Использование mpi. Основные функции MPI. Операции типа точка-точка

Основные функции MPI

Наиболее распространенной технологией программирования для параллельных систем с распределенной памятью в настоящее время является MPI (Message Passing Interface). Основным способом взаимодействия параллельных процессов друг с другом в таких системах является передача сообщений (Message Passing). По сути MPI – это библиотека и среда исполнения для параллельных программ на языках C или Fortran. В данном пособии будут описаны примеры программ на языке С.

Изначально MPI позволяет использовать модель программирования MIMD (Multiple Instruction Multiple Data) – много потоков инструкций и данных, т.е. объединение различных программ с различными данными. Но программирование для такой модели на практике оказывается слишком сложным, поэтому обычно используется модель SIMD (Single Program Multiple Data) –одна программа и много потоков данных. Здесь параллельная программа пишется так, чтобы разные ее части могли одновременно выполнять свою часть задачи, таким образом, достигается параллелизм. Поскольку все функции MPI содержаться в библиотеке, то при компиляции параллельной программы необходимо будет прилинковать соответствующие модули.

Под параллельной программой в рамках MPI понимается множество одновременно выполняемых процессов. Процессы могут выполняться на разных процессорах, но на одном процессоре могут располагаться и несколько процессов (в этом случае их исполнение осуществляется в режиме разделения времени). При запуске MPI – программы на кластере на каждом из его узлов будет выполняться своя копия программы, выполняющая свою часть задачи, из этого следует, что параллельная программа – это множество взаимодействующих процессов, каждый из которых работает в своем адресном пространстве. В предельном случае для выполнения параллельной программы может использоваться один процессор - как правило, такой способ применяется для начальной проверки правильности параллельной программы.

Количество процессов и число используемых процессоров определяется в момент запуска параллельной программы средствами среды исполнения MPI - программ и в ходе вычислений меняться не может. Все процессы программы последовательно перенумерованы от 0 до np-1, где np есть общее количество процессов. Номер процесса называется рангом процесса.

Взаимодействуют параллельные процессы между собой при помощи посылки сообщений. Методы посылки (их называют коммуникации) бывают двух видов – коллективные(collective) и “точка-точка” (point-to-point). При коллективных коммуникациях процесс посылает нужную информацию одновременно целой группе процессов, еще есть более общий случай, когда внутри группы процессов передача информации идет от каждого процесса к каждому. Более простыми коммуникациями являются коммуникации типа ”точка-точка”, когда один процесс посылает информацию второму или они оба обмениваются информацией. Функции коммуникаций – основные функции библиотеки MPI. Кроме этого, обязательными функциями являются функции инициализации и завершения MPI – MPI_Init и MPI_Finalize. MPI_Init должна вызываться в самом начале программ, а MPI_Finalize – в самом конце. Все остальные функции MPI должны вызываться между этими двумя функциями.

Как процесс узнает о том, какую часть вычислений он должен выполнять? Каждый процесс, исполняющийся на кластере, имеет свой уникальный номер – ранг. Когда процесс узнает свой ранг и общее количество процессов, он может определить свою часть работы. Для этого в MPI существуют специальные функции – MPI_Comm_rank и MPI_Comm_size. MPI_Comm_rank возвращает целое число - ранг процесса, вызвавшего ее, а MPI_Comm_size возвращает общее число работающих процессов.

Процессы отлаживаемой параллельной программы пользователя объединяются в группы. Под коммуникатором в MPI понимается специально создаваемый служебный объект, объединяющий в своем составе группу процессов и ряд дополнительных параметров (контекст), используемых при выполнении операций передачи данных. Коммуникатор, автоматически создаваемый при запуске программы и включающий в себя все процессы на кластере, называется MPI_COMM_WORLD. В ходе вычислений могут создаваться новые и удаляться существующие группы процессов и коммуникаторы. Один и тот же процесс может принадлежать разным группам и коммуникаторам. Коллективные операции применяются одновременно для всех процессов коммуникатора, поэтому для них одним из параметров всегда будет выступать коммуникатор.

При выполнении операций передачи сообщений в функциях MPI необходимо указывать тип пересылаемых данных. MPI содержит большой набор базовых типов данных, основанных на стандартных типах данных языка С. Кроме того, программист может конструировать свои типы данных при помощи специальных функций MPI. Ниже приведена таблица соответствия для базовых типов данных.

Константы MPI ТИП данных языка С
MPI_INT signed int
MPI_UNSIGNED unsigned int
MPI_SHORT signed int
MPI_LONG signed long int
MPI_UNSIGNED_SHORT unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_UNSIGNED_CHAR unsigned char
MPI_CHAR signed char

Пример запуска библиотеки MPI: логин student, пароль s304.

#include

#include

int main (int argc, char *argv)

/* Инициализация MPI */

MPI_Init (&argc, &argv);

/* получение ранга процесса */

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

/* получение общего числа процессов */

MPI_Comm_size (MPI_COMM_WORLD, &size);

printf("Hello world from process %d of %d\n", rank, size);

/* завершение MPI */

Для компиляции используется компилятор и линковщик. Командная строка mpicc. (см. mpicc….- help)

Каждый из запущенных процессов должен вывести на экран свой ранг и общее число процессов. Попробуем откомпилировать и запустить эту программу.

$ mpicc hello.c –o hello.o

$ mpicc hello.o –o hello

Файл hello и будет исполняемым файлом примера. Можно запустить его на одной машине и посмотреть, что число процессоров будет равно 1, а ранг процесса 0:

$ ./hello

Hello world from process 0 of 1

При работе на сервере для запуска используется команда mpirun . У нее есть два основных аргумента – имя файла, содержащего адреса узлов и число узлов, на котором будет запущена программа.

$ mpirun n0-6 –v hosts hello

Hello world from process 0 of 7

Hello world from process 3 of 7

Hello world from process 5 of 7

Hello world from process 4 of 7

Hello world from process 2 of 7

Hello world from process 6 of 7

Hello world from process 1 of 7

Программа будет запущена на 7 узлах (включая сервер), а адреса этих узлов находятся в файле hosts. Печать на экран осуществлялась процессами не по порядку их рангов. Это связано с тем, что запуск процессов не синхронизирован, однако в MPI существуют специальные функции для синхронизации процессов.

Простейшая программа не содержит функций передачи сообщений. В реальных же задачах процессам требуется взаимодействовать друг с другом. Естественно, на передачу сообщений тратится время, что снижает коэффициент распараллеливания задачи. Чем выше скорость интерфейса передачи сообщений (например Ethernet 10Mb/sec и Gigabit Ethernet), тем меньше будут затраты на передачу данных. Т.к. время обмена данными между процессами намного (на порядки) больше времени доступа к собственной памяти, распределение работы между процессами должно быть ‘крупнозернистым’, нужно избегать ненужных пересылок данных.

Среди задач численного анализа встречается немало задач, распараллеливание которых очевидно. Например, численное интегрирование сводится фактически к (многочисленному) вычислению подинтегральной функции (что естественно доверить отдельным процессам), при этом главный процесс управляет процессом вычислений (определяет стратегию распределения точек интегрирования по процессам и собирает частичные суммы). Подобным же распараллеливанием обладают задачи поиска и сортировки в линейном списке, численного нахождения корней функций, поиск экстремумов функции многих переменных, вычисление рядов и другие. В этой лабораторной работе мы рассмотрим два параллельных алгоритма вычисления числа π.

Вычисление числа π методом численного интегрирования

Известно, что

Заменяя вычисление интеграла конечным суммированием, имеем , где , n-число участков суммирования при численном интегрировании. Площадь каждого участка вычисляется как произведение ширины ‘полоски’ на значение функции в центре ‘полоски’, далее площади суммируются главным процессом (используется равномерная сетка).

Очевидно, что распараллеливание этой задачи легко сделать, если каждый процесс будет считать свою частичную сумму, а затем передаст результат вычислений главному процессу. Как избежать здесь повторяющихся вычислений? Процесс должен знать свой ранг, общее число процессов и число интервалов, на которое будет разбит отрезок (чем больше интервалов, тем выше будет точность). Тогда в цикле от 1 до числа интервалов процесс будет вычислять площадь полоски на i-ом интервале, а затем переходить не на следующий i+1интевал, а на интервал i+m, где m-число процессов. Как мы уже знаем, для получения ранга и общего числа процессов существуют функции MPI_Comm_rank и MPI_Comm_size . Перед началом вычислений главный процесс должен передать всем остальным число интервалов, а после вычислений собрать у них полученные частичные суммы и просуммировать их, в MPI это реализуется передачей сообщений. Для передачи сообщений здесь удобно использовать функцию коллективного взаимодействия MPI_Bcast , которая рассылает одинаковые данные от одного процесса всем остальным. Для сбора частичных сумм есть 2 варианта - можно использовать MPI_Gather , которая собирает данные со всех процессов и отдает их одному (получается массив из m элеменов, где m-число процессов) или MPI_Reduce . MPI_Reduce действует аналогично MPI_Gather – собирает данные от всех процессов и отдает одному, но не в виде массива, а предварительно производит определенную операцию между элементами массива, например, суммирование и после этого отдает один элемент. Для этой задачи более удобным выглядит использование MPI_Reduce . Текст программы приведен ниже

#include "mpi.h"

#include

#include

double f(double a)

return (4.0 / (1.0 + a*a));

int main(int argc, char *argv)

int n, myid, numprocs, i;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x;

double startwtime, endwtime;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

startwtime = MPI_Wtime();

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

h = 1.0 / (double) n;

for (i = myid + 1; i <= n; i += numprocs)

x = h * ((double)i - 0.5);

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

endwtime = MPI_Wtime();

printf("wall clock time = %f\n",

endwtime-startwtime);

Рассмотрим подробнее вызовы функий MPI_Bcast и MPI_Reduce :

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD) – содержимое переменной n и одного элемента типа MPI_INT из процесса с рангом 0 посылается всем остальным процессам (MPI_COMM_WORLD – все процессы в коммуникаторе) в ту же переменную n. После этого вызова каждый процесс будет знать общее число интервалов. По окончании вычислений MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD) суммирует (параметр MPI_SUM) значения из переменных mypi типа MPI_DOUBLE каждого процесса и записывает результат в переменную pi процесса с рангом 0. Для замера времени вычислений главный процесс использует функцию MPI_Wtime.

double MPI_Wtime();

MPI_Wtime возвращает число секунд в формате числа с плавающей точкой, представляющее время, прошедшее с момента старта программы.

Вычисление числа π методом Монте-Карло

Для вычисления значения πможно использовать метод ‘стрельбы’. В применении к данному случаю метод заключается в генерации равномерно распределенныхна двумерной области точек и определении .

Вычисленное таким образом значение π является приближенным, в общем случае точность вычисления искомого значения повышается с увеличением числа ‘выстрелов’ и качества генетатора случайных чисел; подобные методы используются в случае трудностей точной числовой оценки.

Параллельный алгоритм вычисления числа π данным методом во многом похож на предыдущий рассмотренный нами алгоритм. Для генерации случайных чисел нужно использовать функцию srand, которой в качестве агрумента (семени последовательности) задавать ранг процесса, таким образов, у каждого процесса будет своя последовательность.

#include

void srand(unsigned seed);

Функция srand() устанавливает исходное число для последовательности, генерируемой функцией rand().

#include

int rand(void);

Функция rand() генерирует последовательность псевдослучайных чисел. При каждом обращении к функции возвращается целое в интервале между нулем и значением RAND_MAX.

Для сбора результата здесь также удобно использовать MPI_Reduce с заданием операции суммирования (MPI_SUM), затем разделить полученную сумму на число процессоров, получив среднее арифметическое.

int MPI_Reduce(void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm);

Параметры:

sendbuf адрес посылающего буфера

recvbuf адрес принимающего буфера

op операция редукции

comm коммуникатор

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,

MPI_Comm comm);

Параметры:

buffer адрес посылающего/принимающего буфера

count количество элементов в посылающем буфере (целое)

datatype тип данных элементов посылающего буфера

root номер главного процесса (целое)

comm коммуникатор

Задание : в соответствии с номером варианта откомпилировать и запустить параллельную программы, вычисляющую число π по заданному алгоритму.

Запустить задачу на одном узле и с кластера, на заданном количестве узлов. Оценить время выполнения вычислений, точность и коэффициент распараллеливания Амдала с учетом сетевой задержки теоретически и по результатам выполнения работы.

Варианты заданий

№ Варианта Алгоритм Число процессоров Число итераций на каждом процессоре
Численное интегрирование
Монте-Карло
Численное интегрирование
Монте-Карло
Численное интегрирование
Монте-Карло
Численное интегрирование
Монте-Карло
Численное интегрирование
Монте-Карло
Численное интегрирование
Монте-Карло
Численное интегрирование
Монте-Карло
Численное интегрирование
Монте-Карло
Численное интегрирование
Монте-Карло
Численное интегрирование
Монте-Карло

· Постановка задачи, вариант.

· Текст параллельной программы на языке С согласно заданию.

· Результаты запуска программы на одном узле, время выполнения t i , результат вычислений, ошибка.

· Результаты запуска программы на сервере, время выполнения, результат вычислений, ошибка.

· Описать параллельный алгоритм, информационные потоки при выполнении программы и загрузку КЭШ-памяти узлов. Вычислить по результатам работы программы коэффициент Амдала - К j .

· Учитывая результаты работы группы студентов, построить гистограмму зависимости К j , t i от количества процессоров участвующих в вычислениях.

Аннотация: Лекция посвящена рассмотрению технологии MPI как стандарта параллельного программирования для систем с распределенной памятью. Рассматриваются основные режимы передачи данных. Вводятся такие понятия, как группы процессов и коммуникаторы. Рассматриваются основные типы данных, операции "точка-точка", коллективные операции, операции синхронизации и измерения времени.

Цель лекции: Лекция направлена на изучение общей методики разработки параллельных алгоритмов.

Видеозапись лекции - (объем - 134 МБ).

5.1. MPI: основные понятия и определения

Рассмотрим ряд понятий и определений, являющихся основополагающими для стандарта MPI .

5.1.1. Понятие параллельной программы

Под параллельной программой в рамках MPI понимается множество одновременно выполняемых процессов . Процессы могут выполняться на разных процессорах, но на одном процессоре могут располагаться и несколько процессов (в этом случае их исполнение осуществляется в режиме разделения времени). В предельном случае для выполнения параллельной программы может использоваться один процессор – как правило, такой способ применяется для начальной проверки правильности параллельной программы.

Каждый процесс параллельной программы порождается на основе копии одного и того же программного кода (модель SPMP ). Данный программный код, представленный в виде исполняемой программы, должен быть доступен в момент запуска параллельной программы на всех используемых процессорах. Исходный программный код для исполняемой программы разрабатывается на алгоритмических языках C или Fortran с использованием той или иной реализации библиотеки MPI.

Количество процессов и число используемых процессоров определяется в момент запуска параллельной программы средствами среды исполнения MPI-программ и в ходе вычислений меняться не может (в стандарте MPI-2 предусматривается возможность динамического изменения количества процессов). Все процессы программы последовательно перенумерованы от 0 до p-1 , где p есть общее количество процессов. Номер процесса именуется рангом процесса.

5.1.2. Операции передачи данных

Основу MPI составляют операции передачи сообщений. Среди предусмотренных в составе MPI функций различаются парные (point-to-point ) операции между двумя процессами и коллективные (collective ) коммуникационные действия для одновременного взаимодействия нескольких процессов.

Для выполнения парных операций могут использоваться разные режимы передачи, среди которых синхронный, блокирующий и др. – полное рассмотрение возможных режимов передачи будет выполнено в подразделе 5.3.

Как уже отмечалось ранее, стандарт MPI предусматривает необходимость реализации большинства основных коллективных операций передачи данных – см. подразделы 5.2 и 5.4.

5.1.3. Понятие коммуникаторов

Процессы параллельной программы объединяются в группы . Под коммуникатором в MPI понимается специально создаваемый служебный объект, объединяющий в своем составе группу процессов и ряд дополнительных параметров (контекст ), используемых при выполнении операций передачи данных.

Как правило, парные операции передачи данных выполняются для процессов, принадлежащих одному и тому же коммуникатору. Коллективные операции применяются одновременно для всех процессов коммуникатора. Как результат, указание используемого коммуникатора является обязательным для операций передачи данных в MPI.

В ходе вычислений могут создаваться новые и удаляться существующие группы процессов и коммуникаторы. Один и тот же процесс может принадлежать разным группам и коммуникаторам. Все имеющиеся в параллельной программе процессы входят в состав создаваемого по умолчанию коммуникатора с идентификатором MPI_COMM_WORLD.

При необходимости передачи данных между процессами из разных групп необходимо создавать глобальный коммуникатор (intercommunicator ).

Подробное рассмотрение возможностей MPI для работы с группами и коммуникаторами будет выполнено в подразделе 5.6.

5.1.4. Типы данных

При выполнении операций передачи сообщений для указания передаваемых или получаемых данных в функциях MPI необходимо указывать тип пересылаемых данных. MPI содержит большой набор базовых типов данных, во многом совпадающих с типами данных в алгоритмических языках C и Fortran. Кроме того, в MPI имеются возможности для создания новых производных типов данных для более точного и краткого описания содержимого пересылаемых сообщений.

Подробное рассмотрение возможностей MPI для работы с производными типами данных будет выполнено в подразделе 5.5.

5.1.5. Виртуальные топологии

Как уже отмечалось ранее, парные операции передачи данных могут быть выполнены между любыми процессами одного и того же коммуникатора, а в коллективной операции принимают участие все процессы коммуникатора. В этом плане, логическая топология линий связи между процессами имеет структуру полного графа (независимо от наличия реальных физических каналов связи между процессорами).

Вместе с этим (и это уже отмечалось в разделе 3), для изложения и последующего анализа ряда параллельных алгоритмов целесообразно логическое представление имеющейся коммуникационной сети в виде тех или иных топологий.

В MPI имеется возможность представления множества процессов в виде решетки произвольной размерности (см. подраздел 5.7). При этом, граничные процессы решеток могут быть объявлены соседними и, тем самым, на основе решеток могут быть определены структуры типа тор .

Кроме того, в MPI имеются средства и для формирования логических (виртуальных) топологий любого требуемого типа. Подробное рассмотрение возможностей MPI для работы с топологиями будет выполнено в подразделе 5.7.

И, наконец, последний ряд замечаний перед началом рассмотрения MPI:

  • Описание функций и все приводимые примеры программ будут представлены на алгоритмическом языке C; особенности использования MPI для алгоритмического языка Fortran будут даны в п. 5.8.1,
  • Краткая характеристика имеющихся реализаций библиотек MPI и общее описание среды выполнения MPI программ будут рассмотрены в п. 5.8.2,
  • Основное изложение возможностей MPI будет ориентировано на стандарт версии 1.2 (MPI-1 ); дополнительные свойства стандарта версии 2.0 буду представлены в п. 5.8.3.

Приступая к изучению MPI, можно отметить, что, с одной стороны, MPI достаточно сложен – в стандарте MPI предусматривается наличие более 125 функций. С другой стороны, структура MPI является тщательно продуманной – разработка параллельных программ может быть начата уже после рассмотрения всего лишь 6 функций MPI. Все дополнительные возможности MPI могут осваиваться по мере роста сложности разрабатываемых алгоритмов и программ. Именное в таком стиле – от простого к сложному – и будет далее представлен весь учебный материал по MPI.

5.2. Введение в разработку параллельных программ с использованием MPI

5.2.1. Основы MPI

Приведем минимально-необходимый набор функций MPI, достаточный для разработки достаточно простых параллельных программ.

5.2.1.1 Инициализация и завершение MPI программ

Первой вызываемой функцией MPI должна быть функция:

int MPI_Init (int *agrc, char ***argv);

для инициализации среды выполнения MPI-программы. Параметрами функции являются количество аргументов в командной строке и текст самой командной строки.

Последней вызываемой функцией MPI обязательно должна являться функция:

int MPI_Finalize (void);

Как результат, можно отметить, что структура параллельной программы, разработанная с использованием MPI, должна иметь следующий вид:

#include "mpi.h" int main (int argc, char *argv) { <программный код без использования MPI функций> MPI_Init (&agrc, &argv); <программный код с использованием MPI функций> MPI_Finalize(); <программный код без использования MPI функций> return 0; }

Следует отметить:

  1. Файл mpi.h содержит определения именованных констант, прототипов функций и типов данных библиотеки MPI,
  2. Функции MPI_Init и MPI_Finalize являются обязательными и должны быть выполнены (и только один раз) каждым процессом параллельной программы,
  3. Перед вызовом MPI_Init может быть использована функция MPI_Initialized для определения того, был ли ранее выполнен вызов MPI_Init .

Рассмотренные примеры функций дают представление синтаксиса именования функций в MPI. Имени функции предшествует префикс MPI, далее следует одно или несколько слов названия, первое слово в имени функции начинается с заглавного символа, слова разделяются знаком подчеркивания. Названия функций MPI, как правило, поясняют назначение выполняемых функцией действий.

Следует отметить:

  • Коммуникатор MPI_COMM_WORLD , как отмечалось ранее, создается по умолчанию и представляет все процессы выполняемой параллельной программы,
  • Ранг, получаемый при помощи функции MPI_Comm_rank , является рангом процесса, выполнившего вызов этой функции, т.е. переменная ProcRank будет принимать различные значения в разных процессах.

Запуск MPI-приложения на вычислительном кластере возможен только через систему пакетной обработки заданий. Для упрощения запуска и постановки в очередь параллельной программы предусмотрен специальный скрипт mpirun. Например, mpirun -np 20 ./first.exe запустит параллельную программу first.exe на 20 процессорах, т.е. на 5 узлах. (Каждый узел имеет 2 двуядерных процессора). Стоит обратить внимание, что для запуска исполняемого модуля находящего в текущей директории ($pwd) необходимо явно указать путь «./» Ряд реализаций MPI-1 предоставляет команду запуска для программ MPI, которая имеет форму mpirun <аргументы mpirun><программа><аргументы программы>

Отделение команды запуска программы от самой программы обеспечивает гибкость, особенно для сетевых и гетерогенных реализаций. Наличие стандартного механизма запуска также расширяет мобильность MPI программ на один шаг вперед, к командным строкам и сценариям, которые управляют ими. Например, сценарий набора программ проверки правильности, который выполняет сотни программ, может быть переносимым сценарием, если он написан с использованием такого стандартного механизма запуска. Чтобы не перепутать ``стандартную"" команду с существующей на практике, которая не является стандартной и не переносимой среди реализаций, вместо mpirun MPI определил mpiexec.

В то время как стандартизированный механизм запуска улучшает применимость MPI, диапазон сред настолько разнообразен (например, не может даже быть интерфейса командной строки), что MPI не может принять под мандат такой механизм. Вместо этого, MPI определяет команду запуска mpiexec и рекомендует, но не требует, как совет разработчикам. Однако, если реализация обеспечивает команду называемую mpiexec, она должна иметь форму, описанную ниже: mpiexec -n <программа>

будет по крайней мере один способ запустить <программу> с начальным MPI_COMM_WORLD, чья группа содержит процессов. Другие аргументы mpiexec могут зависеть от реализации.

Пример 4.1 Запуск 16 экземпляров myprog на текущей или заданной по умолчанию машине:

mpiexec -n 16 myprog

3. Напишите программу параллельного вычисления определенного интеграла от функции 2*(x+2*x*x/1200.0) в интервале .

Метод левых прямоугольников

double f(double x)

{return 2*(x+2*x*x/1200);} // iskomyi integral

int main(int argc,char **argv)

MPI_Status status;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&size);

int n=1000,i,d; // 1000 - uzly

float a=0, b=1, h=(b-a)/n,s=0,r=0; //a i b -nachalo i konec otrezka

if (rank!=size-1) // schitaut vse processy, krome poslednego

{ for (i=rank*d; i<(rank+1)*d; i++) { s=s+h*f(a+i*h); }

MPI_Send(&s,1,MPI_FLOAT,size-1,1,MPI_COMM_WORLD);}

{ for (i=0; i

{ MPI_Recv(&s,1,MPI_FLOAT,i,1,MPI_COMM_WORLD, &status); r+=s; } }

MPI_Finalize();}

Сурак

1. Shared & distributed memory архитектуралары.

Распределенная общая память (DSM - Distributed Shared Memory)

Традиционно распределенные вычисления базируются на модели передачи сообщений, в которой данные передаются от процессора к процессору в виде сообщений. Удаленный вызов процедур фактически является той же самой моделью (или очень близкой). DSM - виртуальное адресное пространство, разделяемое всеми узлами (процессорами) распределенной системы. Программы получают доступ к данным в DSM примерно так же, как они работают с данными в виртуальной памяти традиционных ЭВМ. В системах с DSM данные перемещаются между локальными памятями разных компьютеров аналогично тому, как они перемещаются между оперативной и внешней памятью одного компьютера. Конфигурация - с распределенной разделяемой памятью, представляет собой вариант распределенной памяти. Здесь все узлы, состоящие из одного или нескольких процессоров, подключенных по схеме SMP, используют общее адресное пространство. Отличие этой конфигурации от машины с распределенной памятью в том, что здесь любой процессор может обратиться к любому участку памяти. Однако, время обращения к разным участкам памяти для каждого процессора различно в зависимости от того, где участок физически расположен в кластере. По этой причине такие конфигурации еще называют машинами с неоднородным доступом к памяти NUMA (non-uniform memory access).

Отличия MPI и PVM.

Система PVM (Parallel Virtual Machine) была создана для объединения нескольких связанных сетью рабочих станций в единую виртуальную параллельную вычислительную машину. Система представляет собой надстройку над операционной системой UNIX и используется на различных аппаратных платформах, включая и системы с массовым параллелизмом. Наиболее распространены сейчас системы параллельного программирования на основе MPI (Message Parsing Interface). Идея MPI исходно проста и очевидна. Она предполагает представление параллельной программы в виде множества параллельно исполняющихся процессов, взаимодействующих друг с другом в ходе исполнения передачи данных с помощью коммуникационных процедур. Они и составляют библиотеку MPI. Однако надлежащая реализация MPI для обеспечения межпроцессорных коммуникаций оказалась довольно сложной. Такая сложность связана с необходимостью достижения высокой производительности программ, необходимостью использовать многочисленные ресурсы мультикомпьютера, и, как следствие большим разнообразием в реализации коммуникационных процедур в зависимости от режима обработки данных.

Так вышло, что мне пришлось тесно столкнуться с изучением параллельных вычислений и в частности MPI. Пожалуй, направление это на сегодняшний день является весьма перспективным, так что хотелось бы показать хабраюзерам основы этого процесса.

Основные принципы и пример
В качестве примера будет использоваться расчет экспоненты (e). Один из вариантов ее нахождения - ряд Тейлора:
e^x=∑((x^n)/n!) , где суммирование происходит от n=0 до бесконечности.

Данная формула легко поддается распараллеливанию, так как искомое число является суммой отдельных слагаемых и благодаря этому каждый отдельный процессор может заняться вычислением отдельных слагаемых.

Количество слагаемых, которое будет рассчитываться в каждом отдельно взятом процессоре, зависит как и от длины интервала n, так и от имеющегося количества процессоров k, которые смогут участвовать в процессе вычисления. Так, например, если длина интервала n=4, а в вычислениях участвуют пять процессоров (k=5), то с первого по четвертый процессоры получат по одному слагаемому, а пятый будет не задействован. В случае же если n=10, а k=5, каждому процессору достанется по два слагаемых для вычисления.

Изначально, первый процессор с помощью функции широковещательной рассылки MPI_Bcast отправляет остальным значение заданной пользователями переменной n. В общем случае функция MPI_Bcast имеет следующий формат:
int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm), где buffer – это адрес буфера с элементом, сount – количество элементов, datatype – соответствующий тип данных в MPI, root – ранг главного процессора, который занимается пересылкой, а comm- имя коммуникатора.
В моем случае в роли главного процессора, как уже говорилось, будет выступать первый процессор с рангом 0.

После того число n будет успешно отправлено, каждый процессор займется вычислением своих слагаемых. Для этого в каждом шаге цикла к числу i, которое изначально равно рангу процессора, будет прибавляться число, равное количеству процессоров участвующих в вычислениях. Если число в ходе следующих действий число i превысит заданное пользователем число n, выполнение цикла для данного процессора остановится.

В ходе выполнения цикла слагаемые будут прибавляться в отдельную переменную и, после его завершения, полученная сумма отправится в главный процессор. Для этого будет использоваться функция операции приведения MPI_Reduce. В общем виде она выглядит следующим образом:
int MPI_Reduce(void *buf, void *result, int count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

Она объединяет элементы входного буфера каждого процесса в группе, используя операцию op, и возвращает объединенное значение в выходной буфер процесса с номером root. Результатом такой операции будет единственное значение, благодаря чему функция приведения и получила свое название.

После выполнения программы на всех процессорах, первый процессор получит общую сумму слагаемых, которая и будет являться нужным нам значение экспоненты.

Следует заметить, что и в параллельном и последовательном методах вычисления экспоненты, для нахождения факториала используется рекурсивная функция. В ходе принятия решения по способу распараллеливания выполняемой задачи, я рассматривал вариант нахождения факториала также на разных процессорах, но в итоге такой вариант был принят мной нерациональным.

Первостепенной задачей все же является нахождение значения экспоненты и если процессоры начнут вычислять каждый факториал каждого слагаемого раздельным образом, это может привести к прямо обратно эффекту, а именно значительной потери в производительности и скорости вычисления.
Объясняется это тем, что в данном случае начнется весьма большая нагрузка на коммуникационную среду, которая и без того зачастую является слабым звеном в системах параллельных вычислений. Если же вычисление факториала будет происходить на каждом процессоре частным образом, нагрузка на линии коммуникаций будет минимальна. Данный случай можно назвать хорошим примером того, что и задача распараллеливания тоже должна порой иметь свои границы.

Алгоритм выполнения кода
1. Из визуальной оболочки в программу передается значение числа n, которое затем с помощью функции широковещательной рассылки отправляется по всем процессорам.
2. При инициализации первого главного процессора, запускается таймер.
3. Каждый процессор выполняет цикл, где значением приращения является количество процессоров в системе. В каждой итерации цикла вычисляется слагаемое и сумма таких слагаемых сохраняется в переменную drobSum.
4. После завершения цикла каждый процессор суммирует свое значение drobSum к переменной Result, используя для этого функцию приведения MPI_Reduce.
5. После завершения расчетов на всех процессорах, первый главный процессор останавливает таймер и отправляет в поток вывода получившееся значение переменной Result.
6. В поток вывода отправляется также и отмеренное нашим таймером значение времени в милисекундах.
Листинг кода
Программа написана на С++, будем считать что аргументы для выполнения передаются из внешней оболочки. Код выглядит следующим образом:
#include "mpi.h"
#include
#include
using namespace std;

double Fact(int n)
{
if (n==0)
return 1;
else
return n*Fact(n-1);
}

int main(int argc, char *argv)
{
SetConsoleOutputCP(1251);
int n;
int myid;
int numprocs;
int i;
int rc;
long double drob,drobSum=0,Result, sum;
double startwtime = 0.0;
double endwtime;

N = atoi(argv);

if (rc= MPI_Init(&argc, &argv))
{
cout << "Ошибка запуска, выполнение остановлено " << endl;
MPI_Abort(MPI_COMM_WORLD, rc);
}

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if (myid == 0)
{

Startwtime = MPI_Wtime();
}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

for (i = myid; i <= n; i += numprocs)
{
drob = 1/Fact(i);
drobSum += drob;
}

MPI_Reduce(&drobSum, &Result, 1, MPI_LONG_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
cout.precision(20);
if (myid == 0)
{
cout << Result << endl;
endwtime = MPI_Wtime();
cout << (endwtime-startwtime)*1000 << endl;
}

MPI_Finalize();
return 0;
}


* This source code was highlighted with Source Code Highlighter .
Вывод
Таким образом мы получили простенькую программу для подсчета экспоненты с использованием сразу нескольких процессоров. Наверное, узким местом является хранением самого результата, потому что с увеличением количества разрядов вмещать значение с использованием стандартных типов банально не выйдет и это место требует проработки. Пожалуй, достаточно рациональным решением является запись результата в файл, хотя, в виду чисто учебной функции этого примера, особо на этом внимание можно не акцентировать.
  • Tutorial

В этом посте мы расскажем об организации обмена данными с помощью MPI на примере библиотеки Intel MPI Library. Думаем, что эта информация будет интересна любому, кто хочет познакомиться с областью параллельных высокопроизводительных вычислений на практике.

Мы приведем краткое описание того, как организован обмен данными в параллельных приложениях на основе MPI, а также ссылки на внешние источники с более подробным описанием. В практической части вы найдете описание всех этапов разработки демонстрационного MPI-приложения «Hello World», начиная с настройки необходимого окружения и заканчивая запуском самой программы.

MPI (Message Passing Interface)

MPI - интерфейс передачи сообщений между процессами, выполняющими одну задачу. Он предназначен, в первую очередь, для систем с распределенной памятью (MPP) в отличие от, например, OpenMP . Распределенная (кластерная) система, как правило, представляет собой набор вычислительных узлов, соединенных высокопроизводительными каналами связи (например, InfiniBand).

MPI является наиболее распространенным стандартом интерфейса передачи данных в параллельном программировании. Стандартизацией MPI занимается MPI Forum . Существуют реализации MPI под большинство современных платформ, операционных систем и языков. MPI широко применяется при решении различных задач вычислительной физики, фармацевтики, материаловедения, генетики и других областей знаний.

Параллельная программа с точки зрения MPI - это набор процессов, запущенных на разных вычислительных узлах. Каждый процесс порождается на основе одного и того же программного кода.

Основная операция в MPI - это передача сообщений. В MPI реализованы практически все основные коммуникационные шаблоны: двухточечные (point-to-point), коллективные (collective) и односторонние (one-sided).

Работа с MPI

Рассмотрим на живом примере, как устроена типичная MPI-программа. В качестве демонстрационного приложения возьмем исходный код примера, поставляемого с библиотекой Intel MPI Library. Прежде чем запустить нашу первую MPI-программу, необходимо подготовить и настроить рабочую среду для экспериментов.

Настройка кластерного окружения

Для экспериментов нам понадобится пара вычислительный узлов (желательно со схожими характеристиками). Если под руками нет двух серверов, всегда можно воспользоваться cloud-сервисами.

Для демонстрации я выбрал сервис Amazon Elastic Compute Cloud (Amazon EC2). Новым пользователям Amazon предоставляет пробный год бесплатного использования серверами начального уровня.

Работа с Amazon EC2 интуитивно понятна. В случае возникновения вопросов, можно обратиться к подробной документации (на англ.). При желании можно использовать любой другой аналогичный сервис.

Создаем два рабочих виртуальных сервера. В консоли управления выбираем EC2 Virtual Servers in the Cloud , затем Launch Instance (под «Instance» подразумевается экземпляр виртуального сервера).

Следующим шагом выбираем операционную систему. Intel MPI Library поддерживает как Linux, так и Windows. Для первого знакомства с MPI выберем OC Linux. Выбираем Red Hat Enterprise Linux 6.6 64-bit или SLES11.3/12.0 .
Выбираем Instance Type (тип сервера). Для экспериментов нам подойдет t2.micro (1 vCPUs, 2.5 GHz, Intel Xeon processor family, 1 GiB оперативной памяти). Как недавно зарегистрировавшемуся пользователю, мне такой тип можно было использовать бесплатно - пометка «Free tier eligible». Задаем Number of instances : 2 (количество виртуальных серверов).

После того, как сервис предложит нам запустить Launch Instances (настроенные виртуальные сервера), сохраняем SSH-ключи, которые понадобятся для связи с виртуальными серверами извне. Состояние виртуальных серверов и IP адреса для связи с серверами локального компьютера можно отслеживать в консоли управления.

Важный момент: в настройках Network & Security / Security Groups необходимо создать правило, которым мы откроем порты для TCP соединений, - это нужно для менеджера MPI-процессов. Правило может выглядеть так:

Type: Custom TCP Rule
Protocol: TCP
Port Range: 1024-65535
Source: 0.0.0.0/0

В целях безопасности можно задать и более строгое правило, но для нашего демонстрационного примера достаточно этого.

И, напоследок, небольшой опрос по поводу возможных тем для будущих публикаций, посвященных высокопроизводительным вычислениям.

Только зарегистрированные пользователи могут участвовать в опросе. , пожалуйста.



Понравилась статья? Поделиться с друзьями: