Виды сетевых атак и основные уязвимости. Характерные особенности сетевых атак

Виды атак

Проникновение в компьютерную сеть осуществляется в форме атак.

Атака – это такое событие, при котором посторонние лица пытаются проникнуть внутрь чужых сетей. Современная сетевая атака зачастую предполагает использование уязвимых мест программного обеспечения. Одними из распространенных в начале 2000-х годов были точечные атаки по типу «отказ в обслуживании», DoS (Dental of Service) и распределенные атаки DDoS (Distributed DoS). Атака DoS делает объект нападения недоступным для обычного применения за счет превышения допустимых пределов функционирования такого сетевого устройства. DoS – атака относится к точечной (сосредоточенной), так как поступает от одного источника. В случае распределенной DDoS, нападение осуществляется из множества источников, распределенных в пространстве, зачастую принадлежащим к различным сетям. Несколько лет назад стал применяться термин вредоносный программный код ВПК, который обозначает вирусы, черви, троянские системы, средства для сетевых атак, рассылку спама и другие нежелательные для пользователя действия. Учитывая разнообразный характер угроз, современные системы защиты стали многоуровневыми и приобрели комплексный характер. Сетевые черви распространяют свои копии по компьютерным сетям с помощью электронной почты, обмена сообщениями. Наиболее распространенные сегодня троянские программы, совершающие несанкционированные действия: они разрушают данные, используют ресурсы компьютеров в злонамеренных целях. К числу наиболее опасных троянских программ относятся шпионское программное обеспечения. Оно собирает информацию о всех действиях пользователя, а затем незаметно для него передает эту информацию злоумышленникам. Год 2007 можно назвать годом «смерти» некоммерческих вредоносных программ. Никто уже не разрабатывает эти программы для самовыражения. Можно отметить, что в 2007 году ни одна вредоносная программа не имела бы под собой финансовой подоплеки. Одной из новых вредоносных программ считается «Штормовой червь» (Storm Worm), который появился в январе 2007 года. Для распространения червь использовал как традиционные возможности, например, e-mail, так и распространение в виде видеофайлов. Техника сокрытия своего присутствия в системе (руткиты) могут применяться не только в троянских программах, но и в файловых вирусах. Вредоносные программы теперь стремятся выжить в системе даже после их обнаружения.

Одним из опасных способов сокрытия их присутствия - использование технологии заражения загрузочного сектора жесткого диска – так называемые «буткиты». Такая вредоносная программа может получить управление еще до загрузки основной части ОС.

Круг проблем безопасности уже не ограничивается задачей защиты от вирусов, с которыми приходилось сталкиваться примерно пять лет назад. Опасность внутренних утечек в информации стала более серьезной, чем внешние угрозы. Кроме того, с началом XXI века целью компьютерной преступности стало хищение экономической информации, банковых счетов, нарушение работоспособности информационных систем конкурентов, массовая рассылка рекламы. Не меньшую, а порой даже большую угрозу для корпоративных IT-систем представляют инсайдеры – работники компаний, имеющие доступ к конфиденциальной информации и использующие ее в неблагоприятных целях. Многие эксперты считают, что ущерб, наносимый инсайдерами не менее значительный, чем приносимый вредоносным ПО. Характерно, что значительная часть утечек информации происходит не по вине злоумышленных действий сотрудников, а из-за их невнимательности. Главными техническими средствами борьбы с подобными факторами должны быть средства аутентификации и администрирования доступа к данным. Тем не менее, число инцидентов продолжает расти (за последние годы примерно на 30% в год). Постепенно средства защиты от утечек/инсайдеров начинают интегрироваться в общую систему защиты информации. В заключении приведем обобщенную классификацию сетевых угроз (Рис. 11.3)

Хакерская атака - действие, целью которого является захват контроля (повышение прав) над удалённой/локальной вычислительной системой, либо её дестабилизация, либо отказ в обслуживании. Изначально причиной атак послужил ряд ограничений, присущих протоколу TCP/IP. В ранних версиях протокола IP отсутствовали требования безопасности, которые появились только спустя несколько лет. Но только с бурным развитием интернет-коммерции проблема стала актуальной, и пришлось в сжатые сроки внедрять стандарты безопасности.

Mailbombing - считается самым старым методом атак, хотя суть его проста и примитивна: большое количество почтовых сообщений делают невозможными работу с почтовыми ящиками, а иногда и с целыми почтовыми серверами. Для этой цели было разработано множество программ, и даже неопытный пользователь мог совершить атаку, указав всего лишь e-mail жертвы, текст сообщения, и количество необходимых сообщений. Многие такие программы позволяли прятать реальный IP-адрес отправителя, используя для рассылки анонимный почтовый сервер, Эту атаку сложно предотвратить, так как даже почтовые фильтры провайдеров не могут определить реального отправителя спама. Провайдер может ограничить количество писем от одного отправителя, но адрес отправителя и тема зачастую генерируются случайным образом.

Переполнение буфера . Пожалуй, один из самых распространенных типов атак в Интернете. Принцип данной атаки построен на использовании программных ошибок, позволяющих вызвать нарушение границ памяти и аварийно завершить приложение или выполнить произвольный бинарный код от имени пользователя, под которым работала уязвимая программа. Если программа работает под учётной записью администратора системы, то данная атака позволит получить полный контроль над компьютером жертвы, поэтому рекомендуется работать под учётной записью рядового пользователя, имеющего ограниченные права на системе, а под учётной записью администратора системы выполнять только операции, требующие административные права.

Вирусы , троянские кони, почтовые черви, снифферы, Rootkit-ы и другие специальные программы. Следующий вид атаки представляет собой более изощренный метод получения доступа к закрытой информации - это использование специальных программ для ведения работы на компьютере жертвы. Такие программы предназначены для поиска и передачи своему владельцу секретной информации, либо просто для нанесения вреда системе безопасности и работоспособности компьютера жертвы. Принципы действия этих программ различны, поэтому мы не будем рассматривать отдельно.

Сетевая разведка . В ходе такой атаки хакер собственно не производит никаких деструктивных действий, но в результате он может получить закрытую информацию о построении и принципах функционирования вычислительной системы жертвы. Полученная информация может быть использована для грамотного построения предстоящей атаки, и обычно производится на подготовительных этапах. В ходе такой разведки злоумышленник может производить сканирование портов, запросы DNS, эхо-тестирование открытых портов, наличие и защищённость прокси-серверов. В результате можно получить информацию о существующих в системе DNS-адресах, кому они принадлежат, какие сервисы на них доступны, уровень доступа к этим сервисам для внешних и внутренних пользователей.

Сниффинг пакетов . Также довольно распространенный вид атаки, основанный на работе сетевой карты в режиме promiscuous mode, а также monitor mode для сетей Wi-Fi. В таком режиме все пакеты, полученные сетевой картой, пересылаются на обработку специальному приложению, называемым сниффером, для обработки. В результате злоумышленник может получить большое количество служебной информации: кто, откуда, куда передавал пакеты, через какие адреса эти пакеты проходили. Самой большой опасностью такой атаки является получение самой информации, например логинов и паролей сотрудников, которые можно использовать для незаконного проникновения в систему под видом обычного сотрудника компании.


Promiscuous mode
или promisc mode – так называемый «неразборчивый» режим в котором сетевая плата позволяет принимать все пакеты независимо от того кому они адресованы, эта возможность обычно используется в сетевых анализаторах трафика. В нормальном состоянии на Ethernet-интерфейсе используется фильтрация пакетов канального уровня и если MAC-адрес в заголовке назначения принятого пакета не совпадает с MAC-адресом текущего сетевого интерфейса и не является широковещательным, то пакет отбрасывается. В «неразборчивом» режиме фильтрация на сетевом интерфейсе отключается и все пакеты, включая не предназначенные текущему узлу, пропускаются в систему. Большинство операционных систем требуют прав администратора для включения «неразборчивого» режима. Данный режим позволяет мониторить трафик только в данном коллизионном домене (для Ethernet или беспроводных сетей) или кольце (для сетей Token ring или FDDI), потому использование сетевых концентраторов является менее безопасным решением, чем коммутаторов так как последние не передают трафик всем вне зависимости от адреса назначения. «Неразборчивый» режим часто используется снифферами - специализированными программами позволяющими отображать и анализировать сетевой трафик для диагностики сетевых неполадок. Такие программы позволяют легко перехватывать пароли и конфиденциальные данные, передаваемые по сети в незащищенном виде, чтобы избежать этого рекомендуется использовать защищенные протоколы, в том числе SSL и различные варианты VPN/IPSec.

Сниффер - анализатор трафика, или сниффер (от англ. to sniff - нюхать) - сетевой анализатор трафика, программа или программно-аппаратное устройство, предназначенное для перехвата и последующего анализа, либо только анализа сетевого трафика, предназначенного для других узлов. Во время работы сниффера сетевой интерфейс переключается в «режим прослушивания» (Promiscuous mode), что и позволяет ему получать пакеты, адресованные другим интерфейсам в сети.

Перехват трафика может осуществляться: обычным «прослушиванием» сетевого интерфейса; подключением сниффера в разрыв канала; ответвлением (программным или аппаратным) трафика и направлением его копии на сниффер; через анализ побочных электромагнитных излучений и восстановление, таким образом, прослушиваемого трафика; через атаку на канальном или сетевом уровне, приводящую к перенаправлению трафика жертвы или всего трафика сегмента на сниффер с последующим возвращением трафика в надлежащий адрес.

· Выявить в сети вредоносное и несанкционированное ПО;

· Локализовать неисправность сети или ошибку конфигурации сетевых агентов;

· Перехватить любой не зашифрованный пользовательский трафик с целью получения паролей и другой информации;

IP-спуфинг . Тоже распространенный вид атаки в недостаточно защищённых сетях, когда злоумышленник выдает себя за санкционированного пользователя, находясь в самой организации, или за её пределами. Для этого хакеру необходимо воспользоваться IP-адресом, разрешённым в системе безопасности сети. Такая атака возможна, если система безопасности позволяет идентификацию пользователя только по IP-адресу и не требует дополнительных подтверждений.

Man-in-the-Middle . Вид атаки, когда злоумышленник перехватывает канал связи между двумя системами, и получает доступ ко всей передаваемой информации. При получении доступа на таком уровне можно модифицировать информацию нужным образом, чтобы достичь своих целей. Цель такой атаки - кража или фальсифицированные передаваемой информации, или же получение доступа к ресурсам сети. Такие атаки крайне сложно отследить, так как обычно злоумышленник находится внутри организации.

Инъекция. Атака, связанная с различного рода инъекциями, подразумевает внедрение сторонних команд или данных в работающую систему с целью изменения хода работы системы, а в результате - получение доступа к закрытым функциям и информации, либо дестабилизации работы системы в целом. Наиболее популярна такая атака в сети Интернет, но также может быть проведена через командную строку системы.

Виды инъекций:

SQL-инъекция - атака, в ходе которой изменяются параметры SQL-запросов к базе данных. В результате запрос приобретает совершенно иной смысл, и в случае недостаточной фильтрации входных данных способен не только произвести вывод конфиденциальной информации, но и изменить/удалить данные. Очень часто такой вид атаки можно наблюдать на примере сайтов, которые используют параметры командной строки (в данном случае - переменные URL) для построения SQL-запросов к базам данных без соответствующей проверки.

PHP -инъекция – один из способов взлома веб-сайтов, работающих на PHP. Он заключается в том, чтобы внедрить специально сформированный злонамеренный сценарий в код веб-приложения на серверной стороне сайта, что приводит к выполнению произвольных команд. Известно, что во многих распространённых в интернете бесплатных движках и форумах, работающих на PHP (чаще всего это устаревшие версии) есть непродуманные модули или отдельные конструкции с уязвимостями. Хакеры анализируют такие уязвимости, как не экранированные переменные, получающие внешние значения.

C крипт-инъекция илиXSS Cross Site Scripting - тип уязвимости интерактивных информационных систем в вебе. «XSS» возникает, когда в генерируемые сервером страницы по какой-то причине попадают пользовательские скрипты. Специфика подобных атак заключается в том, что вместо непосредственной атаки сервера они используют уязвимый сервер в качестве средства атаки на клиента. Долгое время программисты не уделяли им должного внимания, считая их неопасными. Однако это мнение ошибочно: на странице или в HTTP- Cookies могут быть весьма уязвимые данные (например, идентификатор сессии администратора). На популярном сайте скрипт может устроить DoS-атакy.

XPath-инъекция. Вид уязвимостей, который заключается во внедрении XPath-выражений в оригинальный запрос к базе данных XML. Как и при остальных видах инъекций, уязвимость возможна ввиду недостаточной проверки входных данных.

DoS - (Denial of Service - Отказ в обслуживании) - атака, имеющая своей целью заставить сервер не отвечать на запросы. Такой вид атаки не подразумевает получение некоторой секретной информации, но иногда бывает подспорьем в инициализации других атак. Например, некоторые программы из-за ошибок в своем коде могут вызывать исключительные ситуации, и при отключении сервисов способны исполнять код, предоставленный злоумышленником или атаки лавинного типа, когда сервер не может обработать огромное количество входящих пакетов.

DDoS - (Distributed Denial of Service) - имеющий ту же цель что и DoS, но производимой не с одного компьютера, а с нескольких компьютеров в сети. В данных типах атак используется либо возникновение ошибок, приводящих к отказу сервиса, либо срабатывание защиты, приводящей к блокированию работы сервиса, а в результате также к отказу в обслуживании. DDoS используется там, где обычный DoS неэффективен. Для этого несколько компьютеров объединяются, и каждый производит DoS атаку на систему жертвы. Вместе это называется DDoS-атака.

Любая атака представляет собой не что иное, как попытку использовать несовершенство системы безопасности жертвы либо для получения информации, либо для нанесения вреда системе, поэтому причиной любой удачной атаки является профессионализм хакера и ценность информации, а так же недостаточная компетенция администратора системы безопасности в частности, несовершенство программного обеспечения, и недостаточное внимание к вопросам безопасности в компании в принципе.

Порядок действий при обнаружении сетевых атак.

1. Классификация сетевых атак

1.1. Снифферы пакетов

Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки ). При этом сниффер перехватывает все сетевые пакеты, которые передаются через определенный домен.

1.2. IP-спуфинг

IP-спуфинг происходит, когда хакер, находящийся внутри системы или вне ее выдает себя за санкционированного пользователя. Это можно сделать двумя способами. Во-первых, хакер может воспользоваться IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам. Атаки IP-спуфинга часто являются отправной точкой для прочих атак. Классический пример — атака DoS, которая начинается с чужого адреса, скрывающего истинную личность хакера.

Обычно IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами. Для двусторонней связи хакер должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес. Некоторые хакеры, однако, даже не пытаются получить ответ от приложений. Если главная задача состоит в получении от системы важного файла, ответы приложений не имеют значения.

Если же хакеру удается поменять таблицы маршрутизации и направить трафик на ложный IP-адрес, хакер получит все пакеты и сможет отвечать на них так, будто он является санкционированным пользователем.

1.3. Отказ в обслуживании (Denial of Service — DoS )

DoS является наиболее известной формой хакерских атак. Против атак такого типа труднее всего создать стопроцентную защиту.

Наиболее известные разновидности DoS:

  • TCP SYN Flood Ping of Death Tribe Flood Network (TFN );
  • Tribe Flood Network 2000 (TFN2K );
  • Trinco;
  • Stacheldracht;
  • Trinity.

Атаки DoS отличаются от атак других типов. Они не нацелены на получение доступа к сети или на получение из этой сети какой-либо информации. Атака DoS делает сеть недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения.

В случае использования некоторых серверных приложений (таких как Web-сервер или FTP-сервер ) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений и держать их в занятом состоянии, не допуская обслуживания обычных пользователей. В ходе атак DoS могут использоваться обычные Интернет-протоколы, такие как TCP и ICMP (Internet Control Message Protocol ). Большинство атак DoS опирается не на программные ошибки или бреши в системе безопасности, а на общие слабости системной архитектуры. Некоторые атаки сводят к нулю производительность сети, переполняя ее нежелательными и ненужными пакетами или сообщая ложную информацию о текущем состоянии сетевых ресурсов. Этот тип атак трудно предотвратить, так как для этого требуется координация действий с провайдером. Если трафик, предназначенный для переполнения вашей сети, не остановить у провайдера, то на входе в сеть вы это сделать уже невозможно, потому что вся полоса пропускания будет занята. Когда атака этого типа проводится одновременно через множество устройств, атака является распределенной DoS (DDoS — distributed DoS ).

1.4. Парольные атаки

Хакеры могут проводить парольные атаки с помощью целого ряда методов, таких как простой перебор (brute force attack ), троянский конь, IP-спуфинг и сниффинг пакетов. Хотя логин и пароль часто можно получить при помощи IP-спуфинга и снифинга пакетов, хакеры часто пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название простого перебора (brute force attack ). Часто для такой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу ). Если в результате хакер получает доступ к ресурсам, он получает его на правах обычного пользователя, пароль которого был подобран. Если этот пользователь имеет значительные привилегии доступа, хакер может создать для себя «проход» для будущего доступа, который будет действовать даже если пользователь изменит свой пароль и логин.

Еще одна проблема возникает, когда пользователи применяют один и тот же (пусть даже очень хороший ) пароль для доступа ко многим системам: корпоративной, персональной и системам Интернет. Поскольку устойчивость пароля равна устойчивости самого слабого хоста, хакер, узнавший пароль через этот хост, получает доступ ко всем остальным системам, где используется тот же пароль.

1.5. Атаки типа Man-in-the-Middle

Для атаки типа Man-in-the-Middle хакеру нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера в любую другую сеть, может, к примеру, получить сотрудник этого провайдера. Для атак этого типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации. Атаки проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии.

1.6. Атаки на уровне приложений

Атаки на уровне приложений могут проводиться несколькими способами. Самый распространенный из них состоит в использовании слабостей серверного программного обеспечения (sendmail, HTTP, FTP ). Используя эти слабости, хакеры могут получить доступ к компьютеру от имени пользователя, работающего с приложением (обычно это бывает не простой пользователь, а привилегированный администратор с правами системного доступа ). Сведения об атаках на уровне приложений широко публикуются, чтобы дать возможность администраторам исправить проблему с помощью коррекционных модулей (патчей ). Главная проблема с атаками на уровне приложений состоит в том, что они часто пользуются портами, которым разрешен проход через межсетевой экран. К примеру, хакер, эксплуатирующий известную слабость Web-сервера, часто использует в ходе атаки ТСР порт 80. Поскольку Web-сервер предоставляет пользователям Web-страницы, межсетевой экран должен предоставлять доступ к этому порту. С точки зрения межсетевого экрана, атака рассматривается как стандартный трафик для порта 80.

1.7. Сетевая разведка

Сетевой разведкой называется сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети хакер, как правило, пытается получить о ней как можно больше информации. Сетевая разведка проводится в форме запросов DNS, эхо-тестирования (ping sweep) и сканирования портов. Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование (ping sweep ) адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, хакер использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. И, наконец, хакер анализирует характеристики приложений, работающих на хостах. В результате добывается информация, которую можно использовать для взлома.

1.8. Злоупотребление доверием

Этот тип действий не является «атакой» или «штурмом» . Он представляет собой злонамеренное использование отношений доверия, существующих в сети. Примером является система, установленная с внешней стороны межсетевого экрана, имеющая отношения доверия с системой, установленной с его внутренней стороны. В случае взлома внешней системы, хакер может использовать отношения доверия для проникновения в систему, защищенную межсетевым экраном.

1.9. Переадресация портов

Переадресация портов представляет собой разновидность злоупотребления доверием, когда взломанный хост используется для передачи через межсетевой экран трафика, который в противном случае был бы обязательно отбракован. Примером приложения, которое может предоставить такой доступ, является netcat.

1.10. Несанкционированный доступ

Несанкционированный доступ не может считаться отдельным типом атаки. Большинство сетевых атак проводятся ради получения несанкционированного доступа. Чтобы подобрать логин telnet, хакер должен сначала получить подсказку telnet на своей системе. После подключения к порту telnet на экране появляется сообщение «authorization required to use this resource» (для пользования этим ресурсов нужна авторизация ). Если после этого хакер продолжит попытки доступа, они будут считаться «несанкционированными» . Источник таких атак может находиться как внутри сети, так и снаружи.

1.11. Вирусы и приложения типа «троянский конь»

Рабочие станции клиентов очень уязвимы для вирусов и троянских коней. «Троянский конь» — это не программная вставка, а настоящая программа, которая выглядит как полезное приложение, а на деле выполняет вредную роль.

2. Методы противодействия сетевым атакам

2.1. Смягчить угрозу сниффинга пакетов можно с помощью следующих средств:

2.1.1. Аутентификация - Сильные средства аутентификации являются первым способом защиты от сниффинга пакетов. Под «сильным» мы понимаем такой метод аутентификации, который трудно обойти. Примером такой аутентификации являются однократные пароли (OTP — One-Time Passwords ). ОТР — это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. Под «карточкой» (token ) понимается аппаратное или программное средство, генерирующее (по случайному принципу ) уникальный одномоментный однократный пароль. Если хакер узнает этот пароль с помощью сниффера, эта информация будет бесполезной, потому что в этот момент пароль уже будет использован и выведен из употребления. Этот способ борьбы со сниффингом эффективен только для борьбы с перехватом паролей.

2.1.2. Коммутируемая инфраструктура - Еще одним способом борьбы со сниффингом пакетов в сетевой среде является создание коммутируемой инфраструктуры, при этом хакеры могут получить доступ только к трафику, поступающему на тот порт, к которому они подключены. Коммутируемая инфраструктуры не ликвидирует угрозу сниффинга, но заметно снижает ее остроту.

2.1.3. Анти-снифферы - Третий способ борьбы со сниффингом заключается в установке аппаратных или программных средств, распознающих снифферы, работающие в вашей сети. Эти средства не могут полностью ликвидировать угрозу, но, как и многие другие средства сетевой безопасности, они включаются в общую систему защиты. Так называемые «анти-снифферы» измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать «лишний» трафик.

2.1.4. Криптография - Самый эффективный способ борьбы со сниффингом пакетов не предотвращает перехвата и не распознает работу снифферов, но делает эту работу бесполезной. Если канал связи является криптографически защищенным, это значит, что хакер перехватывает не сообщение, а зашифрованный текст (то есть непонятную последовательность битов).

2.2. Угрозу спуфинга можно ослабить (но не устранить) с помощью следующих мер:

2.2.1. Контроль доступа - Самый простой способ предотвращения IP-спуфинга состоит в правильной настройке управления доступом. Чтобы снизить эффективность IP-спуфигна, контроль доступа настраивается на отсечение любого трафика, поступающего из внешней сети с исходным адресом, который должен располагаться внутри вашей сети. Это помогает бороться с IP-спуфингом, когда санкционированными являются только внутренние адреса. Если санкционированными являются и некоторые адреса внешней сети, данный метод становится неэффективным.

2.2.2. Фильтрация RFC 2827 - пресечение попытки спуфинга чужих сетей пользователями корпоративной сети. Для этого необходимо отбраковывать любой исходящий трафик, исходный адрес которого не является одним из IP-адресов Банка. Этот тип фильтрации, известный под названием «RFC 2827», может выполнять и провайдер (ISP ). В результате отбраковывается весь трафик, который не имеет исходного адреса, ожидаемого на определенном интерфейсе.

2.2.3. Наиболее эффективный метод борьбы с IP-спуфингом тот же, что и в случае со сниффингом пакетов: необходимо сделать атаку абсолютно неэффективной. IP-спуфинг может функционировать только при условии, что аутентификация происходит на базе IP-адресов. Поэтому внедрение дополнительных методов аутентификации делает этот вид атак бесполезными. Лучшим видом дополнительной аутентификации является криптографическая. Если она невозможна, хорошие результаты может дать двухфакторная аутентификация с использованием одноразовых паролей.

2.3. Угроза атак типа DoS может снижаться следующими способами:

2.3.1. Функции анти-спуфинга - правильная конфигурация функций анти-спуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции, как минимум, должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.

2.3.2. Функции анти-DoS - правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах может ограничить эффективность атак. Эти функции ограничивают число полуоткрытых каналов в любой момент времени.

2.3.3. Ограничение объема трафика (traffic rate limiting ) – договор с провайдером (ISP ) об ограничении объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего сети. Обычным примером является ограничение объемов трафика ICMP, который используется только для диагностических целей. Атаки (D ) DoS часто используют ICMP.

2.3.4. Блокирование IP адресов – после анализа DoS атаки и выявления диапазона IP адресов, с которых осуществляется атака, обратиться к провайдеру для их блокировки.

2.4. Парольных атак можно избежать, если не пользоваться паролями в текстовой форме. Одноразовые пароли и/или криптографическая аутентификация могут практически свести на нет угрозу таких атак. Не все приложения, хосты и устройства поддерживают указанные выше методы аутентификации.

При использовании обычных паролей, необходимо придумать такой пароль, который было бы трудно подобрать. Минимальная длина пароля должна быть не менее восьми символов. Пароль должен включать символы верхнего регистра, цифры и специальные символы (#, %, $ и т.д. ). Лучшие пароли трудно подобрать и трудно запомнить, что вынуждает пользователей записывать пароли на бумаге.

2.5. Эффективно бороться с атаками типа Man-in-the-Middle можно только с помощью криптографии. Если хакер перехватит данные зашифрованной сессии, у него на экране появится не перехваченное сообщение, а бессмысленный набор символов. Заметим, что, если хакер получит информацию о криптографической сессии (например, ключ сессии ), это может сделать возможной атаку Man-in-the-Middle даже в зашифрованной среде.

2.6. Полностью исключить атаки на уровне приложений невозможно. Хакеры постоянно открывают и публикуют в Интернете все новые уязвимые места прикладных программ. Самое главное — хорошее системное администрирование.

Меры, которые можно предпринять, чтобы снизить уязвимость для атак этого типа:

  • чтение и/или анализ лог-файлов операционных систем и сетевые лог-файлов с помощью специальных аналитических приложений;
  • своевременное обновление версий операционных систем и приложений и установка последних коррекционных модулей (патчей );
  • использование систем распознавания атак (IDS ).

2.7. Полностью избавиться от сетевой разведки невозможно. Если отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, вы избавитесь от эхо-тестирования, но потеряете данные, необходимые для диагностики сетевых сбоев. Кроме того, сканировать порты можно и без предварительного эхо-тестирования. Просто этой займет больше времени, так как сканировать придется и несуществующие IP-адреса. Системы IDS на уровне сети и хостов обычно хорошо справляются с задачей уведомления администратора о ведущейся сетевой разведке, что позволяет лучше подготовиться к предстоящей атаке и оповестить провайдера (ISP ), в сети которого установлена система, проявляющая чрезмерное любопытство.

2.8. Риск злоупотребления доверием можно снизить за счет более жесткого контроля уровней доверия в пределах своей сети. Системы, расположенные с внешней стороны межсетевого экрана, никогда не должны пользоваться абсолютным доверием со стороны защищенных экраном систем. Отношения доверия должны ограничиваться определенными протоколами и, по возможности, аутентифицироваться не только по IP-адресам, но и по другим параметрам.

2.9. Основным способом борьбы с переадресацией портов является использование надежных моделей доверия (см. п. 2.8 ). Кроме того, помешать хакеру установить на хосте свои программные средства может хост-система IDS (HIDS ).

2.10. Способы борьбы с несанкционированным доступом достаточно просты. Главным здесь является сокращение или полная ликвидация возможностей хакера по получению доступа к системе с помощью несанкционированного протокола. В качестве примера можно рассмотреть недопущение хакерского доступа к порту telnet на сервере, который предоставляет Web-услуги внешним пользователям. Не имея доступа к этому порту, хакер не сможет его атаковать. Что же касается межсетевого экрана, то его основной задачей является предотвращение самых простых попыток несанкционированного доступа.

2.11. Борьба с вирусами и «троянскими конями» ведется с помощью эффективного антивирусного программного обеспечения, работающего на пользовательском уровне и на уровне сети. Антивирусные средства обнаруживают большинство вирусов и «троянских коней» и пресекают их распространение.

3. Алгоритм действий при обнаружении сетевых атак

3.1. Большая часть сетевых атак блокируется автоматически установленными средствами защиты информации (межсетевые экраны, средства доверенной загрузки, сетевые маршрутизаторы, антивирусные средства и т.п. ).

3.2. К атакам, требующим вмешательства персонала для их блокировки или снижения тяжести последствий относятся атаки типа DoS.

3.2.1. Выявление DoS атаки осуществляется путем анализа сетевого трафика. Начало атаки характеризуется «забиванием » каналов связи с помощью ресурсоемких пакетов с поддельными адресами. Подобная атака на сайт интернет-банкинга усложняет доступ легитимных пользователей и веб-ресурс может стать недоступным.

3.2.2. В случае выявления атаки системный администратор выполняет следующие действия:

  • осуществляет ручное переключение маршрутизатора на резервный канал и обратно с целью выявления менее загруженного канала (канала с более широкой пропускной способностью);
  • выявляет диапазон IP – адресов, с которых осуществляется атака;
  • отправляет провайдеру заявку на блокировку IP адресов из указанного диапазона.

3.3. DoS атака, как правило, используется для маскировки успешно проведенной атаки на ресурсы клиента с целью затруднить ее обнаружение. Поэтому при выявлении DoS атаки необходимо провести анализ последних транзакций с целью выявления необычных операций, осуществить (при возможности) их блокировку, связаться с клиентами по альтернативному каналу для подтверждения проведенных транзакций.

3.4. В случае получения от клиента информации о несанкционированных действиях осуществляется фиксация всех имеющихся доказательств, проводится внутреннее расследование и подается заявление в правоохранительные органы.

Скачать ZIP файл (24151)

Пригодились документы - поставь «лайк»:

Удалённая сетевая атака - это информационное разрушающее воздействие на распределённую вычислительную систему (РВС), которое осуществляется по каналам связи.

По причине того, что проведение удаленной атаки достаточно трудно выявить, а провести ее относительно просто (из-за избыточной функциональности современных систем) этот вид неправомерных действий выходит на первое место по степени опасности. По характеру воздействия атаки бывают пассивные и активные. К первым относятся те, что не оказывают прямое влияние на работу РВС, но способны нарушить ее политику безопасности. Именно из-за отсутствия прямого влияния на систему, такую атаку обнаружить сложно. Активное воздействие на РВС – это такое, которое оказывает непосредственное влияние на работу системы, нарушает ее работоспособность, изменяет конфигурацию и т.д. При активном типе атаки в системе возникают некоторые изменения, в то время как при пассивном воздействии не остается видимых следов.

При любой атаке главная цель, как правило – это получение несанкционированного доступа к информации. Получение информации бывает двух видов: перехват и искажение. При перехвате получают информацию без возможности ее изменения. Искажение или подмен данных ведет к нарушению их целостности. Таким образом, по цели воздействия сетевые атаки можно разделить на те, которые нарушают функционирование системы, целостность информационных ресурсов или же их конфиденциальность.

Информационные и сетевые технологии развиваются и меняются настолько быстро, что статичные защитные механизмы, такие как разграничение доступа, системы аутентификации не могут во многих случаях обеспечить эффективную защиту. Требуются именно динамические методы, которые позволяют в короткий срок обнаруживать и предотвращать нарушения безопасности. Одной из таких систем, позволяющих отслеживать нарушения, которые не идентифицируются с помощью традиционных моделей контроля доступа, является технология обнаружения атак.

Обнаружение атак – это процесс распознавания и реагирования на подозрительную деятельность, направленную на сетевые или вычислительные ресурсы. Эффективность технологии во многом зависит от того, какие методы анализа полученной информации применяют. В настоящее время наряду со статистическим методом используется ряд новых методик, таких как экспертные системы и нейронные сети. Разберем каждый метод по отдельности.

Статистический анализ. Этот подход имеет два основных преимущества: использование зарекомендовавшего себя аппарата математической статистики и адаптация к поведению субъекта. В самом начале использования данного метода определяются профили для каждого субъекта анализируемой системы. Любое отклонение используемого профиля от эталона рассматривается как несанкционированная деятельность. Статистические методы универсальны, так как не требуют знаний о возможных атаках и уязвимостях системы. Однако при их использовании могут возникать некоторые трудности, связанные, например, с тем, что их можно «обучить» воспринимать несанкционированные действия как нормальные. Поэтому наряду со статистическим анализом применяются дополнительные методики.

Экспертные системы. Этот метод обнаружения атак является весьма распространенным. При его использовании информация об атаках формулируется в виде правил, которые, зачастую, записывают в виде последовательности действий или в форме сигнатуры.

Если выполняется любое из этих правил, то тут же принимается решение о наличии несанкционированной деятельности. Одно из главных достоинств этого метода — практически полное отсутствие ложных тревог. Для того чтобы экспертные системы всегда оставались актуальными, необходимо постоянно обновлять применяемые базы данных постоянно. Недостаток такого метода заключается в невозможности отражения неизвестных атак. Даже если атаку из базы данных немного изменят, то это уже может стать серьезным препятствием для ее обнаружения.

Нейронные сети. Из-за того, что хакеров и вариантов атак становится с каждым днем все больше, экспертные системы, даже в условиях постоянного обновления баз данных не могут дать гарантии точной идентификации каждого возможного вторжения. Как один из способов преодоления данной проблемы используются нейронные сети. Нейронная сеть анализирует информацию и предоставляет возможность дать оценку, насколько согласуются данные с распознаваемыми ей характеристиками. Для этого нейросеть обучают точной идентификации на подобранной выборке примеров из предметной области. Реакция нейронной сети подвергается анализу, после чего систему настраивают таким образом, чтобы достичь удовлетворительных результатов. По мере того, как нейросеть проводит анализ данных, она набирается дополнительного опыта.

Одно из важных преимуществ нейронных сетей — это их способность учитывать характеристики атак, идентифицируя элементы, не похожие на изученные.

Из-за того, что названные методы обнаружения атак имеют свои недостатки, их, как правило, используют в совокупности для обеспечения более надежной защиты.

Чтобы обеспечить безопасность компьютера, нужно знать, какие сетевые атаки могут ему угрожать. Все известные угрозы можно условно разделить на три группы:

Сканирование портов – данные угрозы сами по себе атакой не являются, но, как правило, ей предшествуют, так как это один из способов получить информацию об удаленном компьютере. Суть данного способа заключается в сканировании UDP/TCP-портов, которые используются сетевыми сервисами на нужном компьютере для выявления их состояния. Такой процесс помогает понять, какие атаки на данную систему могут быть удачными, а какие нет. Более того, сканирование дает злоумышленнику необходимые сведения об операционной системе, что позволяет подобрать еще более подходящие типы атак.

DOS -атаки – они еще известны, как «отказ в обслуживании». Это такие атаки, в результате действия которых атакуемая система приходит в нестабильное или же полностью нерабочее состояние. Их последствия могут включать в себя повреждение или разрушение информационных ресурсов и невозможность их использования.

DOS-атаки бывают двух типов. :

— компьютеру-жертве отправляются специально сформированные пакеты, которые приводят к перезагрузке системы или ее остановке

— компьютеру-жертве отправляется большое количество пакетов в единицу времени, он не справляется с их обработкой. Следствие – исчерпание ресурсов системы.

Атаки-вторжения. Их цель – «захват» системы. Такой тип атак самый опасный, так как при успешном их выполнении злоумышленник получает максимально полную информацию о системе.Атаки-вторжения применяются в тех случаях, когда есть необходимость в получении конфиденциальных данных с удаленного компьютера, такие как пароли и доступ к кредитным картам. Также целью таких атак может быть закрепление в системе для того, чтобы впоследствии в целях злоумышленника использовать ее вычислительные ресурсы. К данной группе относится самое большое количество атак.

Более распространенные виды атак, которые используют сетевые сервисы операционной системы:

— Атаки на переполнение буфера. Этот тип уязвимостей в программном обеспечении, который возникает из-за отсутствия или недостаточной меры контроля при работе с массивами данных.

— Атаки, основанные на ошибках форматных строк. Такой тип возникает из-за недостаточной степени контроля значений входных параметров функций форматного ввода-вывода. В том случае, если такая уязвимость находится в программном обеспечении, то злоумышленник может получить абсолютный контроль над системой.

Для того чтобы защитить свой персональный компьютер (ПК) от сетевых атак нужно установить качественный антивирус, а так же программу — защитника под названием FireWall. Эта программа контролирует все, что уходит и приходит по сети, защищает ваш компьютер от взломов и атак из сети, а также предотвращает передачу личной информации. FireWall решает вопрос о сканировании портов, о котором говорилось выше: софт делает компьютер невидимым в сети, закрывая все порты. Кроме того, эта программа не пропускает в сеть личные данные даже при заражении системы троянскими вирусами (целью которых является как раз кража конфиденциальной информации). Даже в том случае, если вы считаете, что на вашем ПК нет ничего, что может быть нужным преступнику, то все равно не стоит пренебрегать установкой вышеназванного софта, так как ваш компьютер после атаки может использоваться хакером для проведения атак или взлома других машин.

Основополагающими концепциями кибер-безопасности являются доступность, целостность и конфиденциальность. Атаки «отказ в обслуживании» (DoS) влияют на доступность информационных ресурсов. Отказ в обслуживании считается успешным, если он привел к недоступности информационного ресурса. Успешность атаки и влияние на целевые ресурсы отличаются тем, что влияние наносит жертве урон. Например, если атакуется интернет-магазин, то длительный отказ в обслуживании может причинить финансовые убытки компании. В каждом конкретном случае DoS-активность может либо непосредственно причинить вред, либо создать угрозу и потенциальный риск нанесения убытков.

Первая D в DDoS означает distributed : распределённая атака типа «отказ в обслуживании» . В этом случае речь идёт об огромной массе злонамеренных запросов, поступающих на сервер жертвы из множества разных мест. Обычно такие атаки организуются посредством бот-сетей.

В этой статье мы подробно рассмотрим, какие типы DDoS-трафика и какие виды DDoS-атак существуют. Для каждого вида атак будут приведены краткие рекомендации по предотвращению и восстановлению работоспособности.

Типы DDoS-трафика

Самый простой вид трафика - HTTP-запросы. С помощью таких запросов, например, любой посетитель общается с вашим сайтом посредством браузера. В основе запроса лежит HTTP-заголовок.

HTTP-заголовок . HTTP заголовки - это поля, которые описывают, какой именно ресурс запрашивается, например, URL-адрес или форма, или JPEG. Также HTTP заголовки информируют веб-сервер, какой тип браузера используется. Наиболее распространенные HTTP заголовки: ACCEPT, LANGUAGE и USER AGENT.

Запрашивающая сторона может использовать сколько угодно заголовков, придавая им нужные свойства. Проводящие DDoS-атаку злоумышленники могут изменять эти и многие другие HTTP-заголовки, делая их труднораспознаваемыми для выявления атаки. В добавок, HTTP заголовки могут быть написаны таким образом, чтоб управлять кэшированием и прокси-сервисами. Например, можно дать команду прокси-серверу не кэшировать информацию.

HTTP GET

  • HTTP(S) GET-запрос - метод, который запрашивает информацию на сервере. Этот запрос может попросить у сервера передать какой-то файл, изображение, страницу или скрипт, чтобы отобразить их в браузере.
  • HTTP(S) GET-флуд - метод DDoS атаки прикладного уровня (7) модели OSI, при котором атакующий посылает мощный поток запросов на сервер с целью переполнения его ресурсов. В результате сервер не может отвечать не только на хакерские запросы, но и на запросы реальных клиентов.

HTTP POST

  • HTTP(S) POST-запрос - метод, при котором данные помещаются в тело запроса для последующей обработки на сервере. HTTP POST-запрос кодирует передаваемую информацию и помещает на форму, а затем отправляет этот контент на сервер. Данный метод используется при необходимости передавать большие объемы информации или файлы.
  • HTTP(S) POST-флуд - это тип DDoS-атаки, при котором количество POST-запросов переполняют сервер так, что сервер не в состоянии ответить на все запросы. Это может привести к исключительно высокому использованию системных ресурсов, и, в последствии, к аварийной остановке сервера.

Каждый из описанных выше HTTP-запросов может передаваться по защищенному протоколу HTTPS . В этом случае все пересылаемые между клиентом (злоумышленником) и сервером данные шифруются. Получется, что «защищенность» тут играет на руку злоумышленникам: чтобы выявить злонамеренный запрос, сервер должен сначала расшифровать его. Т.е. расшифровывать приходится весь поток запросов, которых во время DDoS-атаки поступает очень много. Это создает дополнительную нагрузку на сервер-жертву.

SYN-флуд (TCP/SYN) устанавливает полуоткрытые соединения с узлом. Когда жертва принимает SYN-пакет через открытый порт, она должна послать в ответ SYN-ACK пакет и установить соединение. После этого инициатор посылает получателю ответ с ACK-пакетом. Данный процесс условно называется рукопожатием. Однако, во время атаки SYN-флудом рукопожатие не может быть завершено, т.к. злоумышленник не отвечает на SYN-ACK сервера-жертвы. Такие соединения остаются полуоткрытыми до истечения тайм-аута, очередь на подключение переполняется и новые клиенты не могут подключиться к серверу.

UDP-флуд чаще всего используются для широкополосных DDoS-атак в силу их бессеансовости, а также простоты создания сообщений протокола 17 (UDP) различными языками программирования.

ICMP-флуд . Протокол межсетевых управляющих сообщений (ICMP) используется в первую очередь для передачи сообщений об ошибках и не используется для передачи данных. ICMP-пакеты могут сопровождать TCP-пакеты при соединении с сервером. ICMP-флуд - метод DDoS атаки на 3-м уровне модели OSI, использующий ICMP-сообщения для перегрузки сетевого канала атакуемого.

MAC-флуд - редкий вид атаки, при котором атакующий посылает множественные пустые Ethernet-фреймы с различными MAC-адресами. Сетевые свитчи рассматривают каждый MAC-адрес в отдельности и, как следствие, резервируют ресурсы под каждый из них. Когда вся память на свитче использована, он либо перестает отвечать, либо выключается. На некоторых типах роутеров атака MAC-флудом может стать причиной удаления целых таблиц маршрутизации, таким образом нарушая работу целой сети.

Классификация и цели DDoS-атак по уровням OSI

Интернет использует модель OSI. Всего в модели присутствует 7 уровней, которые охватывают все среды коммуникации: начиная с физической среды (1-й уровень) и заканчивая уровнем приложений (7-й уровень), на котором «общаются» между собой программы.

DDoS-атаки возможны на каждом из семи уровней. Рассмотрим их подробнее.

7-й уровень OSI: Прикладной

Что делать: Мониторинг приложений - систематический мониторинг ПО, использующий определенный набор алгоритмов, технологий и подходов (в зависимости от платформы, на котором это ПО используется) для выявления 0day-уязвимостей приложений (атаки 7 уровня). Идентифицировав такие атаки, их можно раз и навсегда остановить и отследить их источник. На данном слое это осуществляется наиболее просто.

6-й уровень OSI: Представительский

Что делать: Для уменьшения вреда обратите внимание на такие средства, как распределение шифрующей SSL инфраструктуры (т.е. размещение SSL на отличном сервере, если это возможно) и проверка трафика приложений на предмет атак или нарушение политик на платформе приложений. Хорошая платформа гарантирует, что трафик шифруется и отправляется обратно начальной инфраструктуре с расшифрованным контентом, находившимся в защищенной памяти безопасного узла-бастиона.

5-й уровень OSI: Сеансовый

Что делать: Поддерживать прошивки аппаратного обеспечения в актуальном состоянии для уменьшения риска появления угрозы.

4-й уровень OSI: Транспортный

Что делать: Фильтрация DDoS-трафика, известная как blackholing - метод, часто используемый провайдерами для защиты клиентов (мы и сами используем этот метод). Однако этот подход делает сайт клиента недоступным как для трафика злоумышленника, так и для легального трафика пользователей. Тем не менее, блокировка доступа используется провайдерами в борьбе с DDoS-атаками для защиты клиентов от таких угроз, как замедление работы сетевого оборудования и отказ работы сервисов.

3-й уровень OSI: Сетевой

Что делать: Ограничить количество обрабатываемых запросов по протоколу ICMP и сократить возможное влияние этого трафика на скорость работы Firewall и пропускную способность интернет-полосы.

2-й уровень OSI: Канальный

Что делать: Многие современные свитчи могут быть настроены таким образом, что количество MAC адресов ограничивается надежными, которые проходят проверку аутентификации, авторизации и учета на сервере (протокол ААА) и в последствии фильтруются.

1-й уровень OSI: Физический

Что делать: использовать систематический подход к мониторингу работы физического сетевого оборудования.

Устранение крупномасштабных DoS/DDoS-атак

Хотя атака возможна на любом из уровней, особой популярностью пользуются атаки на 3-4 и 7 уровнях модели OSI.

  • DDoS-атаки на 3-м и 4-м уровне - инфраструктурные атаки - типы атак, основанные на использовании большого объема, мощного потока данных (флуд) на уровне инфраструктуры сети и транспортном уровне с целью замедлить работу веб-сервера, «заполнить» канал, и в конечном счете помешать доступу других пользователей к ресурсу. Эти типы атак как правило включают ICMP-, SYN- и UDP-флуд.
  • DDoS атака на 7-м уровне - атака, заключающаяся в перегрузке некоторых специфических элементов инфраструктуры сервера приложений. Атаки 7-го уровня особенно сложны, скрыты и трудны для выявления в силу их сходства с полезным веб-трафиком. Даже самые простенькие атаки 7-го уровня, например, попытка входа в систему под произвольным именем пользователя и паролем или повторяющийся произвольный поиск на динамических веб-страницах, могут критически загрузить CPU и базы данных. Также DDoS злоумышленники могут неоднократно изменять сигнатуры атак 7-го уровня, делая их еще более сложными для распознавания и устранения.

Некоторые действия и оборудование для устранения атак:

  • Брандмауэры с динамической проверкой пакетов
  • Динамические механизмы SYN прокси
  • Ограничение количества SYN-ов за секунду для каждого IP-адреса
  • Ограничение количества SYN-ов за секунду для каждого удаленного IP-адреса
  • Установка экранов ICMP флуда на брандмауэре
  • Установка экранов UDP флуда на брандмауэре
  • Ограничение скорости роутеров, примыкающих к брандмауэрам и сети


Понравилась статья? Поделиться с друзьями: