Современные радиорелейные станции. Типы линии связи. Методы оценки помех в каналах РРЛ

Особенности применения радиорелейных станций для решения задач абонентского доступа
Среди технических средств, применяемых при построении телекоммуникационных сетей, радиорелейные станции (РРС) занимают особое место. Довольно часто их применение остается единственным средством, обеспечивающим передачу трафика там, где прокладка кабеля невозможна или нецелесообразна по экономическим соображениям. Основными типовыми задачами, решаемыми с помощью этого вида оборудования, являются организация межсайтовых соединений, абонентских выносов, привязка к транспортным магистралям, построение технологических линий связи большой протяженности. В последнее время востребована реализация задач «последней мили», предоставление абонентам услуг голосовой телефонной связи, Internet, кабельного телевидения. В пригородных и сельских районах с недостаточной степенью проникновения современной телекоммуникационной инфраструктуры применение радиорелейных станций решает такую проблему в силу таких характеристик этого оборудования, как быстрота развертывания, относительно быстрая окупаемость, высокая пропускная способность, интеграция в PDH-сети, трансляция необходимых абонентских интерфейсов в составе группового цифрового потока. В зависимости от конкретной ситуации, РРС могут применяться для решения задач «последней мили»:

  • как отдельное самодостаточное звено при наличии в составе оборудования РРС функционально законченных абонентских окончаний;
  • в сочетании с оконечным мультиплексорным оборудованием или оборудованием АТС;
  • в сочетании с другими средствами абонентского радиодоступа.
Достаточно распространена такая схема применения радиорелейной станции в составе интегрированной системы абонентского радиодоступа, когда с помощью РРС обеспечивается вынос необходимого числа цифровых потоков Е1 от проводной транспортной сети на точку доступа, к которой подключается оборудование WLL. Такая схема находит свое применение при телефонизации коттеджных поселков, пригородных районов.

Основными параметрами, определяющими выбор РРС для конкретной ситуации, чаще всего являются:

  • частотный диапазон, поскольку от него зависит длина интервала радиорелейной линии;
  • топология трассы («линия», «звезда», «кольцо» или вариации);
  • информационная емкость станции;
  • набор дополнительных сервисов (реализация дополнительных интерфейсов Ethernet, низкоскоростных цифровых каналов дополнительно к основным цифровым потокам, возможность телеуправления-телесигнализации, программное управление и конфигурация и т.п.);
  • стоимость станции.
Общая архитектура среднескоростных РРС
Архитектура цифровой радиорелейной станции делится на две функциональных части: выносное (IDU), к которому относятся антенное устройство с элементами крепления, кабели, приемопередающие устройства) и внутреннее – ODU (модули доступа, мультиплексоры, источники питания). Приемопередающее устройство (ППУ) соединяется с внутренним оборудованием гибким волноводом - симметричным или коаксиальным кабелем, по которому подаются информационные потоки и электропитание. Длина волновода варьируется от 300м до 1200м, в зависимости от скорости передачи цифрового потока. Конструктивное исполнение приемопередатчиков с синтезаторами частот обеспечивает возможность перестройки частоты в пределах поддиапазона. Зарубежные изготовители применяют функцию автоматической регулировки мощности выходного сигнала в зависимости от уровня приема на удаленном конце, что обеспечивает экономию энергоресурсов и отвечает требованиям электромагнитной совместимости. «Горячий резерв» обеспечивается с помощью применения 2-х приемопередатчиков в работе на одну антенну с переключением ствола в случае аварийной ситуации в ODU. Внутреннее оборудование, применительно к схеме организации связи, может комплектоваться либо собственно модулем доступа для передачи группового сигнала в ППУ, с функциями резервирования, служебной связи, дополнительных сервисных каналов управления внешними устройствами и служебной связью, либо может интегрироваться с блоками дополнительных каналов, мультиплексорами для увеличения информационной емкости радиоканала до 34 Мбит/с (Е3). В этом случае мультиплексоры в обычно образуют дополнительную «боковую дорожку» со скоростью 2,048 Мбит/с. Для контроля за функционированием станций и линий, сбора и передачи сигналов аварии, организации шлейфов, управления станцией, отображения состояния применяется система телеуправления и телесигнализации (ТУ-ТС), Управление параметрами радиорелейной станции и конфигурирование сети обычно производится программными средствами, локально по RS-232 или с помощью удаленного доступа, например, по протоколу SNMP.

Технический обзор решений отечественных и зарубежных изготовителей радиорелейной аппаратуры PDH – иерархии в диапазоне частот 1,4…38 ГГц

В настоящей статье кратко рассмотрены возможности среднескоростных радиорелейных станций отечественных и зарубежных производителей, реализующие интерфейсы от Е1 до Е3.

НПФ «МИКРАН»
В комплектации с терминальными мультиплексорами абонентских интерфейсов среднескоростные радиорелейные станции МИК-РЛ , выпускаемые предприятием НПФ «МИКРАН» , позволяют решать широкий перечень задач по предоставлению пользователям аналоговых и цифровых каналов. МИК-РЛ предназначены для организации связи в 14 частотных диапазонах со скоростями передачи Е1, Е2, Е3. В семейство входят радиорелейные станции со средними и низкими скоростями передачи иерархии PDH (7…40 ГГц), а также малоканальные РРС, работающие в низкочастотных диапазонах (150 / 400 МГц). Приемопередающие устройства (выносное оборудование) для всех частотных диапазонов выполнены по унифицированной структурной схеме с цифровой модуляцией QPSK, 16/64/128QAM. В диапазоне 23…40 ГГц приемопередающее устройство интегрировано с антенной, что облегчает операции монтажа. Стволы могут работать с разной поляризацией. Модули доступа (внутреннее оборудование) обеспечивают функции управления и коммутации основных и дополнительных цифровых каналов, контроля параметров работы МИК-РЛ , служебной связи. Аппаратура первого уровня обладает наиболее полным набором функциональных возможностей, системой ТУ-ТС с программной поддержкой 128 станций. Аппаратура второго уровня имеет локальную систему ТУ-ТС. В МИК-РЛ предусмотрена организация дополнительных цифровых каналов n*64 кбит/с. Часть дополнительных каналов используется для внутрисистемных целей (служебной связи, конференцсвязи с селективным и групповым вызовом, мониторинга и управления), остальные каналы с интерфейсами RS-232/422/485, V.35, телефонные окончания E&M предоставляются пользователям. Низкоскоростные каналы сигнализации обеспечивают подключение внешних устройств пожарно-охранной сигнализации и т.п. В состав РРС также могут входить выпускаемые предприятием отдельный модуль дополнительных каналов nx64 кбит/с, модули доступа с интерфейсами Ethernet +n*Е1 (n=0…4), Ethernet + n*4E1 (n=0…4), мультиплексоры вторичных МЦП-12-хх (Е2) и третичных МЦП-13-хх (Е3) цифровых потоков с функциями передачи интерфейсов Ethernet + n*E1 (n-0…4). Мультиплексоры и источники питания включаются в единую систему управления по интерфейсу CAN.

СЕТЬ+СЕРВИС
РРС ФЛОКС является примером отечественного оборудования, завоевавшего популярность при создании корпоративных технологических систем связи и систем связи общего пользования, как в России, так и в странах СНГ. Базовая модель РРС ФЛОКС в частотном диапазоне 1,427 .. 2,690 МГц была разработана в 1995 году в рамках конверсии и в полном объеме использует все современные достижения микроволновых технологий: цифровые методы передачи данных, эффективное использование частотного ресурса, компактное исполнение. Частично (около 30%) используется импортная элементная база. Серийное производство организовано на заводе Аппаратуры наземной и космической связи (АНИКС) с жестким контролем качества.
В 2003-2004 гг завершены разработки, существенно расширившие использование частотного диапазона: ФЛОКС-4 (3 600 .. 4 200 МГц), ФЛОКС-7 (7 250 .. 7 550 МГц), ФЛОКС-23 (21 200 .. 23 600 МГц). Весь модельный ряд РРС ФЛОКС сохраняет завоевавшие популярность основные преимущества: надежность эксплуатации в любом регионе России и СНГ, работу на максимально возможных для диапазона интервалах, неприхотливое обслуживание, сравнительно невысокую цену. Гибкое конструктивное исполнение позволяет удобно и естественно разместить оборудование на узле связи. Поддерживаются уровни резервирования: 1+0, 1+1, 2+0, n+1.
Выпускается 2 типа аппаратуры ФЛОКС: низко- и среднескоростные уровня PDH поддерживают цифровые каналы емкостью 2-, 8- и 34-Мбит/с и предназначены для организация цифровых телефонных каналов связи на местном и зональном уровне и высокоскоростные уровня SDH поддерживают цифровые каналы емкостью 51- и 155-Мбит/с (STM-0 и STM-1) и предназначены для организации как телефонии, так и систем передачи данных в магистральных мультисервисных сетях связи. Для использования в системах сельской связи разработана и выпускается экономичная интегрированная модель ФЛОКС-лайт емкостью 2-Мбит/с. В настоящее время ведется НИОКР по созданию РРС с модуляцией COFDM, которая эффективно использует отраженный сигнал и позволяет строить радиорелейные линии связи в акватории портов, на шельфе и на отраженных сигналах в условиях отсутствия прямой радиовидимости: в городской застройке, в скалистых ущельях рек, в лесистых сопках и горах.
Все модели РРЛ ФЛОКС обеспечиваются единой системой оперативного контроля, поддерживающей любую топологию сети связи и схему резервирования.
РРС ФЛОКС эксплуатируются практически во всех регионах России, в республиках Казахстан, Таджикистан, Узбекистан. Они реально стабильно работают, например, в условиях низких температур Якутии (до -60?С), высоких температур Ставрополья (до +50?С), резко континентального климата Бурятии и Казахстана (суточный перепад температуры до 20?С), субтропического климата Абхазии и морского климата Архангельска, Владивостока и Петропавловска-Камчатского. РРС ФЛОКС внедрены в системах связи МЧС, МВД и МО России, региональных отделениях ОАО Ростелеком (Читателеком, Электросвязь республики Бурятия, Электросвязь Республики Карелия), предприятиях связи в составе Комитета по рыболовству (Архангельск, Владивосток, Красноярск, Мурманск, Петропавловск-Камчатский), Минтранса (Махачкала, Карелия и Архангельская область), рядом операторов сотовой связи: Саратов-GSM, Чувашия-Мобайл, Астрахань-GSM, СтавТелеСот, в странах СНГ (КРИС-Сервис/Казахстан; СОМОНКОМ/Таджикистан, МО республики Узбекистан). Все пользователи дают высокую оценку работе оборудования.

РАДИАН
ЗАО "Радиан" производит радиорелейные станции диапазонов 4…23 ГГц. Передаются цифровые потоки Е1, Е2 и Е3 и аналоговые телевизионные/радиопрограммы, аналоговая телефония, данные от 9,6 кбит/с до 10 Мбит/с. Модемное оборудование обеспечивает современные методы модуляции OQPSK и 64/128QAM с цифровой фильтрацией и адаптивным эквалайзером.
В зависимости от типа оконечного оборудования обеспечивается ввод/вывод пользовательских сигналов: потоков Е1, Е2, Е3 (оборудование МД-8, МД-34, АСТ-155), сигналы аналогового телевидения (КТВМ-200 и ДТВМ-200) для передачи их через цифровую систему с одним или двумя стереоканалами звукового сопровождения. ТВ-сигнал передается в стандарте MPEG-2 в 3-х или 4-х потоках Е1. Качество ТВ-сигнала поддерживает Российский стандарт цветного ТВ SECAM, а также PAL и соответствует телецентрам 2 группы качества. Оборудование обеспечивает два канала служебной связи, в том числе конференц-связь с адресным вызовом и дополнительные пользовательские каналы передачи данных со скоростями от 9,6 до 115 кбит/с.
В случае комплектования радиорелейной станции гибким мультиплексором MF-20 разработки ЗАО «Радиан» обеспечивается 2-х проводная аналоговая телефонная связь как в режиме «абонентского удлинителя», так и в режиме прямого телефона, 4-х и 6-ти проводные межстанционные соединительные линии, последовательные синхронные и асинхронные каналы передачи данных по стандартам V.35/V.36/RS-422/RS-232/RS-485 со скоростями от 9,6 кбит/с до 10 Мбит/с, сигналов звукового вещания высшего качества со сжатием MUSICAM как по аналоговым интерфейсам так и по цифровому интерфейсу AES/EBU.
Возможно подключение пожарной, охранной и другой аварийной сигнализации от внешних датчиков, при установке дополнительного интерфейсного устройства, подключаемого к оборудованию РРС по стыку RS-485. Оборудование имеет развитую автоматизированную систему управления (АСУ), обеспечивающее управление параметрами станции.

ПКП «БИСТ»
ПКП «БИСТ» более десяти лет производит радиорелейное оборудование различных модификаций с пропускной способностью от 2 до 34 Мбит/с. Предприятие стремится активно внедрять свою продукцию на другие сегменты рынка, в том числе в качестве средства решения проблем «расширенной последней мили».
Исходя из современных тенденций развития субрегиональной цифровой инфраструктуры, были определены основные требования к оборудованию, способному формировать оптимальную транспортную среду для небольших местных сетей доступа, в том числе сетей сельской и технологической связи. Для операторов таких сетей жизненно важной становится проблема минимизации как затрат на внедрение, так и эксплуатационных расходов. Она решается путем использования недорогого оборудования, повышением отказоустойчивости транспортной среды, охватом сети эффективной системой мониторинга.
Концепция РРС для субрегиональных сетей с отечественной спецификой получила поддержку НИИР, и в 2002г.-2003г. ФГУ «Российский фонд технологического развития» было осуществлено финансирование НИОКР «Разработка низкоскоростной радиорелейной станции для сетей с низкоскоростной плотностью абонентов, в том числе сельских». В рамках НИОКР были разработаны на основе единого подхода недорогие РРС как с пропускной способностью до 2 Мбит/с, так и РРС 8 и 34 Мбит/с.
Сетевые мультиплексоры из состава РРС семейства БИСТ нового поколения позволяют оборудованию эффективно работать в сетях различной топологии, в том числе кольцевой с использованием технологии маршрутного резервирования. Оборудование имеет встроенную систему мониторинга, по эффективности не уступающую АСКУ базовых модификаций. Реализованные проекты использования РРС семейства «БИСТ» на участках «расширенной последней мили», как правило, представляют собой 3-4 пролетные РРЛ, объединяющие территориально разнесенные емкости местных ЭАТС, базовых станций DECT, либо позволяющие осуществлять доступ удаленных прямых абонентов (ПА) к информационным полям узловых ЦАТС. Типичными примерами являются линии «Кулебаки-Ломовка-Теплово-Гремячево» (ОАО «Волга Телеком», г. Нижний Новгород) и транспортная сеть, построенная в республике Узбекистан по заказу «K.D.M. Enteprises, LLS».
В обоих случаях РРС использовались в качестве транспортной среды для подключения распределенных абонентских емкостей (в первом случае – проводные ПА подключались к ЦАТС, во втором случае – БС стандарта MPT 1327 к коммутационному центру «Actionet»). Дополнительно, в качестве сопутствующей, с помощью аппаратуры гибкого мультиплексирования решалась задача предоставления арендуемых каналов обмена данными внутри ЛВС сторонним организациям. Для решения подобных задач, в частности, в сетевых мультиплексорах из состава РРС семейства «БИСТ» может быть предусмотрено до 2-х портов Ethernet 10 BaseT и порты V.24 для подключения территориально разнесенных абонентов и участков ЛВС.
В комплекте с соответствующими цифровыми кодеками радиорелейное оборудование производства ПКП «БИСТ» используется для раздачи телевизионного и аудио сигналов абонентам в гг. Саратов, Самара, Казань, Приморском крае, в том числе совместно с сигналами цифровой телефонии.

ALCATEL
Alcatel 9400AWY представляет собой семейство цифровых радиорелейных систем, предназначенных для организации связи в диапазонах 7…38 ГГц с конфигурацией 1+0 или 1+1 и пропускной способностью 4…34 Мбит/с. РРЛ Alcatel 9400AWY принадлежит к классу систем раздельного монтажа, что обеспечивает гибкость в выборе необходимой пропускной способности и частотного диапазона. Многие параметры настраиваются программно и не требуют замены оборудования: перестройка частоты, перестройка модуляции, перестройка пропускной способности. Радиорелейная станция имеет функцию автоматического управления выходной мощностью приемопередатчика во всех диапазонах. Один внешний блок может использоваться для работы на любой частоте внутри четверти частотного диапазона. При этом номенклатура ЗИП сокращается до 4 типов ODU для всего частотного диапазона. Внешний блок 9400AWY при необходимости может быть быстро перестроен для работы на другой частоте. Внутренний блок оснащен сменными модулями интерфейсов. Благодаря этому РРЛ 9400AWY находит свое применение не только в сетях передачи голоса (до 16 портов E1 или 1 порт E3 на 1 IDU), но и в сетях передачи данных и в мультисервисных сетях, для чего предусмотрен комбинированный модуль 2х10BaseT+8xE1. В последнем случае пользователь системы имеет возможность перераспределять пропускную способность для пакетного и голосового трафика. Наличие сменных интерфейсных модулей реализует концепцию «платы по мере роста», когда соответствующий интерфейс может быть добавлен к системе по мере необходимости. Другим примером реализации той же концепции в оборудовании Alcatel 9400AWY является наличие программных ключей. Информация на программном ключе определяет набор функций, доступных пользователю. Для добавления новых интерфейсов или увеличения доступной пропускной способности, достаточно поставить новый программный ключ или добавить соответствующий модуль.
В РРЛ Alcatel 9400AWY используются современные функции мониторинга и управления, оптимизированные для эксплуатации и технического обслуживания. Это позволяют создавать масштабируемые решения как для местного управления одним каналом (для сетей размерами от 128 элементов радиооборудования), так и глобальные решения для сложных транспортных сетей (на основе централизованной сетевой системы управления Alcatel 1353NM), обеспечивающие выявление неисправностей, измерение рабочих параметров, конфигурирование и управление защитой.

ERICSSON
Микроволновые системы Ericsson средней пропускной способности для связи "точка-точка" MINI-LINK E пригодны для сетей любого типа. MINI-LINK Е может иметь конфигурацию, удовлетворяющую требованиям любых сетей по дальности и скорости передачи данных. Эта аппаратура работает в частотных диапазонах 7…38 ГГц и имеет скорость передачи данных от 2 до 2х17 Мбит/с. Терминалы MINI-LINK Е могут использоваться в сетях любой конфигурации - в виде звезды, дерева, или кольца. Для повышения надежности могут быть использованы резервируемые системы типа 1+1 или сети с кольцевой структурой. Продукция MINI-LINK E подразделяется на две ветви для лучшего удовлетворения требований по экономичности сетей с высокой плотностью: автономная, полностью наружная аппаратура MINI-LINK E для обеспечения минимальной стоимости сайта и гибкая сплит-система MINI-LINK E для оптимальной компоновки многотерминальных сайтов. Выпускаются конфигурации, поддерживающие до четырех радиомодулей. Программное управление скоростью трафика облегчает возможность расширения сети без замены аппаратуры. Программное управление конфигурацией сайта и взаимными связями позволяет минимизировать количество кабельных соединений, обеспечить высокую надежность и сократить время установки. Полностью наружная аппаратура MINI-LINK E Micro содержит все необходимые компоненты передачи, что устраняет необходимость централизованной инфраструктуре внутри помещения. Это особенно важно, когда необходимы особенно важны быстрый ввод в строй и минимальная стоимость сайта.
Блок интерфейсов Ethernet (ETU) обеспечивает беспроводную связь между сетями LAN по пролетам MINI-LINK E. ETU имеет один интерфейс для подключения LAN. Он может быть гибко сконфигурирован для любой пропускной способности, удовлетворяющей нормативами G.703, 2, 8 или 34 Мбит/с.
Блоки кросс-коннекторов MINI-LINK (MXU) поддерживает резервирующие переключения в сетях кольцевой конфигурации, уплотнение данных на уровне 64 кбит/с и встроенное управление. Они полностью совместимы с обширным семейством аппаратуры Ericsson DXX.
Для централизованного управления и эксплуатации всего оборудования MINI-LINK используется система MINI-LINK Netman. Она может использоваться, как изолированная система или быть интегрирована в Систему Управления Сетью (NMS) более высокого порядка с помощью стандартизованного SNMP интерфейса.

NEC
Корпорация NEC поставляет на российский рынок радиорелейные станции семейства Pasolink для диапазона частот от 4 до 38 ГГц. Системы связи, построенные на этом оборудовании, отличает высокая надежность (наработка на отказ - до 400000 часов), легкость и простота развертывания и технического обслуживания. Оборудование конструктивно состоит из компактного наружного радиочастотного блока (ODU, вес около 3 кг) и каналообразующего внутреннего блока модулятора-демодулятора (IDU, размер 1U), соединенных одним коаксиальным кабелем. Модульное исполнение предусматривает простой переход от схемы резервирования 1+0 к 1+1 или 2+0 и позволяет экономично наращивать пропускную способность. Использование автоматической регулировки мощности передатчика снижает уровень помех, уменьшает коэффициент остаточных ошибок и, в сочетании с трансверсальным адаптивным эквалайзером, облегчает решение проблемы замираний. Применение режима ортогональной поляризации позволяет удваивать пропускную способность системы на одном интервале РРЛ, а современного кодирования Рида–Соломона улучшает характеристики BER (вероятность ошибок на бит информации). Программируемая схема модуляции: PSK/QPSK/16-QAM в системах PHD и 16-QAM/128-QAM в системах SHD, позволяет достичь высокой эффективности использования спектра частот или коэффициента усиления системы. Обеспечивается гибкая комбинация интерфейсов Ethernet и E1. Все оборудование семейства Pasolink+ работает с единой централизованной системой управления PNMS (PASOLINK Network Management System), в операционной среде Windows’NT или Unix, поддерживает до 100 РРС станций в одной сети и использует протокол сетевого управления SNMP. Оборудование Pasolink сертифицировано в России. Проводится полный цикл тестовых испытаний при ±50°С, включая «холодный старт». Модельный ряд уровня PDH включает РРС Pasolink c интерфейсом Ethernet для систем связи или передачи данных с малой и средней пропускной способностью (до 16хЕ1 или 2х10/100Base-TX) и РРС Pasolink Mx с повышенной пропускной способностью от 5xE1 до 40xE1. Программируемая схема модуляции QPSK/16-QAM дает увеличение емкости от 16хE1 до 40хE1 в той же полосе (28 МГц). Ориентирована для использования на сетях операторов мобильной связи, на корпоративных сетях IP, а также в сетях интернет-провайдеров.
Наиболее известное внедрение в России – в составе транссибирской магистральной РРЛ «Москва-Хабаровск» протяженностью 8300 км. На оборудовании Pasolink построены опорные сети связи ведущих отечественных сотовых компаний: Вымпелком, МЕГАФОН и МТС.

NERA
Семейство CompactLink представляет собой экономичную цифровую радиорелейную систему "от точки к точке" с высокими техническими характеристиками, разработанную для систем связи с короткими пролетами. Диапазон частот составляет от 7 до 23 ГГц при пропускной способности как ANSI, так и ETSI от 4-16 DS1/E1. Суммарная скорость передачи составляет 9,2 Мбит/с для 4хЕ1, 18,4 Мбит/с для 8хЕ1, 36,9 Мбит/с для 16хЕ1, 39 Мбит/с для Е3+Е1. CompactLink обеспечивает резервирование стволов 1+0 либо 1+1 с аппаратурным резервом (Hot-Standby). Система обеспечивает автоматическую регулировку мощности передатчика с диапазоном 20 dB. Интерфейс пользователя и цифровая электроника размещаются во внутреннем модуле высотой 1U в стойке 19" . Он выполняет все функции цифровой обработки и контроля системы и не требует регулировки или настройки во время, и после установки. Персональный компьютер используется в качестве интерфейса для контроля и управления, интерфейсы SNMP-Ethernet, SNMP-PPP, CIT. Для систем с горячим резервом требуется два кабеля. Конфигурация с горячим резервом (1+1) имеет два внешних модуля, подключенных к смонтированной на раме системе объединения и разделения стволов. Входные/выходные порты компонентных сигналов – это стандартные симметричные порты 120 Ом для ETSI и 100 Ом для ANSI. CompactLink имеет опционную панель линейного интерфейса, которая обеспечивает индивидуальное подключение 4-16 каналов E1 с несимметричным интерфейсом 75 Ом и разъемом BNC. Блоки интерфейса смонтированы на панели шириной 19" и высотой 2U. Реализованы 2 служебных канала до 9,6 кбит/с (RS-422, RS-485).

NOKIA
FlexiHopper производства фирмы Nokia перекрывает диапазон 7… 38 ГГц, поддерживает одним внутренним блоком до 3-х направлений передачи (один из «пролётов» можно зарезервировать).
Внутренний блок FIU19(Е) предоставляет стандартные телекоммуникационные интерфейсы с помощью трёх устанавливаемых plug-in модулей. Доступные интерфейсы: 12 E1; для обеспечения ёмкости 16 Е1 используется дополнительный расширительный блок EXU; 2 интерфейса Ethernet 10/100Base-T; 2 дополнительных Flexbus-интерфейса для связи с внешними блоками и внутренних блоков между собой; дополнительные (AUX) интерфейсы EIA-232 или V.11 со скоростью 4,8 или 9,6 кбит/c; интерфейс V.11 со скоростью от 9,6…64 кбит/с или интерфейс G.703 кбит/с). Скорость дополнительных цифровых каналов зависит от загрузки трафика каналами Е1. Так, например, при 2-х используемых каналах Е1 возможно передать «медленный» интерфейс V.11 со скоростью 4,8 кбит/c + «быстрый» интерфейс G.703 со скоростью 64 кбит/с, а при загрузке всех возможных 16 Е1 - EIA-232 со скоростью 9,600 бит/c + V.11 cо скоростью 64 кбит/с. Для подключения внешних устройств применяются 4 программируемых TTL-канала ввода/вывода и/или 4 контроллера реле. Вся радиочасть сконцентрирована в наружном радио-модуле (21 х 23 х (12 - 21) см3 / 4,0 – 6 кг).
Радиорелейная станция оснащается интегрированной низкопрофильной параболической или квадратной антенной диаметром 20, 30, 60, 90, 120, или 180см, а так же 240 и 300 см. Применяется горячее резервирование, частотное, пространственное и поляризационное разнесение. Поляризация может меняться поворотом облучателей, которые интегрированы в антенный блок. Возможно использование антенн с двойной поляризацией.
Для повышения качества сигнала в радиорелейном оборудовании Nokia FlexiHopper используются функции прямого исправления ошибок (FEC, кодирование Рида-Саломона) и двух- или четырехглубинный интерливинг. Метод автоматического управления мощностью передачи ALCQ позволяет повышать и снижать мощность излучения автоматически в соответствии с ответом, полученным от другого конца участка радиорелейной линии. В оборудовании реализовано автоматическое измерение предельных показателей замирания, а качество передачи контролируется с помощью встроенной функции измерения коэффициента битовых ошибок (BER) (G.826 МСЭ-Т).
Примерами эффективной работы оборудования FlexiHopper могут служить реализованные московской компанией «РК-Телеком» схемы связи базовых станций стандарта GSM для ОАО «МСС-Поволжье», ЗАО «Пенза-GSM» и других операторов связи. В настоящее время ведется работа по организации пропуска трафика Ethernet в интересах корпоративных заказчиков.

Особенности технических решений РРС для работы в частотном диапазоне 150/ 400 МГц
Для решения задач абонентского доступа в малонаселенных, удаленных и труднодоступных районах применяются малоканальные радиорелейные станции метрового и дециметрового диапазонов. Они предназначены для организации местной связи на большие расстояния, в том числе и на полузакрытых трассах. Хотя скорость цифрового сигнала в радиоканалах, образованных такими РРС, невелика (до 2,048 Мбит/с), в районах с низкой плотностью населения пропускная способность не играет ключевой роли. Гораздо важнее длина интервала радиорелейной линии, а она ввиду физических свойств радиоволн этого участка спектра, может достигать 70 км.

НПФ «МИКРАН»
Радиорелейные станции для этих приложений, выпускаемые предприятием НПФ «МИКРАН» , выполнены в диапазонах частот 150 МГц (МИК-РЛ 150М) и 400 МГц (МИК-РЛ 400М). Эта платформа реализует принцип: подключение линии радиосвязи на любом уровне – от цифровой магистрали до сельского абонента. В аппаратуре МИК-РЛ 150М функции терминала абонентского доступа и модема радиорелейной станции реализованы в модуле доступа МД1-2-В256. Модуль предоставляет абонентам 4-х или 2-х проводные телефонные окончания, а также каналы данных с интерфейсами RS-232, RS-422, RS-485, V.35. Передача группового потока осуществляется на скорости 256 кбит/с. В аппаратуре МИК-РЛ 400М применяется модуль доступа МД1-1-В2. Выделение канальных интервалов из группового потока 2,048 Мбит/с осуществляется с помощью первичных мультиплексоров. Дополнительно к основным цифровым потокам реализуются низкоскоростные цифровые каналы, позволяющие включать системы телеметрии и прочие периферийные устройства. Аппаратура МИК-РЛ 150М / 400М имеет возможность управления параметрами станций с помощью системы ТУ-ТС. Возможно построение территориально-распределенных сетей интегрированного доступа при общем количестве станций до 64. Конфигурирование и управление сетью обеспечивается программно.

НПФ СЕЛЬСОФТ
В частотном диапазоне 150 /400 МГц НПФ «Сельсофт» выпускаются радиорелейные станции Р-150 (f = 150 МГц, 512 кбит/с) и Р6 (f = 400 МГц, 512…2048 Мбит/с). Они состоят из радиоблока в корпусе 19” и антенны типа «волновой канал». Кнопки, расположенные на передней панели, позволяют устанавливать необходимую (или максимально возможную по условиям радиовидимости) групповую скорость передачи в радиоканале с шагом 64 кбит/с. Выбор количества передаваемых каналов (тайм-слотов) из потока Е1 осуществляется программно. Маломощная версия Р6-мини предназначена для организации радиоканала на небольшие расстояния - до 20 км (P= 1Вт). Для объединения аналоговых и цифровых абонентских окончаний в поток Е1, поступающих в радиоблок, используются выпускаемые НПФ «Сельсофт» мультиплексоры. Например, с помощью терминального оборудования МЦ-115Т происходит вставка/выделение в точке доступа и предоставление пользователям Ethernet до 2,048 Мбит/с, до 27 абонентских телефонных каналов, а также передачу данных (RS-232), что обеспечивает доступ к ТфОП, а также коллективный или абонентский доступ к Интернет-ресурсам. Длина радиотрассы при трехпролетном варианте построения РРЛ достигает 150 км.

Заключение
На сегодняшний день рынок радиорелейного оборудования динамично развивается, о чем свидетельствует увеличивающийся спрос на РРС. Этому способствуют такие факторы, как необходимость обеспечения связью месторождений находящейся на подъеме нефтегазовой отрасли, возросшая потребность населения к получению интегрированного доступа к голосовой связи и Интернет, предоставление универсальной услуги связи в новых жилых массивах. Возможность передачи речи, данных, видео, построения сетей различной топологии, быстрота развертывания линий, приемлемая стоимость делают цифровые радиорелейные станции привлекательными по доведению цифровых услуг до абонентов в различных регионах Российской Федерации и стран ближнего зарубежья.

Автор выражает благодарность за предоставление информации по продуктам: «МИК-РЛ » - С. Волк (НПФ «МИКРАН»), «Флокс» – Л. Брусиловскому (Сеть+Сервис), «Радиан» – М. Махк (Радиан), «БИСТ» – Т.Гогоберидзе (ПКП БИСТ), «Р-150» и «Р6»- С. Стригину (НПФ Сельсофт), «Alcatel 9400AWY» - Г. Муратову (Alcatel) , «Ericsson MiniLink» – А. Изюмову (Ланит), «NEC Pasolink»– А.Овсянникову (Сеть+Сервис), «NERA CompactLink» – Д. Мермельштейн (NERA), «Nokia FlexiHopper» – А. Кузнецову (РК-Телеком).

Радиорелейные линии связи являются одной из наиболее масштабных и прогрессивных сетей передачи, приема и обработки данных во всем мире. Сам принцип передачи сообщений основан на распространении радиоволн в атмосфере. Для того, чтобы сигнал смог преодолевать большие расстояния, необходимо использовать специальное оборудование радиорелейной связи - цепочку ретрансляторов, благодаря которым и будет осуществляться распространение радиоволн определенной частоты.

Принцип работы радиорелейной линии связи

Чтобы понять природу распространения радиоволн, необходимо изучить физику, механику и динамику этих явлений, которые непосредственно связаны с атмосферными свойствами и электромагнитным полем. Исходя из множества факторов, и производится расчет радиорелейных линий связи. Если не вдаваться в подробности, то принцип функционирования всей системы выглядит следующим образом:

  • сначала в специальном передающем устройстве происходит генерирование колебаний высокой частоты и выделяется так называемый несущий сигнал;
  • информация, которую необходимо передать (голос, видео, текст), кодируется и преобразовывается в частотные колебания, а затем модулируется вместе с несущим сигналом;
  • посредством специальных антенн подготовленный сигнал транслируется в пространство, попадая на приемные устройства, которые находятся в определенном радиусе от передатчика;
  • в случае недостаточной мощности сигнала, сложности его распространения или большого расстояния между передатчиком и приемником, используются радиорелейные линии связи, оборудование которых позволяет решить возникшие проблемы. Как правило, это сеть наземных ретрансляторов, которые не только принимают сигнал, но и усиливают его, устраняют помехи и передают по цепочке к следующему объекту через узконаправленные антенны;
  • сигнал достигает приемника, где происходит его отделение от несущей частоты и преобразование в изначальный вид с последующим отображением на терминале связи. Это может быть просто голосовое сообщение или полноценная видео трансляция. Эфирное радио и телевизионное вещание как раз и построено на этом принципе передачи сигнала.

Типы линии связи

Радиорелейные и спутниковые линии связи - это комплекс оборудования, которое сочетает наземные и орбитальные ретрансляторы, которые дают возможность транслировать сигнал практически в любую точку на поверхности планеты.

Существует два типа основных способа передачи радиосигнала:

  • передача по прямой видимости;
  • радиорелейная тропосферная связь.

В первом случае передача сигнала происходит по стандартному алгоритму - от источника (передатчика) через систему наземных ретрансляционных сетей непосредственно к приемнику. Одна из особенностей заключается в том, что ретрансляторы располагаются фактически в зоне непосредственной видимости, на естественных возвышенностях (горы, холмы). В случае отсутствия прямого прохождения сигнала между антеннами возникают помехи и искажения благодаря дифракционным замираниям, что может привести к существенному ослаблению сигнала и обрыву связи. Использование этого типа коммуникаций ограничено в местах с отсутствием необходимой инфраструктуры и нецелесообразны в малонаселенных районах нашей страны преимущественно в северной ее части.

Решением указанных выше проблем стала новая технология - тропосферная радиорелейная линия связи. Принцип распространения сигнала остался прежним, изменился его способ, который в своей основе содержит физические процессы отражения радиоволн различных диапазонов от нижних слоев атмосферы. Многочисленные испытания показали, что наибольший эффект дает применение волн диапазона УКВ. Благодаря правильным расчетам, трансляцию радиосигнала удалось произвести на 300 км.

Преимущества радиорелейной линия связи

Преимущества новой технологии очевидны:
  • нет необходимости строить ретрансляторы в зоне прямой видимости;
  • существенное увеличение радиуса дальности прохождения сигнала;
  • возможность обеспечения максимальной дальности передачи информации на расстояние до 450 километров благодаря расположению ретрансляторных антенн на холмах и других возвышенностях.

Одна из основных проблем, с которыми столкнулись ученые, заключается в сильном эффекте затухания колебаний при трансляции радиоволн. Вопрос был решен благодаря использованию активного ретрансляторного оборудования, которое позволяет не только принимать и передавать радиоволну, но и стабилизировать уровень сигнала, усиливать его и отфильтровывать помехи. Современная радиорелейная военная связь функционирует на основе технологии распространения сигнала в тропосфере, которая дополнена другими инновационными решениями.

Определение радиорелейной связи противопоставляют прямой радиосвязи. Сообщение абонента многократно передаётся промежуточными звеньями цепи, образующими радиорелейную линию (РРЛ). Название заложено англичанами: relay - смена. Физические особенности распространения заставили инженеров применять ультракороткие волны (УКВ): дециметровые, сантиметровые, реже, метровые. Потому что длинные самостоятельно способны обогнуть Земной шар. Причина применения радиорелейных линий объясняется необходимостью заложить большой объем информации, невозможный на низких частотах. Ограничения объясняет теорема Котельникова.

Примечание. Тропосферную связь считают подвидом радиорелейной.

Достоинства метода

  1. Первое преимущество названо – возможность заложить больший объем информации. Число каналов пропорционально ширине пропускания приёмопередающей аппаратуры. Величину повышает рост частоты. Упомянутый факт обусловлен формулами, описывающими колебательный контур, иные избирательные участки электрической цепи.
  2. Линейность распространения УКВ обусловливает высокие направленные свойства. Направленность растёт с увеличением площади антенны относительно длины волны. Короткие проще охватить тарелкой. Например, дальняя связь осуществляется длинами, достигающими километров. Сантиметровые, дециметровые волны легко охватываются сравнительно малыми параболоидами, значительно снижая требуемую мощность (за исключением случая тропосферной передачи информации), уровень помех. Шумы фактически ограничены внутренней неидеальностью входных каскадов приёмника.
  3. Устойчивость объясняется фактом прямой видимости тандема передатчик-приёмник. Мало влияния оказывают погода, время дня/года.

Указанные преимущества уже в начале второй половины XX века позволяли экономистам сопоставлять экономическую эффективность цепочки с кабелем. Допускалась возможность передачи аналоговых телевизионных каналов. Оборудование вышек значительно сложнее регенераторов. Однако кабелю восполнять сигнал приходится каждые 6 км. Вышки обычно разделены дистанциями 50-150 км, расстояние (км) ограничено величиной, равной квадратному корню из высоты вышки (м), умноженному на 7,2. Наконец, вечная мерзлота сильно усложняет прокладку кабельных линий, лепту вносят болота, скалы, реки.

Эксперты отмечают простоту развёртывания системы, экономию цветных металлов:

  • Медь.
  • Свинец.
  • Алюминий.

Отмечается малая эффективность автономных вышек. Неизбежно требуется обслуживающий персонал. Необходимо людей расквартировать, назначить несение вахты.

Принцип действия

Линия обычно реализует дуплексный (двунаправленный) режим передачи информации. Чаще применяли частотное деление каналов. Первыми европейскими соглашениями установили участки спектра:

  • Дециметровые волны:
  1. 460-470 МГц.
  2. 1300-1600 МГц.
  3. 1700-2300 МГц.

  • Сантиметровые:
  1. 3500-4200 МГц.
  2. 4400-5000 МГц.
  3. 5925-8500 МГц.
  4. 9800-10.000 МГц.

Метровые волны способны огибать препятствия, допускается использование ввиду отсутствия непосредственной видимости. Частоты выше 10 ГГц невыгодны, поскольку превосходно поглощаются осадками. Послевоенные конструкции компании Белла (11 ГГц) оказались неконкурентоспособными. Участок спектра чаще выбирают сообразно получению необходимого числа каналов.

История

Цифровой набор предложили раньше импульсного. Однако реализация идеи запоздала на 60 лет. Судьбу антибиотиков повторяет радиорелейная связь.

Изобретение идеи

Историки единогласно отдают приоритет открытия Иоганну Маттаушу, написавшему (1898) в журнале Заметки электротехника (том 16, 35-36) соответствующую публикацию. Критики отмечают несостоятельность теоретической части, предлагавшей создать телеграфные ретрансляторы. Однако год спустя Эмилем Гуарини-Форестио построен первый работоспособный экземпляр. Уроженец итальянской общины Фазано (Апулия), будучи студентом, 27 мая 1899 года запатентовал в бельгийском подразделении радио-репитер. Дату считают официальным днём рождения радиорелейной связи.

Устройство представлено комбинацией приёмопередающей аппаратуры. Конструкция производила демодуляцию принятого сигнала, последующее формирование, излучение ненаправленной антенной, формируя широковещательный канал. Фильтр защищал приёмный тракт от мощного излучения передатчика.

Ощущая недостатки представленной конструкции, Гуарини-Форезио (декабрь 1899) патентует (Швейцария, №21413) конструкцию направленной спиральной антенны (круговая поляризация), снабжённой металлическим рефлектором. Устройство исключало взаимный перехват вышками чужих сообщений. Дальнейшее усовершенствование произведено тесным сотрудничеством с Фернандо Понтселе. Вместе изобретатели провели попытку установить связь меж Брюсселем и Антверпеном, используя Малины промежуточным пунктом, местом базирования ретранслятора.

Конструкцию снабдили цилиндрическими антеннами диаметром 50 см, снабдив аппаратурой высотное здание. Отталкиваясь от результатов, полученных жарким июнем 1901 года, началась подготовка линии Париж – Брюссель дальностью 275 км. Шаг установки ретрансляторов составил 27 км. Декабрь принёс задумке успех, обеспечив время задержки сообщения 3..5 секунд.

Завидя радужные перспективы, Гуарини витал в облаках, предвкушая коммерческий успех (эквивалентный прибылям компании Белла) радиорелейной связи, устраняющей проблемы дальности. Реальность внесла коррективы. Потребовался широкий ассортимент решений:

  1. Питание приёмопередающей аппаратуры.
  2. Конструирование более удобоваримых антенн.
  3. Снижение стоимости оборудования.

Лишь 30 лет спустя изобретение подходящих электронных высокочастотных ламп позволило идее выплыть на поверхность. Изобретатель удостоился ордена Короны Италии.

Ламповые конструкции покоряют Ла-Манш

В 1931 году англо-французский консорциум (Компания международного телефона и телеграфа, Англия; Лаборатория телефонного оборудования, Франция), возглавляемый Андрэ Клавиром, покорил Ла-Манш (Дувр-Кале). Событие осветил журнал Radio News (август, 1931 г, стр. 107). Напомним суть проблемы: прокладка подводного кабеля обходится дорого, разрыв линии означает необходимость тратить значительные средства на ремонт. Инженеры двух стран решили преодолеть водное пространство (40 км) семидюймовыми (18 см) волнами. Экспериментаторы передали:

  1. Телефонный разговор.
  2. Кодированный сигнал.
  3. Изображения.

Система параболических антенн диаметром 10 футов (19-20 длин волн) давала два параллельных луча, конфигурация автоматически блокировала явление интерференции. Мощность потребления передатчика составила 25 Вт, КПД – 50%. Положительные результаты заставили предполагать возможность генерации более высоких частот, включая оптические. Сегодня очевидна нецелесообразность подобных замашек. Технические характеристики используемых вакуумных ламп замалчивались организаторами, упоминался лишь общий принцип действия, изобретённый Хайнрихом Баркхаузеном (Университет Дрездена), усовершенствованный французским экспериментатором Пирье. Затейники выражали благодарность учёным-предшественникам:

  1. Глагольева-Аркадьева А.А. изобрела (1922) микроволновый генератор (5 см..82 мкм) из взвешенных в масляном сосуде алюминиевых опилок.
  2. Профессор Эрнест Николс, доктор Тир проводили аналогичные исследования в США, добившись генерации волн, сравнимых с инфракрасным диапазоном.
  3. Разработчикам помогли бесчисленные эксперименты Густава Ферье, занимавшегося миниатюризацией вакуумных приборов в попытке снизить длину волны.

Ключом стала идея Баркхаузена получать колебания прямо внутри лампы (принцип действия современных магнетронов). Наблюдатели сразу отметили возможность закладки множества каналов. Дециметровое вещание тогда полностью отсутствовало. Диапазон на четыре порядка шире волн, широко используемых тогда телевидением. Резкий рост числа каналов вещания становился настоящей проблемой. Открываемые дециметровым спектром возможности явно превышали потребности.

Уже тогда заметка предполагала использование атомных переходов для генерации волн высокой частоты. Обсуждалось рентгеновское излучение. Журналисты окончили всеобщим призывом инженеров осваивать открывающиеся перспективы.

Дубль два

Несколькими годами позже опыты возобновились. Линия длиной 56 км соединила берега пролива:

  1. Община святого Инглевера (Франция).
  2. Замок Лимпн (Кент, Великобритания).

Создатели линии рассчитывали серьёзно устроиться, поставив две стальные вышки, украшенные параболическими антеннами диаметром 9,75 фута. Генератор спрятался позади рефлектора, тонкое жало волновода пробивало тарелку, облучатель сформирован шаровидным зеркалом. Оператору построили наземный пункт управления, оборудовав необходимыми панелями, включая регулятор напряжения. Функциональный набор предполагал использование азбуки Морзе, факса, телерадиовещания.

Супергетеродинный приёмник с кварцевой стабилизацией понижал входной сигнал до 300 кГц, декодируя амплитудную модуляцию. Согласно заявлениям организаторов, оснастка призвана заменить морские телефонные, телеграфные кабели. Американская компания Белла построила аналогичную систему, форсировав залив Кейп-Код.

Технологии радаров Второй мировой

Начавшаяся Вторая мировая война подстегнула развитие микроволновых генераторов. Помогли начинаниям американские (Стэнфорд) изобретатели клистрона (1937) Рассел и Зигмунд Варианы. Новые лампы помогли создать усилители, генераторы СВЧ диапазона. Ранее повально применяли трубки Баркхаузена-Курца, магнетроны с расщепленным анодом, выдающие слишком малую мощность. Демонстрация прототипа успешно прошла 30 августа 1937 года. Западные разработчики немедля занялись построением станций воздушного обзора.

Братья создали организацию, занимающуюся коммерциализацией изобретения. Линейный ускоритель протонов помогал медикам лечить некоторые заболевания (рак). Принцип действия использует концепцию модуляции скорости (1935) Оскара Хайля и его жены. Хотя эксперты предполагают полную неосведомлённость Варианов относительно существования сего научного труда.

Работы американского физика Хансена (1939) по ускорению частиц могли быть использованы с целью замедления электронов, передающих энергию выходному тракту радиочастоты. Резонатор Хансена иногда называют румбатроном. Клистроны использовались преимущественно фашистами, станции союзников начинялись магнетронами. Армия США построила мобильные системы связи на базе грузовых машин, переплывшие океан помогать союзникам. Армейцам понравилась идея быстро налаживать связь на дальние дистанции. После войны компания AT&T применяла 4-ваттные клистроны, создавая радиорелейную сеть, покрывающую Северную Америку. Собственную инфраструктуру, благодаря 2К25, построил Вестерн Юнион.

Главным двигателем бурного прогресса считают идею резкого расширения объёма каналов, покупаемого низкой стоимость возведения вышек. Релейные сети (РРЛС) окутали три линии обороны Северной Америки времён Холодной войны. Прототип TDX разработали (1946) Лаборатории Белла. Система быстро совершенствовалась, обновляя вакуумные лампы:

  • 416В.
  • 416С.

Послевоенные попытки организовать связь наталкивались на необходимость выбора элементной базы. Эксперты всерьёз обсуждали конструкции ламп, клистронов, жаловались на влияние дождя. Типичные проблемы незащищённой аналоговой связи. Первые линии (включая оборонные сети ПВО США) питались дизельным топливом. Башня непременно вмещала нижний этаж-хранилище горюче-смазочных материалов, чаще ядовитых.

Угасание технологии

Переход на сантиметровый диапазон требует упразднить металлокерамические, маячковые триоды. Взамен вводят клистроны, лампы бегущей волны. Антенные устройства, наоборот, выходят миниатюрнее. Сантиметровый диапазон сильно увеличивает потери родных спектру ДМВ коаксиальных соединений. Взамен решили ставить волноводы. Третье поколение TDX перешло на твердотельную электронику. Мобильные варианты передавали 24 канала с частотным делением. Каждый вмещал 18 телетайпных линий. Аналогичные системы разрабатывались повсеместно. Лишь в 1980-е пользу технологии подвергли сомнению, ввиду внедрения спутниковой связи. Оптический кабель перекрыл возможности радиолиний.

Это интересно! Группа спутников Риолит занималась перехватом советской радиорелейной связи.

Современное состояние

Ныне идея повсеместно применяется мобильными сетями наземного базирования. Учёные чаще рассматривают возможность переноса энергии. Источником идеи следует считать Николу Теслу, задумавшего ещё в начале XX века покрыть территорию США сетью передатчиков. Изобретатель демонстрировал полную безопасность высокочастотных разрядов. Сегодня эксперты подразумевают перенос действа в открытый космос.

Передача энергии

Открытие электромагнетизма заставило учёных ломать голову, осмысливая способы передачи энергии. Первым реализованным методом назовём тороидальный трансформатор Майка Фарадея (1831). Рассмотрев уравнения Максвела, Джон Генри Пойнтинг создал теорему (1884), описывающую процесс переноса мощности электромагнитной волной. Четыре года спустя Хайнрих Рудольф Герц подтвердил теорию практикой, наблюдая искровой разряд приёмного вибратора. Проблемой занимались Вильям Генри Вэрд (1871), Махлон Лумис (1872), оба желали использовать потенциал атмосферы Земли.

«Секретные» книги полны проектами Теслы победить фашистскую авиацию беспроводными излучателями. Факты упоминают посмертное тотальное изъятие бумаг изобретателя американскими спецслужбами. Катушки Теслы шутя позволяли получить высокочастотные разряды молнии. Башня Ворденклиф (1899) серьёзно пугала округу, производителей меди наводнила ужасом мысль беспроводной передачи. Тесла дистанционно поджигал трубки Гисслера (1891), лампочки накала.

Сербский изобретатель распространил методику генерации колебаний резонансными контурами LC. Методика гениального Теслы предусматривала запуск воздушных шаров на высоты 9,1 км. Пониженное давление облегчало передачу мегавольтных напряжений. Второй идеей изобретатель задумал заставить электрический потенциал Земного шара вибрировать, снабжая станции планеты энергией. Задуманная Мировая Беспроводная система могла также передавать информацию. Неудивителен испуг инвесторов, набивавших карман производством меди.

Метод питания поездов напряжением частотой 3 кГц запатентован Морисом Хатином и Морисом Лебланком (1892). В 1964 году Вильям Браун создал модель игрушечного вертолёта, питаемого энергией электромагнитной волны. Технологии RFID (например, ключ домофона) изобретены в середине 70-х:

  1. Марио Кардулло (1973).
  2. Коэлле (1975).

Позже появились карты доступа. Сегодня технологию заездили мобильные гаджеты, подзаряжающиеся беспроводным путём. Аналогичная технология используется индукционными варочными панелями, плавильными печами. Инженеры активно реализуют идеи компьютерных игр начала второго тысячелетия, планируя создать орбитальные солнечные электростанции, обороняемые боевыми дронами, питаемыми энергией электромагнитных волн. Большинству известен лазерный скальпель, использующий принцип передачи мощности коже пациента.

Это интересно! Концепцию беспроводных дронов (1959) выдвинула фирма Радеон, выполняя проект Министерства обороны. Канадский Исследовательский центр связи (1987) создал первый прототип, месяцами исполнявший возложенные функции.

Консорциум беспроводной передачи энергии

17 декабря 2008 года сформирована организация, призванная рекламировать стандарт беспроводной зарядки устройств Qi. Свыше 250 мировых компаний поддержали идею. Позже проект одобрили Нокиа, Хуавей, Вистеон. Заранее стали известны планы оснастить технологией мобильные устройства. В октябре 2016 обнародовали намерение создать зарядные точки доступа.

24 компании составили «стальной стержень» группы лоббистов. 2017 год пополнил список маркетинговыми менеджерами Apple. Касательно безопасности методики мнения учёных разделились. Эксперты сошлись в одном: вскорости методика индуктивной подзарядки станет общепринятой.

Связь с релейными системами

Подобно тому, как первые экспериментаторы преодолели Ла-Манш, ранние орбитальные солнечные электростанции станут питать спутники, продляя кардинально срок службы оборудования. Затем передача энергии станет глобальной, охватив все человеческие устройства. Технологию проще всего именовать релейной. Энергия станет приниматься, усиливаться, передаваться далее.

Это интересно! Питер Гласер первым (1968) предложил фармить энергию Солнца орбитальными заводами, передавая луч наземным станциям.

Лазерный луч эффективно переносит энергию. Мощность 475 Вт настигла мишень, преодолев многие мили свободного пространства. Система показала КПД 54%. Лаборатории НАСА передали 30 кВт, применив частоту 2,38 ГГц (спектр микроволновой печи) тарелкой диаметром 26 метров. Итоговый КПД достиг 80%. Япония (1983) затеяла исследования передачи энергии слоем ионосферы, полной свободных носителей заряда.

Прототип создан командой Марина Соляшича (Массачусетский технологический университет). Резонансный передатчик отправил 60 Вт энергии на частоте 10 МГц, преодолев дистанцию 2 метра, достигнув КПД 40%. Год спустя группа Грега Лея и Майка Кеннана (Невада), используя частоту 60 кГц, покорила дальность 12 метров. Полагаем, новейшие разработки быстро засекретят.

Обнародованную историю завершает создание НАСА летательного аппарата (2003), питаемого излучением лазера. Анонсированный 12 марта 2015 года проект JAXA призван реализовать идеи Николы Тесла.

Для современного состояния общества характерна непрерывно увеличивающаяся потребность в использовании систем передачи информации. Несмотря на огромный прогресс в сфере телекоммуникаций - как по развитию новых технологий в области связи, так и по объему связных систем, возросли и объективные препятствия для дальнейшего развития. Теснота как в частных диапазонах, гак и в пространстве привела к росту взаимных помех между функционирующими радиосистемами. Для решения проблемы электромагнитной совместимости осуществляется международное и внутригосударственное регулирование радиосвязи. Решение идет, в том числе, по пути сужения диаграмм направленности антенных систем, ограничения излучаемой мощности. Это позволяет осуществить пространственное разнесение радиосистем, ограничить их использование локальными территориями. Однако этот ресурс не беспределен.

Регламентация временных режимов работы радиосистем позволяет использовать их на ограниченной территории в одном частотном промежутке. Но при этом накладывается ограничение на информационные возможности радиосисгем.

При росте числа пользователей растет необходимая полоса частот, которая достигает десятка мегагерц. Даже в ВЧ-диапазонс его общая полоса составляет 27 МГц. Наличие звукового вещания в этих диапазонах делает нереальным развитие радиосвязи с использованием этих частот. Использование этих диапазонов для обмена телевизионными программами, каждой из которых требуется полоса в 6,5 МГц (и это без учета защитного интервала), также нереально. Следовательно, переход в УВЧ-, СВЧ- и КВЧ-диапазоны вызван объективными потребностями в обмене информацией.

Однако, как отмечалось в подразд. 6.1.1, электромагнитные колебания этих частот распространяются только по прямой и, следовательно, приемная и передающие антенны должны находиться в пределах геометрической видимости, без учета дифракции, увеличивающей радиогоризонт по сравнению с видимым на 14%. Естественно решение увеличивать дальность передачи информации последовательной ретрансляцией передаваемых сигналов - этот способ связи носит название «радиорелейная связь» (рис. 11.12).

Рис. 6.12.

Оконечные (ОС) и промежуточные (ПС) радиостанции находятся в пределах прямой видимости. В линии осуществляется, как правило, дуплексная (двухсторонняя) радиосвязь. Видно, что ограничение дальности распространения радиоволн, начиная с УВЧ-диапазона и выше, прямой видимостью, с одной стороны, недостаток - необходимо использовать дополнительную ретрансляционную аппаратуру, а, с другой стороны, достоинство - с учетом направленного излучения можно на ограниченной территории использовать одинаковые частоты.

Радиорелейные линии используются там, где это экономически оправдано, например, для организации связи на ограниченное время или в сложных условиях - рельеф, болотистая местность и т.п.

Упрощенная функциональная схема радиорелейной линии представлена на рис. 6.13.


Рис. 6.13.

Оконечные радиостанции включают в себя передающую и приемную части. Источники информации (ИИ) объединены схемой уплотнения информации (СУИ), формирующей групповой сигнал, поступающий на вход передатчика (ИД). Промежуточные радиостанции принимают и передают далее радиосигнал, который подвергается восстановлению с целью сохранения необходимого качества связи. Таких промежуточных радиостанций может быть несколько, в зависимости от рельефа местности и протяженности радиорелейной линии. На промежуточной станции может быть предусмотрен отбор и добавление информации, гем самым линия преобразуется в сегь и место расположения промежуточной станции привязывается к источникам и получателям информации. На оконечной радиостанции, кроме приема, осуществляется разделение группового сигнала на составляющие схемой разделения информации (СРИ) и передача соответствующим получателям информации (ПИ).

Абсолютно аналогично выглядит и образ ный канал. Упомянутое здесь формирование группового сигнала и его последующее разделение далее будет рассмотрено в отдельном разделе. Этот метод общий и применяется с целью более рационального использования передающих, приемных и антенных устройств, а также конструкций - вышек, зданий, входящих в систему.

Отдельно стоит вопрос снижения уровня внутрисистемных помех. Для решения этой проблемы и принимается ряд мер (рис. 6.14).


Рис. 6.14.

Работа на прием и передачу ведется на разных частотах и поляризациях. Это позволяет исключить в пределах ОС и ПС попадание излучаемого сигнала на вход приемника. Кроме того, осуществляется смена несущих частот по линии. Дополнительно предусмотрено, чтобы станции нс располагались по прямой с целью предотвращения попадания сигнала передатчика, расположенного через одну станцию, на вход приемника одновременно с сигналом соседней станции. Информационные потоки группируются в радиочастотные каналы и образуют стволы радиорелейной линии (РРЛ) и их может быть несколько, поэтому изображенные на рис. 6.13 и 6.14 схемы являются упрощенными, поясняющими только принцип построения РРЛ.

Расстояние между станциями определяется прямой видимостью. Будем для простоты считать рельеф местности ровным, без возвышенностей и впадин.

На рис. 6. 15 обозначено: - радиус Земли (R y = 6370км); /;,и h 2 - высота подъема антенн Л, и А 2 над Землей. Линия прямой видимости, равная Л, + d 2 , почти касается поверхности Земли. Учтем малость /?, и h 2 по сравнению с /? 3 и определим расстояние между антеннами Д равное d } + d 2

Рис. 6.15.

Так как f2R = 3500 м, примем с учетом некоторого огибания поверхности Земли радиоволнами:

(D измеряется в километрах, А,и /г, - в метрах). Если считать /г, « /г, «25, то D = 40 км. Как правило, величину подъема антенн с целью уменьшения стоимости мачт не делают более 40 м и D = 40 - 60 км. При проектировании учитывают рельеф и по возможности антенные мачты устанавливают на возвышениях.

В PPJI используют частоты в области 4 и 6 ГГц. Это позволяет получить достаточно широкую полосу частот и, следовательно, обеспечить высокую пропускную способность. В то же время влияние осадков на т рассе несущественно воздействует на поглощение электромагнитных волн в атмосфере.

На практике в диапазоне 6 ГГц выделяют полосу частот в 500 МГц, в которой формируют 16 каналов - по 8 в каждом направлении, т.е. 8 стволов. Использование вертикальной и горизонтальной поляризаций позволяет одной антенной осуществлять прием и передачу радиосигналов. Но это возможно при небольшом числе стволов.

Радиореле́йная свя́зь - один из видов наземной радиосвязи , основанный на многократной ретрансляции радиосигналов . Радиорелейная связь осуществляется, как правило, между стационарными объектами.

Исторически радиорелейная связь между станциями осуществлялась с использованием цепочки ретрансляционных станций, которые могли быть как активными, так и пассивными.

Отличительной особенностью радиорелейной связи от всех других видов наземной радиосвязи является использование узконаправленных антенн , а также дециметровых , сантиметровых или миллиметровых радиоволн.

История

История радиорелейной связи берет начало в январе 1898 года с публикации пражского инженера Йоганна Маттауша (Johann Mattausch) в австрийском журнале Zeitschrift für Electrotechnik (v. 16, S. 35 - 36) Однако его идея использования «транслятора» (Translator), по аналогии с трансляторами проводной телеграфии, была довольно примитивной и не могла быть реализована.

Первую реально работающую систему радиорелейной связи изобрел в 1899 году 19-летний бельгийский студент итальянского происхождения Эмиль Гуарини (Гварини) Форесио (Émile Guarini Foresio) . 27 мая 1899 г. по старому стилю, Эмиль Гуарини-Форесио подал заявку на патент на изобретение №142911 в Бельгийское патентное ведомство, впервые описав в ней устройство радиорелейного ретранслятора (répétiteur) . Этот исторический факт является самым ранним документальным свидетельством приоритета Э. Гуарини-Форесио, что позволяет считать указанную дату официальным днем рождения радиорелейной связи. В августе и осенью того же 1899 г. аналогичные заявки были представлены Э. Гуарини-Форесио в Австрии, Великобритании, Дании, Швейцарии .

Особенностью изобретения Гуарини-Форесио явилась комбинация приёмного и передающего устройств в одном ретрансляторе, осуществлявшем приём сигналов, их демодуляцию в когерере и последующее использование для управления реле, обеспечивавшем формирование обновлённых сигналов, которые затем переизлучались через антенну. Для обеспечения электромагнитной совместимости приёмный сегмент ретранслятора окружен защитным экраном, призванным оградить цепи приёма от мощного излучения передатчика.

В 1931 году Андре Клавир, работая во французском исследовательском подразделении LCT компании ITT , показал возможность организации радиосвязи с помощью ультракоротких радиоволн. В ходе предварительных испытаний 31 марта 1931 года Клавир с помощью экспериментальной радиорелейной линии, работающей на частоте 1,67 ГГц, успешно передал и принял телефонные и телеграфные сообщения, разместив две параболические антенны диаметром 3 м на двух противоположных берегах пролива Ла-Манш . Примечательно, что места установки антенн практически совпадали с местами взлёта и посадки исторического перелета через Ла-Манш Луи Блерио . Следствием успешного эксперимента Андре Клавира стала дальнейшая разработка коммерческого радиорелейного оборудования. Первое коммерческое радиорелейное оборудование было выпущено ITT, а точнее её дочерней компанией STC, в 1934 году и использовало амплитудную модуляцию несущего колебания мощностью в 0,5 Ватт на частоте 1,724 и 1,764 ГГц, полученного с помощью клистрона .

Запуск первой коммерческой радиорелейной линии состоялся 26 января 1934 года. Линия имела протяжённость 56 км над проливом Ла-Манш и соединяла аэропорты Лимпн в Англии и Сент-Энглевер во Франции. Построенная радиорелейная линия позволяла одновременно передавать один телефонный и один телеграфный канал и использовалась для координации воздушного сообщения между Лондоном и Парижем. В 1940 году в ходе Второй Мировой Войны линия была демонтирована.

Радиорелейная связь прямой видимости

Как правило под радиорелейной связью понимают именно радиорелейную связь прямой видимости.

При построении радиорелейных линий связи антенны соседних радиорелейных станций располагаются в пределах прямой видимости . Требование наличия прямой видимости обусловлено возникновением дифракционных замираний при полном или частичном закрытии трассы распространения радиоволн. Потери при дифракционных замираниях могут вызывать сильное ослабление сигнала, таким образом радиосвязь между соседними радиорелейными станциями станет невозможна. Поэтому для устойчивой радиосвязи антенны соседних радиорелейных станций как правило располагают на естественных возвышенностях или специальных телекоммуникационных башнях или мачтах таким образом, чтобы трасса распространения радиоволн не имела препятствий.

С учётом ограничения на необходимость наличия прямой видимости между соседними станциями дальность радиорелейной связи ограничена как правило 40 - 50 км.

Тропосферная радиорелейная связь

При построении тропосферных радиорелейных линий связи используется эффект отражения дециметровых и сантиметровых радиоволн от турбулентных и слоистых неоднородностей в нижних слоях атмосферы - тропосфере .

Использование эффекта дальнего тропосферного распространения радиоволн УКВ диапазона позволяет организовать связь на расстояние до 300 км при отсутствии прямой видимости между радиорелейными станциями. Дальность связи может быть увеличена до 450 км при расположении радиорелейных станций на естественных возвышенностях.

Для тропосферной радиорелейной связи характерно значительное ослабление сигнала. Ослабление возникает как при распространении сигнала через атмосферу, так и вследствие рассеяния части сигнала при отражении от тропосферы. Поэтому для устойчивой радиосвязи как правило используют передатчики мощностью до 10 кВт, антенны с большой апертурой (до 30 x 30 м), а значит, и большим коэффициентом усиления, а также высокочувствительные приёмники с малошумящими элементами.

Также для тропосферных радиорелейных линий связи характерно постоянное наличие быстрых, медленных и селективных замираний радиосигнала. Уменьшение влияния быстрых замираний на принимаемый сигнал достигается использованием разнесенного частотного и пространственного приёма. Поэтому на большинстве стационарных тропосферных радиорелейных станций расположено несколько приёмных антенн.

Примером наиболее известных и протяжённых тропосферных радиорелейных линий связи являются:

  • ТРРЛ «Север» , «ACE High», «White Alice», «JASDF», линия «Дью» , линии «NARS»;
  • ТСУС «Барс»

Радиорелейные ретрансляторы

В отличие от радиорелейных станций ретрансляторы не добавляют в радиосигнал дополнительной информации. Ретрансляторы могут быть как пассивными, так и активными.

Пассивные ретрансляторы представляют собой простой отражатель радиосигнала без какого-нибудь приёмопередающего оборудования и, в отличие от активных ретрансляторов, не могут усиливать полезный сигнал или переносить его на другую частоту. Пассивные радиорелейные ретрансляторы применяются в случае отсутствия прямой видимости между радиорелейными станциями; активные - для увеличения дальности связи.

В качестве пассивного ретранслятора могут выступать как плоские отражатели, так и антенны радиорелейной связи, соединённые коаксиальными или волноводными вставками (так называемые антенны, соединённые «спина к спине»).

Плоские отражатели как правило используются при небольших углах отражения и обладают эффективностью близкой к 100 %. Однако с увеличением угла отражения эффективность плоского отражателя уменьшается. Достоинством плоских отражателей является возможность использования для ретрансляции нескольких частотных диапазонов радиорелейной связи.

Антенны, соединённые «спина к спине» как правило используются при углах отражения близких к 180° и обладают эффективностью 50-60 %. Подобные отражатели не могут использоваться для ретрансляции нескольких частотных диапазонов из-за ограниченных возможностей самих антенн.

Smart-ретрансляторы

Среди новых направлений в развитии радиорелейной связи, наметившихся в последнее время, заслуживает внимания создание интеллектуальных ретрансляторов (smart relay) Их появление связано с особенностью реализации технологии MIMO , при которой необходимо знать передаточные характеристики радиорелейных каналов. В smart-ретрансляторе осуществляется так называемая "интеллектуальная" обработка сигналов. В отличие от традиционного набора операций "приём – усиление – переизлучение" в простейшем случае она предусматривает дополнительную коррекцию амплитуд и фаз сигналов с учётом характеристик передачи пространственных MIMO -каналов на том или ином интервале радиорелейной линии . В этом случае делается допущение, что все каналы MIMO имеют одинаковые коэффициенты передачи. Оно вполне может быть оправдано с учётом узких лучей диаграмм направленности приёмной и передающей антенн на дальностях связи, при которых расширение диаграмм направленности не приводит к заметному проявлению эффекта многолучевого распространения радиоволн.

Более сложный вариант реализации принципа smart relay предполагает полную демодуляцию принятых сигналов в ретрансляторе с извлечением передаваемой в них информации, её запоминанием и последующим использованием для модуляции переизлучаемых сигналов с учётом характеристик состояния канала MIMO в направлении на следующий ретранслятор сети . Такая обработка, хотя и является более сложной, позволяет максимально учесть искажения, вносимые в полезные сигналы по трассе их распространения.

Частотные диапазоны

Для организации радиосвязи используются деци- , санти- и миллиметровые волны .

Для обеспечения дуплексной связи каждый частотный диапазон условно разделяется на две части относительно центральной частоты диапазона. В каждой части диапазона выделяются частотные каналы заданной полосы. Частотным каналам «нижней» части диапазона соответствуют определённые каналы «верхней» части диапазона, причём таким образом, что разница между центральными частотами каналов из «нижней» и «верхней» частей диапазона была всегда одна и та же для любых частотных каналов одного частотного диапазона.

Диапазон (ГГц) Границы диапазона (ГГц) Ширина каналов (МГц) Рекомнендации ITU-R Решения ГКРЧ
0,4 0,4061 - 0,430
0,41305 - 0,450
0,05, 0,1, 0,15, 0,2, 0,25, 0,6
0,25, 0,3, 0,5, 0,6, 0,75, 1, 1,75, 3,5
ITU-R F.1567
1,4 1,350 - 1,530 0,25, 0,5, 1, 2, 3,5 ITU-R F.1242
2 1,427 - 2,690 0,5 ITU-R F.701
1,700 - 2,100
1,900 - 2,300
29 ITU-R F.382
1,900 - 2,300 2,5, 3,5, 10, 14 ITU-R F.1098
2,300 - 2,500 1, 2, 4, 14, 28 ITU-R F.746
2,290 - 2,670 0,25, 0,5, 1, 1,75, 2, 2,5 3,5, 7, 14 ITU-R F.1243
3,6 3,400 - 3,800 0,25, 25 ITU-R F.1488
4 3,800 - 4,200
3,700 - 4,200
29
28
ITU-R F.382 Решение ГКРЧ № 09-08-05-1
3,600 - 4,200 10, 30, 40, 60, 80, 90 ITU-R F.635
U4 4,400 - 5,000
4,540 - 4,900
10, 28, 40, 60, 80
20, 40
ITU-R F.1099 Решение ГКРЧ № 09-08-05-2
L6 5,925 - 6,425
5,850 - 6,425
5,925 - 6,425
29,65
90
5, 10, 20, 28, 40, 60
ITU-R F.383 Решение ГКРЧ № 10-07-02
U6 6,425 - 7,110 3,5, 5, 7, 10, 14, 20, 30, 40, 80 ITU-R F.384 Решение ГКРЧ № 12-15-05-2
7 ITU-R F.385
8 ITU-R F.386
10 10,000 - 10,680
10,150 - 10,650
1,25, 3,5, 7, 14, 28
3,5, 7, 14, 28
ITU-R F.747
10,150 - 10,650 28, 30 ITU-R F.1568
10,500 - 10,680
10,550 - 10,680
3,5, 7
1,25, 2,5, 5
ITU-R F.747
11 10,700 - 11,700 5, 7, 10, 14, 20, 28, 40, 60, 80 ITU-R F.387 Решение ГКРЧ № 5/1,

Решение ГКРЧ 09-03-04-1 от 28.04.2009

12 11,700 - 12,500
12,200 - 12,700
19,18
20
ITU-R F.746
13 12,750 - 13,250 3,5, 7, 14, 28 ITU-R F.497 Решение ГКРЧ 09-02-08 от 19.03.2009
12,700 - 13,250 12,5, 25 ITU-R F.746
14 14,250 - 14,500 3,5, 7, 14, 28 ITU-R F.746
15 14,400 - 15,350
14,500 - 15,350
3,5, 7, 14, 28, 56
2,5, 5, 10, 20, 30, 40, 50
ITU-R F.636 Решение ГКРЧ № 08-23-09-001
18 17,700 - 19,700
17,700 - 19,700
17,700 - 19,700
18,580 - 19,160
7,5, 13,75, 27,5, 55, 110, 220
1,75, 3,5, 7
2,5, 5, 10, 20, 30, 40, 50
60
ITU-R F.595 Решение ГКРЧ № 07-21-02-001
23 21,200 - 23,600
22,000 - 23,600
2,5, 3,5 - 112
3,5 - 112
ITU-R F.637 Решение ГКРЧ № 06-16-04-001
27 24,250 - 25,250
25,250 - 27,500
25,270 - 26,980
24,500 - 26,500
27,500 - 29,500
2,5, 3,5, 40
2,5, 3,5
60
3,5 - 112
2,5, 3,5 - 112
ITU-R F.748 Решение ГКРЧ № 09-03-04-2
31 31.000 - 31,300 3,5, 7, 14, 25, 28, 50 ITU-R F.746
32 31,800 - 33,400 3,5, 7, 14, 28, 56, 112 ITU-R F.1520
38 36,000 - 40,500
36,000 - 37,000
37,000 - 39,500
38,600 - 39,480
38,600 - 40,000
39,500 - 40,500
2,5, 3,5
3,5 - 112
3,5, 7, 14, 28, 56, 112
60
50
3,5 - 112
ITU-R F.749 Решение ГКРЧ № 06-14-02-001
42 40,500 - 43,500 7, 14, 28, 56, 112 ITU-R F.2005 Решение ГКРЧ № 08-23-04-001
52 51,400 - 52,600 3,5, 7, 14, 28, 56 ITU-R F.1496
57 55,7800 - 57,000
57,000 - 59,000
3,5, 7, 14, 28, 56
50, 100
ITU-R F.1497 Решение ГКРЧ № 06-13-04-001
70/80 71,000 - 76,000 / 81,000 - 86,000 125, N x 250 ITU-R F.2006 Решение ГКРЧ № 10-07-04-1
94 92,000 - 94,000 / 94,100 - 95,000 50, 100, N x 100 ITU-R F.2004 Решение ГКРЧ № 10-07-04-2

Частотные диапазоны от 2 ГГц до 38 ГГц относятся к «классическим» радиорелейным частотным диапазонам. Законы распространения и ослабления радиоволн, а также механизмы появления многолучевого распространения в данных диапазонах хорошо изучены и накоплена большая статистика использования радиорелейных линий связи. Для одного частотного канала «классического» радиорелейного частотного диапазон выделяется полоса частот не более 28 МГц или 56 МГц.

Диапазоны от 38 ГГц до 92 ГГц для радиорелейной связи стали выделяться недавно и являются более новыми. Несмотря на это данные диапазоны считаются перспективными с точки зрения увеличения пропускной способности радиорелейных линий связи, так как в данных диапазонах возможно выделение более широких частотных каналов.

Модуляция и помехоустойчивое кодирование

Одними из особенностей использования радиорелейных линий связи является:

  • необходимость передачи больших объёмов информации в сравнительно узкой полосе частот,
  • ограниченная мощность сигнала, накладываемые на радиорелейные станции.

Методы резервирования

С целью уменьшения неготовности интервалов РРЛ применяют различные методы резервирования. Обычно конфигурации с резервированием обозначают в виде суммы "N+M", где N обозначает общее количество стволов РРЛ, а M - количество зарезервированных стволов РРЛ. Иногда после суммы добавляют аббревиатуру HSB (Hot StandBy, "горячий" резерв), SD (Space Diversity, пространственный разнесённый приём) ил FD (Frequency Diversity, частотный разнесённый приём), обозначающую метод резервирования стволов РРЛ.

Методы резервирования радиорелейной связи можно разделить

«Горячий» резерв

Конфигурация оборудования РРЛ с N стволами и M резервным стволом, находящимся в "горячем" резерве. Резервирование достигается путём дублирования всех (части) функциональных блоков РРЛ. В случае выхода одного из блоков РРЛ из строя, блоки, находящиеся в "горячем" резерве замещают неработоспособные блоки.

Частотный разнесённый приём

Метод частотного разнесенного приёма направлен на устранение частотно-селективых замираний в канале связи.

Пространственный разнесённый приём

Метод пространственного разнесения применяется для устранения замираний, возникающих вследствие многолучевого распространения радиоволн в канале связи. Метод пространственного разнесения чаще всего используется при строительстве радиорелейных линий связи, проходящими над поверхностями с коэффициентом отражения близким к 1 (водная поверхность, болота, сельскохозяйственные поля).

Поляризационный разнесённый приём

Одним из недостатков поляризационного разнесённого приёма является необходимость использования более дорогостоящих двухполяризационных антенн.

Кольцевые топологии

Наиболее надёжным методом резервирования является построения радиорелейных линий связи по кольцевой топологии.

Применение радиорелейной связи

Из всех видов радиосвязи радиорелейная связь обеспечивает наибольшее отношение сигнал/шум на входе приёмника при заданной вероятности ошибки. Именно поэтому при необходимости организации надёжной радиосвязи между двумя объектами чаще всего используются радиорелейные линии связи.

Магистральные радиорелейные линии связи

Исторически радиорелейные линии связи использовались для организации каналов связи телевизионного и радиовещания, а также для связи телеграфных и телефонных станций на территории со слабо развитой инфраструктурой.

Сети связи нефтепроводов и газопроводов

Радиорелейные линии связи применяются при строительстве и обслуживании нефте- и газопроводов в качестве основных или резервных оптическому кабелю линий связи для передачи телеметрической информации.

Сотовые сети связи

Радиорелейная связь находит применение в организации каналов связи между различными элементами сотовой сети, особенно в местах со слабо развитой инфраструктурой.

Современные радиорелейные линии связи способны обеспечить передачу больших объёмов информации от базовых станций 2G, 3G и 4G к основным элементам опорной сети сотовой связи.

Недостатки радиорелейной связи

  • Ослабление сигнала в свободном пространстве
  • Ослабление сигнала в дожде и тумане На частотах до 12 ГГц осадки в виде дождя или снега слабо влияют на работу радиорелейных линий связи.
  • Литература
    • Mattausch J. Telegraphie ohne Draht. Eine Studie. // Zeitschrift für Elektrotechnik. Organ des Elektrotechnischen Vereines in Wien.- Heft 3, 16. Jänner 1898. - XVI. Jahrgang. - S. 35-36..
    • Слюсар В.И. Радиорелейным системам связи 115 лет. // Первая миля. Last mile (Приложение к журналу "Электроника: наука, технология, бизнес"). – 2015. - № 3.. - С. 108 - 111 .
    • Slyusar V.I. First Antennas for Relay Stations.// International Conference on Antenna Theory and Techniques, 21-24 April, 2015, Kharkiv, Ukraine. - Pp. 254 - 255. .
    • Harry R. Anderson Fixed Braadband Wireless System Design - John Wiley & Sons, Inc., 2003 - ISBN 0-470-84438-8
    • Roger L. Freeman Radio System Design for Telecommunications Third Edition - John Wiley & Sons, Inc., 2007 - ISBN 978-0-471-75713-9
    • Ingvar Henne, Per Thorvaldse n Planning of line-of-sight radio relay systems Second edition - Nera, 1999
    • Каменский Н. Н., Модель А. М., под редакцией Бородича С. В. Справочник по радиорелейной связи - Радио и связь, 1981
    • Слюсар В.И. Современные тренды радиорелейной связи. //Технологии и средства связи. – 2014. - № 4.. - С. 32 - 36. .
    • В. Т. Свиридов. Радиорелейные линии связи. //Государственное издательство физико-математической литературы. – 1959. - С. 81 .


Понравилась статья? Поделиться с друзьями: