется продолжительность построения финальной модели из Blender Cycles Benchmark rev4.
  • Microsoft Edge 20.10240.16384.0 - тестирование производительности при работе интернет-приложений, построенных с использованием современных технологий. Применяется специализированный тест WebXPRT 2015, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.
  • TrueCrypt 7.2 — тестирование криптографической производительности. Используется встроенный в программу бенчмарк, задействующий тройное шифрование AES-Twofish-Serpent.
  • WinRAR 5.30 — тестирование скорости архивации. Измеряется время, затрачиваемое архиватором на сжатие директории с различными файлами общим объёмом 1,7 Гбайт. Используется максимальная степень компрессии.
  • x264 r2638 — тестирование скорости транскодирования видео в формат H.264/AVC. Для оценки производительности используется исходный 1080p@50FPS AVC-видеофайл, имеющий битрейт около 30 Мбит/с.
  • x265 1.8+188 8bpp — тестирование скорости транскодирования видео в перспективный формат H.265/HEVC. Для оценки производительности используется тот же видеофайл, что и в тесте скорости транскодирования кодером x264.

Игры :

  • Company of Heroes 2. Настройки для разрешения 1280 × 800: Maximum Image Quality, Anti-Aliasing = Off, Higher Texture Detail, High Snow Detail, Physics = Off. Настройки для разрешения 1920 × 1080: Maximum Image Quality, High Anti-Aliasing, Higher Texture Detail, High Snow Detail, Physics = High.
  • Grand Theft Auto V. Настройки для разрешения 1280 × 800: DirectX Version = DirectX 11, FXAA = Off, MSAA = Off, NVIDIA TXAA = Off, Population Density = Maximum, Population Variety = Maximum, Distance Scaling = Maximum, Texture Quality = Very High, Shader Quality = Very High, Shadow Quality = Very High, Reflection Quality = Ultra, Reflection MSAA = Off, Water Quality = Very High, Particles Quality = Very High, Grass Quality = Ultra, Soft Shadow = Softest, Post FX = Ultra, In-Game Depth Of Field Effects = On, Anisotropic Filtering = x16, Ambient Occlusion = High, Tessellation = Very High, Long Shadows = On, High Resolution Shadows = On, High Detail Streaming While Flying = On, Extended Distance Scaling = Maximum, Extended Shadows Distance = Maximum. Настройки для разрешения 1920 × 1080: DirectX Version = DirectX 11, FXAA = Off, MSAA = x4, NVIDIA TXAA = Off, Population Density = Maximum, Population Variety = Maximum, Distance Scaling = Maximum, Texture Quality = Very High, Shader Quality = Very High, Shadow Quality = Very High, Reflection Quality = Ultra, Reflection MSAA = x4, Water Quality = Very High, Particles Quality = Very High, Grass Quality = Ultra, Soft Shadow = Softest, Post FX = Ultra, In-Game Depth Of Field Effects = On, Anisotropic Filtering = x16, Ambient Occlusion = High, Tessellation = Very High, Long Shadows = On, High Resolution Shadows = On, High Detail Streaming While Flying = On, Extended Distance Scaling = Maximum, Extended Shadows Distance = Maximum.
  • F1 2015. Настройки для разрешения 1280 × 800: Ultra High Quality, 0xAA, 16xAF. Настройки для разрешения 1920 × 1080: Ultra High Quality, SMAA + TAA, 16xAF. В тестировании используется трасса Melbourne.
  • Hitman: Absolution. Настройки для разрешения 1280 × 800: Ultra Quality, MSAA = Off, High Texture Quality, 16x Texture Aniso, Ultra Shadows, High SSAO, Global Illumination = On, High Reflections, FXAA = On, Ultra Level of Detail, High Depth of Field, Tesselation = On, Normal Bloom. Настройки для разрешения 1920 × 1080: Ultra Quality, 8x MSAA, High Texture Quality, 16x Texture Aniso, Ultra Shadows, High SSAO, Global Illumination = On, High Reflections, FXAA = On, Ultra Level of Detail, High Depth of Field, Tesselation = On, Normal Bloom.
  • Metro: Last Light Redux. Настройки для разрешения 1280 × 800: DirectX 11, High Quality, Texture Filtering = AF 16X, Motion Blur = Normal, SSAA = Off, Tessellation = Normal, Advanced PhysX = Off. Настройки для разрешения 1920 × 1080: DirectX 11, Very High Quality, Texture Filtering = AF 16X, Motion Blur = Normal, SSAA = On, Tessellation = Normal, Advanced PhysX = Off. При тестировании используется сцена Scene 1.
  • Tom Clancy"s Rainbow Six Siege. Настройки для разрешения 1280 × 800: Texture Quality = Ultra, Texture Filtering = Anisotropic 16x, LOD Quality = Ultra, Shading Quality = High, Shadow Quality = Very High, Reflection Quality = High, Ambient Occlusion = SSBC, Lens Effects = Bloom + Lens Flare, Zoom-In Depth of Field = On, Post-Process Anti-Aliasing = Off, Multisample Anti-Aliasing = Off. Настройки для разрешения 1920 × 1080: Texture Quality = Ultra, Texture Filtering = Anisotropic 16x, LOD Quality = Ultra, Shading Quality = High, Shadow Quality = Very High, Reflection Quality = High, Ambient Occlusion = SSBC, Lens Effects = Bloom + Lens Flare, Zoom-In Depth of Field = On, Post-Process Anti-Aliasing = Off, Multisample Anti-Aliasing = MSAA 4x.
  • Thief. Настройки для разрешения 1280 × 800: Texture Quality = Very High, Shadow Quality = Very High, Depth-of-field Quality = High, Texture Filtering Quality = 8x Anisotropic, SSAA = Off, Screenspace Reflections = On, Parallax Occlusion Mapping = On, FXAA = Off, Contact Hardening Shadows = On, Tessellation = On, Image-based Reflection = On. Настройки для разрешения 1920 × 1080: Texture Quality = Very High, Shadow Quality = Very High, Depth-of-field Quality = High, Texture Filtering Quality = 8x Anisotropic, SSAA = High, Screenspace Reflections = On, Parallax Occlusion Mapping = On, FXAA = On, Contact Hardening Shadows = On, Tessellation = On, Image-based Reflection = On.
  • Total War: Attila. Настройки для разрешения 1280 × 800: Anti-Aliasing = Off, Texture Resolution = Ultra; Texture Filtering = Anisotropic 4x, Shadows = Max. Quality, Water = Max. Quality, Sky = Max. Quality, Depth of Field = Off, Particle Effects = Max. Quality, Screen space reflections = Max. Quality, Grass = Max. Quality, Trees = Max. Quality, Terrain = Max. Quality, Unit Details = Max. Quality, Building Details = Max. Quality, Unit Size = Ultra, Porthole Quality = 3D, Unlimited video memory = Off, V-Sync = Off, SSAO = On, Distortion Effects = On, Vignette = Off, Proximity fading = On, Blood = On. Настройки для разрешения 1920 × 1080: Maximum Quality.

Итак, разгон, каким мы его знали несколько лет тому назад - до того, как Intel стала выпускать специализированные оверклокерские процессоры и блокировать возможность повышения рабочих частот в остальных CPU, наконец-то возвращается. Трудно сказать, откуда на самом деле было получено решение вопроса со снятием блокировки частоты базового тактового генератора у всего модельного ряда Skylake. Возможно, интеловская защита BCLK Governor оказалась не столь прочной и пала под натиском разработчиков BIOS материнских плат. Но и возможно, что подтолкнула их в нужную сторону сама Intel, ведь в конечном итоге выиграли все: и микропроцессорный гигант, и производители плат, и пользователи.

Действительно, благодаря открывшимся возможностям разгона у покупателей появились новые аргументы в пользу перехода на платформу LGA1151. Нет никаких сомнений, что это в определённой степени простимулирует продажи новых процессоров. Попутно получат новых клиентов и производители плат, которые наверняка смогут увеличить продажи моделей на базе Intel Z170. Внакладе не останутся и пользователи из числа энтузиастов. Перед ними открывается не только дополнительный простор для экспериментов, но и возможность извлечь вполне очевидную финансовую выгоду. Ведь теперь оверклокерские системы можно собирать из более дешёвых, чем раньше, комплектующих.

Но особую пикантность всей этой ситуации придаёт то, насколько всё удачно сложилось именно для Intel. Ведь открытие возможности разгона любых, в том числе и неоверклокерских, LGA1151-процессоров легко могло бы стать причиной падения спроса на флагманские модели Skylake. Однако продажи старших Skylake с официально разрешённым разгоном в безопасности. Дело в том, что при разгоне не-K-процессоров неожиданно возникает целый букет проблем, самая скверная из которых — снижение скорости выполнения AVX/AVX2-инструкций. В результате быстродействие при работе с целым рядом программ при оверклокинге не только не увеличивается, а напротив - падает. То есть реальную пользу от такого разгона можно извлечь лишь в тех случаях, когда речь идёт исключительно о работе в приложениях, не задействующих современные возможности процессорного FPU.

Всё это означает, что если речь идёт о профессиональной деятельности, для которой не хватает производительности работающих в номинальном режиме CPU, - выбирать можно, как и раньше, лишь из Core i5-6600K или Core i7-6700K. Разгон же не-К-процессоров фактически подходит лишь для того, чтобы поиграться - в обоих смыслах этого слова. С одной стороны, экспериментировать с разгоном таких процессоров безумно интересно, ведь это действительно что-то новое и отчасти запретное. С другой - игры относятся к числу тех приложений, которые AVX/AVX2-инструкции (пока?) не задействуют.

Впрочем, даже если вас интересуют исключительно игры и программы, где AVX/AVX2-расширения не используются и использоваться заведомо не будут, появившаяся у неоверклокерских процессоров поколения Skylake возможность разгона совсем не означает, что вы, выражаясь фигурально, сможете отмотать время назад и вернуться в золотой век Celeron 300A. В реалиях сегодняшнего дня нарастить производительность дешёвого процессора до уровня флагмана невозможно ни при каких обстоятельствах. После того как в середине 2000-х годов Intel поделила ассортимент потребительских процессоров на классы по числу вычислительных ядер и перечню поддерживаемых технологий, любая «межклассовая борьба» безвозвратно ушла в прошлое. И это наглядно показали проведённые тесты. Младший Core i3-6100 может претендовать лишь на то, чтобы при разгоне пытаться дотянуться до быстродействия начальных моделей Core i5. А младший Core i5-6400 может попробовать побороться с Core i5-6600K, но замахнуться на соперничество с Core i7-6700K ему, естественно, не по силам.

Новейшее функциональное расширение AVX512 (Advanced Vector Ex­ten­sion 512-bit), также известное под именем AVX3, состоит из девяти тех­но­ло­гий, каждая из которых может опционально поддерживаться или не поддерживаться конкретным процессором. Ряд внедрений рас­смат­ри­ва­е­мо­го семейства, связанных с операциями повышенной разрядности, уже применяется в сопроцессорах Intel Xeon Phi и опционально до­ступ­ны в процессорах Xeon с микроархитектурой Skylake. Напомним, что сопроцессоры Xeon Phi предназначены для установки в PCI Express слот.

Базовая функциональность AVX512

Принятое сокращение: AVX 512 F (Foundation ) . Это базовый или минимальный набор выполняемых команд и про­грам­мно-доступных ресурсов, необходимых для обработки 512-битных векторов. Поддержка AVX512F под­ра­зу­ме­ва­ет расширение разрядности векторных регистров до 512 бит и увеличение количества этих регистров до 32. Для сравнения, функциональное расширение предыдущего поколения (AVX2), реализованное в процессорах Haswell, подразумевает использование 16 регистров разрядностью 256 бит. Традиционно, «старые» регистры являются ча­стью «новых». В данном случае это означает, что 16 256-битных регистров YMM отображаются на млад­шие 256-битные «половинки» 512-битных регистров ZMM.

Как следует из несложных подсчетов, новое 512-битное операционное устройство способно обрабатывать 8 64-битных чисел двойной точности либо 16 32-битных чисел одинарной точности за одну векторную команду.

В базовый набор AVX512F также входит предикатное выполнение векторных операций. Это означает, что при об­ра­бот­ке чисел, упакованных в 512-битном регистре, операция может быть выполнена или отменена, ин­ди­ви­ду­аль­но для каждого числа. Например, при обработке 16 32-битных чисел одинарной точности, 16-битный предикат, содержащий все «единицы» обеспечит выполнение операции для всех чисел. Если все биты предиката нулевые, операция не выполняется. А установив, например два младших бита предиката, можно выполнить операцию для двух первых чисел, оставив остальные числа незатронутыми. Для хранения предикатов вводится 8 до­пол­ни­тель­ных 64-битных регистров K0–K7.

Рис 1

Аппаратное выявление конфликтов

Принятое сокращение: AVX512CD (Conflict Detection) . Используется для эффективного обнаружения ситуаций, при которых заданные программные процедуры не могут быть выполнены параллельно в силу зависимости по данным. Вспомним, что при оптимизации программных циклов применяется метод, подразумевающий переход от последовательного к параллельному выполнению итераций цикла. Цикл «разворачивается» в линейную последовательность операций, затем эти операции выполняются параллельно с использованием векторных регистров. Такой прием допускается только в том случае, если между итерациями цикла нет «конфликтов» по данным. Иначе, если некоторая итерация использует данные, которые должна подготовить предыдущая итерация, их параллельное выполнение приведет к ошибке.

Опережающая загрузка данных

Принятое сокращение: AVX 512 PF (Prefetch ) . Механизм опережающей загрузки усовершенствован с целью загрузки произвольно фрагментированных данных. Опережающая загрузка в простейшем виде, применяется в процессорах Intel еще со времен Pentium III. Она состоит в заблаговременном чтении операндов из оперативной памяти в кэш-память с помощью специальных команд (prefetch hints). Это минимизирует непроизводительные паузы в работе процессора, поскольку в момент затребования данных они уже загружены из памяти. Теперь эту операцию можно выполнить не только для одной ячейки памяти, но и для списка ячеек, адреса которых находятся в векторном регистре.


Рис 2

Вычисление экспоненты и обратных величин

Принятое сокращение: AVX512ER (Exponential and Reciprocal) . Эта группа команд формирует аппроксимированные (приближенные) результаты для экспоненты, обратной величины и обратной величины квадратного корня. Относительная погрешность, в зависимости от типа команды составляет до 2 в степени минус 23 либо 2 в степени минус 28. Команды этой группы используются для эффективной поддержки ситуаций, в которых допустимо пожертвовать точностью ради производительности. Сразу оговоримся, под экспонентой здесь понимается возведение двойки (а не числа e) в заданную степень. Эта спорная терминологическая особенность на совести инженеров Intel.

Операции переменной разрядности

Принятое сокращение: AVX 512 VL (Vector Length ) . Эта функциональность обеспечивает использование возможностей AVX512, в частности, описанных выше предикатов и 32 векторных регистров) для операндов, размер которых 128 и 256 бит.

Обработка байтов и 16-битных операндов

Принятое сокращение: AVX 512 BW (Byte and Word ) . Обеспечивает использование возможностей AVX512 для целочисленных операций разрядностью 8 и 16 бит.

Обработка 32 и 64-битных операндов

Принятое сокращение: AVX 512 DQ (Double word and Quad Word ) . Обеспечивает использование возможностей AVX512 для операций разрядностью 32 и 64 бита.

Совмещенное умножение-сложение для 52-битных операндов

Принятое сокращение: AVX512IFMA (Integer Fused Multiply and Add) . Перемножение целых чисел без знака, разрядностью 52 бита. В открытых документах не удалось найти объяснение использования столь нетипичного формата чисел. Вспомнив, что разрядность мантиссы для числа двойной точности - 52 бита, позволим себе предположить, что целью была возможность целочисленной (а потому быстрой) обработки мантиссы как самостоятельной величины.

Операции с байтами в составе векторных регистров

Принятое сокращение: AVX512VBM (Vector Byte Manipulation) . Сюда входят инструкции для перестановки и избирательной пересылки байтовых операндов, расположенных в векторных регистрах.

Резюме

Как видно из вышеизложенного, расширение AVX512 подразумевает введение новых процессорных команд и архитектурных ресурсов. Поэтому, прибавку производительности получит только то программное обеспечение, которое написано и оптимизировано с учетом новой технологии.

Очевидно, для работы такой технологии требуется поддержка и со стороны операционной системы, поскольку увеличение количества и разрядности регистров приводит к увеличению количества информации, которую требуется сохранять и восстанавливать при переключении контекста процессора в многозадачной среде. Отметим, что компания Intel максимально унифицировала

Сегодня хочу завести разговор на тему, что такое avx инструкции в процессоре, где и для чего они используются.

Среднестатистический покупашка идет в магазин и хочет купить компьютер / ноутбук для работы и для игр. На практике это - помощней и подешевле, чтоб реферат в ворде написать после чего играть.
Что касается процессоров - на полках лежат сердитые пеньки равные по мощности ай-третьим. Неужели i3 это маркетинговый заговор? Неужели Pentium это "такой ай три только дешевле"? И да и нет. А дело вот в чем.

Чтобы написать реферат в ворде - хватит самого дешевого Celeron (причем можно взять "процессор затычку" еще дешевле, если брать его на барахолке с чеком и остатком гарантии).
Чтобы после реферата сыграть во все игры - подойдет Pentium обладающий задатками ай-третьего (2 ядра 4 потока). Для игр AVX-инструкции не обязательны (лишь бы нужные SSE были).

А вот для профессиональных задач, пригодится аппаратная виртуализация и поддержка AVX-инструкций, поэтому - лучше взять минимум ай-третий.

Зачем нужны AVX инструкции

Что входит в ряд профессиональных задач? Как правило, лишенные AVX камни так же лишены и аппаратного ускорения виртуализации.
Разработка под android, которая потребует виртуалку этого самого ведроида (некоторые эмуляторы даже не запустятся, некоторые будут работать уныло сильно загружая ядра).
Пережевывание мультимедийных данных (от обработки фоточек до кодирования видео и запиливания трехмерной графики, так что - уже летсплейщикам стоит раскошелиться на процессор подороже).

Если без AVX

В процессоре есть регистры для инструкций.
SSE-регистр 128-битный, а AVX-регистр 256-битный.
Таким образом, чтобы не выносить ничей мозг анатомией камня, скажем просто - 256 не влезет в 128.

Без AVX тоже можно обрабатывать фоточки, жевать видео и пилить три-дэ. Но есть нюансы...
Если по-проще, то старый 8-ядерный Xeon (не умеющий AXV) будет пилить видосы с той же скоростью что современный i3 (умеющий AVX).

У процессора есть конвейер: узнал откуда брать из памяти, взял из памяти, вычислил, отправил результаты в память.
Упрощенно конвейер с и без AVX можно изобразить так.

Как видите - операций во втором случае меньше. Из чего логично предположить, что AVX-считалочка работает быстрее (в каждом вычислительном такте). А раз быстрее в каждом такте - тогда имея меньше гигагерц можно вычислять быстрее.

Еще одна вкусность AVX это дополнительный операнд. Используется не 2 операнда а 3, что так же сокращает конвейер. Допустим мы хотим сложить X и Y.
Код: Обычная операция, где 2 операнда (X=X+Y) заставит перезаписывать один из операндов.
AVX операция, где 3 операнда (Z=X+Y) позволяет записать результат в третий операнд.
Сложна? Ок, давайте бум прощэ.

Пилить видосы имея AVX получится быстрее. Ибо, помимо вышеописанного, добавляется плюшка оптимальной разбивки кадров.
Комп пересчитывает не каждый кадр. Он разбивает кадр на прямоугольники и сравнивает их, а если находится подходящий - использует готовый кусочек.
Тут AVX научился работать с видосиками оптимальнее (кому интересно - почитайте у профессионалов, а я ограничусь красивой картинкой).

Раньше разбивка была - как показано слева. AVX-разбивка умеет более умно - как показано справа.

Подводя итог

Чтобы писать реферат в ворде - сойдет вообще любой процессор.
Чтобы после вместо реферата сыграть в игру - подойдет пень с задатками ай-третьего.
Чтобы пилить контент - лучше раскошелиться на ай-третий.



Понравилась статья? Поделиться с друзьями: