Сколько пар используется в гигабитной сети. Но какие коммутаторы и Ethernet кабели следует купить

Не успело еще, как говорится, обсохнуть молоко на губах только что родившего­ся стандарта быстрого Ethernet, как комитет 802 приступил к работе над новой версией (1995). Ее почти сразу окрестили гигабитной сетью Ethernet, а в 1998 году новый стандарт был уже ратифицирован IEEE под официальным названием 802.3z. Тем самым разработчики подчеркнули, что это последняя разработка в линейке 802.3 (если только кто-нибудь в срочном порядке не придумает называть стандарты, скажем, 802.3ы. В свое время, Бернард Шоу предлагал расширить английский алфавит и включить в него, в частности, букву «ы», но был не убедителен.).

Главные предпосылки создания 802.3z были те же самые, что и при создании 802.3u, - повысить в 10 раз скорость, сохранив обратную совместимость со старыми сетями Ethernet. В частности, гигабитный Ethernet должен был обеспечить дейтаграммный сервис без подтверждений как при односторонней, так и при групповой передаче. При этом необходимо было сохранить неизменными 48-битную схему адресации и формат кадра, включая нижние и верхние ограничения его размера. Новый стандарт удовлетворил всем этим требованиям.

Гигабитные сети Ethernet строятся по принципу «точка - точка», в них не применяется моноканал, как в исходном 10-мегабитном Ethernet, который теперь, кстати, величают классическим Ethernet. Простейшая гигабитная сеть, показанная на схеме "а", состоит из двух компьютеров, напрямую соединенных друг с другом. В более общем случае, однако, имеется коммутатор или концентратор, к которому подсоединяется множество компьютеров, возможна также установка дополнительных коммутаторов или концентраторов (схема "б"). Но в любом случае к одному кабелю гигабитного Ethernet всегда присоединяются два устройства, ни больше, ни меньше.

Гигабитный Ethernet может работать в двух режимах: полнодуплексном и полудуплексном. «Нормальным» считается полнодуплексный, при этом трафик может идти одновременно в обоих направлениях. Этот режим используется, когда имеется центральный коммутатор, соединенный с периферийными компьютерами или коммутаторами. В такой конфигурации сигналы всех линий буферизируются, поэтому абоненты могут отправлять данные, когда им вздумается. Отправитель не прослушивает канал, потому что ему не с кем конкурировать. На линии между компьютером и коммутатором компьютер - это единственный потенциальный отправитель; передача произойдет успешно даже в том случае, если одновременно с ней ведется передача со стороны коммутатора (линия полнодуплексная). Так как конкуренции в данном случае нет, протокол CSMA/CD не применяется, поэтому максимальная длина кабеля определяется исключительно мощностью сигнала, а вопросы времени распространения шумового всплеска здесь не встают. Коммутаторы могут работать на смешанных скоростях; более того, они автоматически выбирают оптимальную скорость. Самонастройка поддерживается так же, как и в быстром Ethernet .

Полудуплексный режим работы используется тогда, когда компьютеры соединены не с коммутатором, а с концентратором. Хаб не буферизирует входящие кадры. Вместо этого он электрически соединяет все линии, симулируя моноканал обычного Ethernet. В этом режиме возможны коллизии, поэтому применяется CSMA/CD . Поскольку кадр минимального размера (то есть 64-байтный) может передаваться в 100 раз быстрее, чем в классической сети Ethernet, максимальная длина сегмента должна быть соответственно уменьшена в 100 раз. Она составляет 25 м - именно при таком расстоянии между станциями шумовой всплеск гарантированно достигнет отправителя до окончания его передачи. Если бы кабель имел длину 2500 м, то отправитель 64-байтного кадра при 1 Гбит/с успел бы много чего наделать даже за то время, пока его кадр прошел только десятую часть пути в одну сторону, не говоря уже о том, что сигнал должен еще и вернуться обратно.

Комитет разработчиков стандарта 802.3z совершенно справедливо заметил, что 25 м - это неприемлемо малая длина, и ввел два новых свойства, позволивших расширить радиус сегментов. Первое называется расширением носителя. Заключается это расширение всего-навсего в том, что аппаратура вставляет собственное поле заполнения, растягивающее нормальный кадр до 512 байт. Поскольку это поле добавляется отправителем и изымается получателем, то программному обеспечению нет до него никакого дела. Конечно, тратить 512 байт на передачу 46 байт - это несколько расточительно с точки зрения эффективности использования пропускной способности. Эффективность такой передачи составляет всего 9 %.

Второе свойство, позволяющее увеличить допустимую длину сегмента, - это пакетная передача кадров. Это означает, что отправитель может посылать не единичный кадр, а пакет, объединяющий в себе сразу много кадров. Если полная длина пакета оказывается менее 512 байт, то, как в предыдущем случае, производится аппаратное заполнение фиктивными данными. Если же кадров, ждущих передачу, хватает на то, чтобы заполнить такой большой пакет, то работа системы оказывается очень эффективной. Такая схема, разумеется, предпочтительнее расширения носителя. Эти методы позволили увеличить максимальную длину сегмента до 200 м, что, наверное, для организаций уже вполне приемлемо.

Трудно представить себе организацию, которая потратила бы немало усилий и средств на установку плат для высокопроизводительной гигабитной сети Ethernet, а потом соединила бы компьютеры концентраторами, симулирующими работу классического Ethernet со всеми его коллизиями и прочими проблемами. Концентраторы, конечно, дешевле коммутаторов, но интерфейсные платы гигабитного Ethernet все равно относительно дороги, поэтому экономия на покупке концентратора вместо коммутатора себя не оправдывает. Кроме того, это резко снижает производительность, и становится вообще непонятно, зачем было тратить деньги на гигабитные платы. Однако обратная совместимость - это нечто священное в компьютерной индустрии, поэтому, несмотря ни на что, в 802.3z подобная возможность предусматривается.

Гигабитный Ethernet поддерживает как медные, так и волоконно-оптические кабели. Работа на скорости 1 Гбит/с означает, что источник света должен включаться и выключаться примерно раз в наносекунду. Светодиоды просто не могут работать так быстро, поэтому здесь необходимо применять лазеры. Стандартом предусматриваются две операционных длины волны: 0,85 мкм (короткие волны) и 1,3 мкм (длинные). Лазеры, рассчитанные на 0,85 мкм, дешевле, но не работают с одномодовыми кабелями.

Кабели гигабитного Ethernet

Название

Тип

Длина сегмента

Преимущества

1000Base-SX

Оптоволокно

550м

Многомодовое волокно (50, 62,5 мкм)

1000Base-LX

Оптоволокно

5000м

Одномодовое (10 мкм) или многомодовое (50, 62,5 мкм) волокно

1000Base-CX

2 экранированные витые пары

25м

Экранированная витая пара

1000Base-T

4 неэкранированные витые пары

100м

Стандартная витая пара 5-й категории

Официально допускается использование трех диаметров волокна: 10, 50 и 62,5 мкм. Первое предназначено для одномодовой передачи, два других - для многомодовой. Не все из шести комбинаций являются разрешенными, а максимальная длина сегмента зависит как раз от выбранной комбинации. Числа, приведенные в таблице, - это наилучший случай. В частности, пятикилометровый кабель можно использовать только с лазером, рассчитанным на длину волны 1,3 мкм и работающим с 10-микрометровым одномодовым волокном. Такой вариант, видимо, является наилучшим для магистралей разного рода кампусов и производственных территорий. Ожидается, что он будет наиболее популярным несмотря на то, что он самый дорогой.

1000Base-CX использует короткий экранированный медный кабель. Проблема в том, что его поджимают конкуренты как сверху (1000Base-LX), так и снизу (1000Base-T). В результате сомнительно, что он завоюет широкое общественное признание.

Наконец, еще один вариант кабеля - это пучок из четырех неэкранированных витых пар. Поскольку такая проводка существует почти повсеместно, то, похоже, это и будет самый популярный гигабитный Ethernet.

Новый стандарт использует новые правила кодирования сигналов, передающихся по оптоволокну. Манчестерский код при скорости передачи данных 1 Гбит/с потребовал бы скорости изменения сигнала в 2 Гбод. Это слишком сложно и занимает слишком большую долю пропускной способности. Вместо манчестерского кодирования применяется схема, называющаяся 8В/10В. Как нетрудно догадаться по названию, каждый байт, состоящий из 8 бит, кодируется для передачи по волокну десятью битами. Поскольку возможны 1024 результирующих кодовых слова для каждого входящего байта, данный метод дает некоторую свободу выбора кодовых слов. При этом принимаются в расчет следующие правила:

Ни одно кодовое слово не должно иметь более четырех одинаковых битов подряд;

Ни в одном кодовом слове не должно быть более шести нулей или шести единиц.

Почему именно такие правила?

Во-первых, они обеспечивают достаточное количество изменений состояния в потоке данных, необходимое для того, чтобы приемник оставался синхронизированным с передатчиком.

Во-вторых, количество нулей и единиц стараются примерно выровнять. К тому же многие входящие байты имеют два возможных кодовых слова, ассоциированных с ними. Когда кодирующее устройство имеет возможность выбора кодовых слов, оно, вероятно, выберет из них то, которое сравняет число нулей и единиц.

Ссбалансированному количеству нулей и единиц потому придается такое значение, что необходимо держать постоянную составляющую сигнала на как можно более низком уровне. Тогда она сможет пройти через преобразователи без изменений. Люди, занимающиеся computer science, не в восторге от того, что преобразовательные устройства диктуют те или иные правила кодирования сигналов, но жизнь есть жизнь.

Гигабитный Ethernet, построенный на 1000Base-T, использует иную схему кодирования, поскольку изменять состояние сигнала в течение 1 нс для медного кабеля затруднительно. Здесь применяются 4 витые пары категории 5, что дает возможность параллельно передавать 4 символа. Каждый символ кодируется одним из пяти уровней напряжения. Таким образом, один сигнал может означать 00, 01,10 или 11. Есть еще специальное, служебное значение напряжения. На одну витую пару приходится 2 бита данных, соответственно, за один временной интервал система передает 8 бит по 4 витым парам. Тактовая частота равна 125 МГц, что позволяет работать со скоростью 1 Гбит/с. Пятый уровень напряжения был добавлен для специальных целей - кадрирования и управления.

1 Гбит/с - это довольно много. Например, если приемник отвлечется на какое-то дело в течение 1 мс и при этом забудет или не успеет освободить буфер, это означает, что он «проспит» примерно 1953 кадра. Может быть и другая ситуация: один компьютер выдает данные по гигабитной сети, а другой принимает их по классическому Ethernet. Вероятно, первый быстро завалит данными второго. В первую очередь переполнится буфер обмена. Исходя из этого было принято решение о внедрении в систему контроля потока (так было и в быстром Ethernet , хотя эти системы довольно сильно различаются).

Для реализации контроля потока одна из сторон посылает служебный кадр, сообщающий о том, что второй стороне необходимо приостановиться на некоторое время. Служебные кадры - это, на самом деле, обычные кадры Ethernet, в поле Туре которых записано 0x8808. Первые два байта поля данных - командные, а последующие, по необходимости, содержат параметры команды. Для контроля потока используются кадры типа PAUSE, причем в качестве параметра указывается продолжительность паузы в единицах времени передачи минимального кадра. Для гигабитного Ethernet такая единица равна 512 нс, а паузы могут длиться до 33,6 мс.

Гигабитный Ethernet был стандартизован, и комитет 802 заскучал. Тогда IEEE предложил ему начать работу над 10-гигабитным Ethernet. Начались долгие попытки найти в английском алфавите какую-нибудь букву после z. Когда стало очевидно, что такой буквы нет в природе, от старого подхода решено было отказаться и перейти к двухбуквенным индексам. Так в 2002 году появился стандарт 802.3ае. Судя по всему, появление 100-гигабитного Ethernet уже тоже не за горами.

Я не очень торопился перевести свою домашнюю сеть со скорости 100 Мбит/с на 1 Гбит/с, что для меня довольно странно, поскольку я передаю по сети большое количество файлов. Однако когда я трачу деньги на апгрейд компьютера или инфраструктуры, я считаю, что должен сразу же получить прирост производительности в приложениях и играх, которые я запускаю. Многие пользователи любят потешить себя новой видеокартой, центральным процессором и каким-нибудь гаджетом. Однако по каким-то причинам сетевое оборудование не привлекает такого энтузиазма. Действительно, сложно вложить заработанные деньги в сетевую инфраструктуру вместо очередного технологического подарка на день рождения.

Однако требования по пропускной способности у меня очень высоки, и в один момент я понял, что инфраструктуры на 100 Мбит/с уже не хватает. У всех моих домашних компьютеров уже установлены интегрированные адаптеры на 1 Гбит/с (на материнских платах), поэтому я решил взять прайс-лист ближайшей компьютерной фирмы и посмотреть, что мне потребуется для перевода всей сетевой инфраструктуры на 1 Гбит/с.

Нет, домашняя гигабитная сеть вовсе не такая сложная.

Я купил и установил всё оборудование. Я помню, что раньше на копирование большого файла по 100-Мбит/с сети уходило около полутора минут. После апгрейда на 1 Гбит/с тот же файл стал копироваться за 40 секунд. Прирост производительности приятно порадовал, но всё же я не получил десятикратного превосходства, которое можно было ожидать из сравнения пропускной способности 100 Мбит/с и 1 Гбит/с старой и новой сетей.

В чём причина?

Для гигабитной сети все её части должны поддерживать 1 Гбит/с. Например, если у вас установлены гигабитные сетевые карты и соответствующие кабели, но концентратор/коммутатор поддерживает всего 100 Мбит/с, то и вся сеть будет работать на 100 Мбит/с.

Первое требование - сетевой контроллер. Лучше всего, если каждый компьютер в сети будет оснащён гигабитным сетевым адаптером (отдельным или интегрированным на материнскую плату). Это требование удовлетворить проще всего, поскольку большинство производителей материнских плат пару последних лет интегрируют гигабитные сетевые контроллеры.

Второе требование - сетевая карта тоже должна поддерживать 1 Гбит/с. Есть распространённое заблуждение, что для гигабитных сетей требуется кабель категории 5e, но на самом деле даже старый кабель Cat 5 поддерживает 1 Гбит/с. Впрочем, кабели Cat 5e обладают лучшими характеристиками, поэтому они будут более оптимальным решением для гигабитных сетей, особенно если длина у кабелей будет приличная. Впрочем, кабели Cat 5e сегодня всё равно самые дешёвые, поскольку старый стандарт Cat 5 уже устарел. Новые и более дорогие кабели Cat 6 обладают ещё лучшими характеристиками для гигабитных сетей. Мы сравним производительность кабелей Cat 5e против Cat 6 чуть позже в нашей статье.

Третий и, наверное, самый дорогой компонент в гигабитной сети - это концентратор/коммутатор с поддержкой 1 Гбит/с. Конечно, лучше использовать коммутатор (возможно, в паре с маршрутизатором), поскольку концентратор или хаб - не самое интеллектуальное устройство, просто транслирующее все сетевые данные по всем доступным портам, что приводит к появлению большого числа коллизий и замедляет производительность сети. Если вам нужна высокая производительность, то без гигабитного коммутатора не обойтись, поскольку он перенаправляет сетевые данные только на нужный порт, что эффективно увеличивает скорость работы сети по с равнению с концентратором. Маршрутизатор обычно содержит встроенный коммутатор (с несколькими портами LAN), а также позволяет подключать вашу домашнюю сеть к Интернету. Большинство домашних пользователей понимают преимущества маршрутизатора, поэтому гигабитный маршрутизатор - вариант вполне привлекательный.



СОДЕРЖАНИЕ

Многие россияне уже успели познать прелести гигабитного Ethernet"а. Домашние пользователи в РФ все чаще отдают предпочтение суперскоростному Интернет-доступу.

– У вас еще нет Gigabit Ethernet? Тогда мы идем к вам! Мы расскажем, как правильно построить домашнюю сеть на гигабитных скоростях, какой маршрутизатор выбрать, какой максимальной скорости можно достигнуть при подходящем оборудовании, а также насколько дорого это вам обойдется.

Всего несколько лет назад технология Gigabit Ethernet использовалась только телеком-операторами и крупными компаниями: в корпоративных сетях, локальных сетях, для транспортировки трафика на большие расстояния и т.п. Домашние абоненты и не думали о том, чтобы заполучить такие скорости. Но в 2012-2013 гг., благодаря усовершенствованию «софта» и «железа», а также широчайшему распространению Интернет-технологий, гигабитные скорости стали доступнее и реальнее для частных пользователей. Сегодня практически каждый житель мегаполиса имеет возможность построить у себя дома сеть с поддержкой Gigabit Ethernet.

Многие спросят: «А зачем вообще дома иметь Интернет со скоростями порядка 1 Гбит/с? Неужели мегабитного Интернета недостаточно для серфинга по сайтам, скачивания фильмов и зависания в соцсетях?»

Ответим развернуто.

Как домашний пользователь может использовать Gigabit Ethernet

Российские Интернет-пользователи, как впрочем и потребители домашнего Интернета по всему миру, чрезвычайно активно используют трафик. Объемы трафика, потребляемого в мире, с каждым месяцем (уже даже не годом) растут. Еще несколько лет назад мы были рады 1 Мбит/с, а еще раньше – готовы были скачивать фильм всю ночь, чтобы потом посмотреть его. Сегодня уже мало кто вообще скачивает видео, большинство смотрит прямо в онлайне. Кроме того, тысячи пользователей хотят HD-качество, и готовы платить за него. А чтобы смотреть и качать видео в высоком качестве нужен скоростной безлимитный Интернет.

Также в последнее время популярность приобретает торрент-телевидение, позволяющее смотреть телевизор через Интернет, совершенно бесплатно. Некоторые пользователи уже стали отказываться от кабельного и спутникового TV, другие пользуются торрент-телевидением как новым интересным сервисом и надеются на его скорую популяризацию. Но в любом случае для торрент-TV нужен быстрый Интернет, да еще и безлимитный, иначе эта затея обойдется дороже, чем обычное кабельное.

Очень важным сегментом потребителей широкополосного скоростного Интернета являются геймеры, которые играют онлайн. Сегодня существует множество онлайновых игр, ради которых молодежь (да и не только) апгрейдит свои ПК, платит за безлимитный Интернет с высокими скоростями соединения. Более того, на конец 2013 г. запланирован выход новой культовой игры Survarium от создателей S.T.A.L.K.E.R. Это будет онлайн игра с бесплатными аккаунтами. Учитывая то, сколько россиян играло в легендарного S.T.A.L.K.E.R, Интернет-провайдерам стоит приготовиться к новому наплыву абонентов, готовых платить за более быстрый и дорогой доступ в Сеть. А пользователям можно начинать готовиться уже сейчас – и гигабитный Интернет может стать первым шагом в этой подготовке.

Одним словом, найти применение Gigabit Ethernet в домашней сети очень просто, если вы человек ИТ-продвинутый и используете современные технологии по полной.

Реальная скорость Gigabit Ethernet – где подвох?

Фраза «гигабитный Интернет» звучит громко, но действительно ли вы получите минимум 1 Гбит/с? На самом деле такая скорость достигается лишь в идеальных условиях, получить ее дома нереально, даже если вы установите оборудование, поддерживающее Gigabit Ethernet, настроите все, как надо, закажете у провайдера гигабитный пакет. Конечно, вы получите скорость в 1 тысячу раз выше, чем при 1 Мбит/с, ведь для мегабитного Интернета действуют все те же ограничения. Но давайте посчитаем, какой будет ваша скорость доступа в Сеть.

Считать будем, пользуясь обычной арифметикой, по «стандартному» подходу. Кроме того, будем для простоты округлять: 1 килобит = 1000 бит, а не 1024 бит. В этом случае 1 Гигабит равен 1000 мегабитов. Но на жестком диске информация хранится отнюдь не в битах, а в байтах – более крупных единицах. Как всем известно, 1 байт = 8 бит. Для удобства объем информации и скорость ее передачи принято считать в разных единицах, и это часто сбивает с толку пользователя, заставляя его ожидать большего, чем есть на самом деле.

Таким образом, скорость передачи реальных файлов будет в 8 раз меньше, чем говорит провайдер, поскольку провайдеры и программы для тестирования скорости считают биты. Наш 1 Гбит/с (1 000 000 000 бит/с) превращается в 125 000 000 байтов (разделили на 8). Получается, что 1 Гбит/с = 125 Мбайт/с.

Но проблема в том, что домашний пользователь в силу разных обстоятельств, не всегда зависящих от него, получает реально только около 30% от идеальных 125 Мбайт/с. То есть нам достается уже порядка 37 Мбайт/с. Это все, что остается от 1 Гбит/с. Но если смотреть на эту цифру в сравнении с 1 Мбит/с, то мы все равно получим в 1 тыс. раз более быстрый Интернет.

Оборудование домашней сети под Gigabit Ethernet

Создать дома условия для сети Gigabit Ethernet сегодня вполне возможно. Причем если у вас современный ПК, то понадобится не очень большое переоборудование, и стоить оно будет не так много, как может показаться на первый взгляд. Самое главное при этом – удостовериться, что все ваши основные устройства поддерживают Gigabit Ethernet. Ведь если хотя бы одно из них не будет рассчитано на такие скорости, то в итоге вы получите максимум 100 Мбит/с.

Если вы хотите добиться гигабитных скоростей, то вам понадобится следующее оборудование с поддержкой 1 Гбит/с:

  • маршрутизатор, поддерживающий Gigabit Ethernet;
  • сетевая карта (Ethernet-адаптер, сетевой адаптер);
  • сетевой контроллер;
  • концентратор/коммутатор;
  • жесткий диск;
  • кабели должны быть рассчитаны на 1 Гбит/с.

Каждое из перечисленных устройств является важным звеном сети, от каждого зависит итоговая скорость передачи данных. Так что давайте более внимательно рассмотрим каждое из них.

Wi-Fi роутер. Вам нужен гигабитный роутер, т.е. с поддержкой Gigabit Ethernet. Эти маршрутизаторы несколько дороже мегабитных, ведь они рассчитаны на более высокие скорости. В принципе, на рынке достаточно предложений под брендами Asus, TP-LINK, D-Link и проч. Но основывайте свой выбор не только на перечне функций, характеристиках и дизайне. Обязательно просмотрите форумы (причем не меньше 5-ти) с отзывами реальных потребителей, чтобы удостовериться в том, что маршрутизатор будет работать долго и надежно.

Сетевая карта. Это устройство может быть интегрированным в материнскую плату или отдельным. Сетевой адаптер для гигабитной сети должен обязательно поддерживать Gigabit Ethernet. Если вашему ПК более 2-3 лет, то скорее всего сетевая карта устарела и не поддерживает такие высокие скорости. Если же вы недавно приобрели компьютер, то вполне возможно, что апгрейдить сетевой адаптер не придется. Но в любом случае проверьте характеристики конкретно вашей сетевой карты на предмет совместимости с Gigabit Ethernet сетью.

Сетевой контроллер. Если вы строите домашнюю сеть, то важно, чтобы каждый компьютер в этой сети имел гигабитный контроллер. Иначе достаточные скорости получат лишь те ПК, которые такой имеют. Как и сетевая карта, сетевой контроллер может быть отдельным или интегрированным в материнскую плату. Обычно в современные ПК по умолчанию устанавливают контроллеры, поддерживающие 1 Гбит/с. Так что возможно, что вам не придется ничего модифицировать для Gigabit Ethernet.

Концентратор/коммутатор. Это один из самых дорогих компонентов домашней сети. Зачастую он уже есть в роутере. Но проверьте, поддерживает ли он гигабитные скорости. Важно! Коммутатор эффективнее концентратора, поскольку он направляет данные только на один конкретный порт, а концентратор – на все сразу. Используя коммутатор можно существенно экономить ресурс, не распыляя его на лишние порты.

Жесткий диск. Кому-то это может показаться странным, но жесткий диск серьезно влияет на скорость доступа в Интернет. Дело в том, что именно жесткий диск направляет данные на сетевой контроллер, и от их качественного соединения зависит то, насколько быстро вы сможете передавать и принимать данные. Желательно, чтобы контроллер имел интерфейс PCI Express (PCIe), а не PCI. А жесткий диск должен иметь разъем SATA, а не IDE, поскольку последний поддерживает слишком малые скорости.

Сетевой кабель. Естественно, кабель является важной частью домашней гигабитной сети. Можно выбрать кабели типа «витая пара» категории Cat 5 и Cat 5e (используются для прокладки телефонных линий и локальных сетей – их достаточно для Gigabit Ethernet) или же немного переплатить и взять кабель Cat 6 (специально разработанный под Gigabit Ethernet и Fast Ethernet). Длина витой пары должна составлять не больше 100 м, иначе сигнал начинает затухать и нужной скорости Интернет-соединения не добиться. Кроме того, при размещении кабелей в квартире обратите внимание на то, что их нежелательно прокладывать рядом с проводами электропитания (подробнее о причинах читайте ).

И последний важный фактор для организации домашней сети Gigabit Ethernet – это программное обеспечение. Операционная система на ПК должна быть посвежее. Если это Windows, то не ранее Windows 2000 (да и то придется покопаться в настройках). Версии XP, Vista, Windows 7 поддерживают гигабитный Интернет по умолчанию, поэтому проблем не должно возникнуть. С другими ОС может возникнуть необходимость дополнительного настраивания.

Топ-5 лучших домашних Wi-Fi маршрутизаторов,
поддерживающих Gigabit Ethernet, 2013

1. ASUS RT-N66U – отличная модель, мощная и надежная. Работает одновременно в двух частотных диапазонах – 2,4 и 5 ГГц. Радует высокая скорость передачи данных – заявлено 900 Мбит/с. Для построения домашней Gigabit Ethernet сети отлично подходит. Но нужно перепрошивать, чтобы повысить производительность и избавиться от ряда проблем, которые возникают на родной прошивке. Впрочем, большинство роутеров требуют перепрошивки сразу или вскоре после покупки. Стоимость составляет порядка 4,5-5 тыс. руб.

2. D-Link DIR-825 – неплохой выбор. Это 2-диапазонный роутер, достаточно «нафаршированный». Рабочие частоты: 2,4 и 5 ГГц; доступно одновременное использование обеих. Данный маршрутизатор имеет оптимальное на рынке соотношение «цена-качество». Среди преимуществ – широкий канал раздачи Wi-Fi (может потянуть до 50 абонентов). С точки зрения пользователей, наиболее заметным минусом является яркая светодиодная индикация устройства, но это, скорее, дело вкуса, а не качества девайса. Что касается прошивки, то можно оставить и родную, но для повышения производительности рекомендуется перепрошить. Цена маршрутизатора: около 3 тыс. руб.

3. TP-LINK TL-WDR4300 – очень скоростной маршрутизатор, отлично подходящий для домашних сетей. Производитель заявляет максимальную скорость передачи данных на уровне 750 Мбит/с. Одно из важных преимуществ данной модели над многими другими – возможность одновременно использовать две полосы частот: 2,4 и 5 ГГц. Благодаря этому пользователи могут одновременно соединяться с Интернетом и с телефонов, смартфонов, и с ноутбука, ПК или планшета. Еще один плюс данной модели в том, что у нее в комплект входят достаточно мощные антенны, позволяющие раздавать Интернет по Wi-Fi более чем на 200 м. Но для того чтобы все это функционировало нормально, прошивку с завода лучше поменять. Благодаря ряду манипуляций с ПО устройство будет работать намного лучше. Цена модели: порядка 3 тыс. руб.

4. Zyxel Keenetic Giga является неплохим маршрутизатором с несколькими полезными функциями. Основной его минус состоит в том, что работает роутер только в одном частотном диапазоне – 2,4ГГц. Но при этом скорость достаточная для того, чтобы смотреть IP-телевидение, пользоваться торрент-сетями (имеется встроенный торрент-клиент) и другими «прожорливыми» сервисами. Zyxel Keenetic Giga оснащен мощными антеннами, что позволяет создавать сети Wi-Fi (кстати, устройство поддерживает все стандарты Wi-Fi) с большим радиусом действия. Роутер достаточно прост в настройке, но прошивку, как и для большинства маршрутизаторов, придется поменять. Еще один плюс в том, что устройство сравнительно недорогое – от 3 до 4 тыс. руб.

5. TP-LINK TL-WR1043ND – достаточно мощный и дешевый гигабитный роутер. Правда, имеет несколько недостатков. Во-первых, работает только в диапазоне 2,4ГГц, что не очень удобно. Во-вторых, больше подходит опытным пользователям, поскольку родная прошивка, как во многих случаях, не очень хороша, а перепрошивать эту модель может быть непросто. Зато все это с лихвой компенсируется надежностью и мощностью данного маршрутизатора. Максимальная скорость передачи данных составляет 300 Мбит/с. Устройство отрабатывает свои деньги, поскольку цена модели равна всего от 2 тыс. руб.

Введение

Сети на основе 10/100 Мбит/с Ethernet будет более чем достаточно для выполнения любых задач в небольших сетях. Но как насчет будущего? Вы подумали о потоках видео, которые будут проходить по сети вашего дома? Справится ли с ними 10/100 Ethernet?

В нашей первой статье, посвященной гигабитному Ethernet, мы вплотную с ним познакомимся и определим, нужен ли он вам. Мы также постараемся узнать, что вам потребуется для создания «готовой к гигабиту» сети и проведем краткий экскурс в гигабитное оборудование для небольших сетей.

Что такое гигабитный Ethernet?

Гигабитный Ethernet также известен как «гигабит по меди» или 1000BaseT . Он представляет собой обычную версию Ethernet, работающую на скоростях до 1.000 мегабит в секунду, то есть в десять раз быстрее 100BaseT.

Основой гигабитного Ethernet является стандарт IEEE 802.3z , который был утвержден в 1998 году. Однако в июне 1999 года к нему вышло дополнение — стандарт гигабитного Ethernet по медной витой паре 1000BaseT . Именно этот стандарт смог вывести гигабитный Ethernet из серверных комнат и магистральных каналов, обеспечив его применение в тех же условиях, что и 10/100 Ethernet.

До появления 1000BaseT для гигабитного Ethernet необходимо было использовать волоконно-оптический или экранированный медный кабели, которые вряд ли можно назвать удобными для прокладки обычных локальных сетей. Данные кабели (1000BaseSX, 1000BaseLX и 1000BaseCX) и сегодня используются в специальных областях применения, поэтому мы не будем их рассматривать.

Группа гигабитного Ethernet 802.3z прекрасно справилась со своей работой — она выпустила универсальный стандарт, в десять раз превышающий скорость 100BaseT. 1000BaseT также является обратно совместимым с 10/100 оборудованием, он использует CAT-5 кабель (или более высокую категорию). Кстати, сегодня типичная сеть построена именно на базе кабеля пятой категории.

Нужен ли он нам?

В первой литературе о гигабитном Ethernet в качестве области применения нового стандарта указывался корпоративный рынок, и чаще всего — связь хранилищ данных. Поскольку гигабитный Ethernet обеспечивать в десять раз больший канал, чем привычный 100BaseT, естественным применением стандарта является соединение участков, требующих высокую пропускную способность. Это связь между серверами, коммутаторами и магистральными узлами. Именно там гигабитный Ethernet необходим, нужен и полезен.

По мере снижения цен на гигабитное оборудование область применения 1000BaseT расширилась до компьютеров «опытных пользователей» и рабочих групп, использующих «требовательные к пропускной способности приложения».

Поскольку потребности в передаче данных у большинства небольших сетей более чем скромные, вряд ли им когда-нибудь понадобится пропускная способность сети 1000BaseT. Давайте рассмотрим некоторые типичные области применения небольших сетей и оценим их потребность в гигабитном Ethernet.

Нужен ли он нам, продолжение

  • Передача больших файлов по сети

    Подобное применение характерно, скорее, для малых офисов, особенно в компаниях, занимающихся графическим дизайном, архитектурой или другим бизнесом, связанным с обработкой файлов размером в десятки-сотни мегабайт. Вы легко подсчитаете, что 100-мегабайтный файл будет передан по 100BaseT сети всего за восемь секунд [(100Мбайт x 8бит/байт)/ 100 Мбит/с]. В действительности же многие факторы ухудшают скорость передачи, так что ваш файл будет передаваться несколько дольше. Некоторые из этих факторов связаны с операционной системой, запущенными приложениями, количеством памяти на ваших компьютерах, скоростью процессора и возрастом. (Возраст системы влияет на скорость шин на материнской плате).

    Еще одним важным фактором является скорость сетевого оборудования, и переход на гигабитное оборудование позволяет устранить потенциальное узкое место и ускорить передачу больших объемов файлов. Многие подтвердят, что получение скоростей выше 50 Мбит/с на 100BaseT сети — дело отнюдь не тривиальное. Гигабитный же Ethernet сможет обеспечить пропускную способность выше 100 Мбит/с.

  • Сетевые устройства резервирования

    Можно рассматривать этот случай как вариант «больших файлов». Если ваша сеть настроена на резервирование всех компьютеров на один файловый сервер, то гигабитный Ethernet позволит вам ускорить этот процесс. Однако здесь существует и подводный камень — увеличение «трубы» пропускания к серверу может не привести к положительному эффекту, если сервер не будет успевать обрабатывать входящий поток данных (также это касается и носителя резервной информации).

    Для получения выгоды от высокоскоростной сети вам следует оснастить сервер большим объемом памяти и проводить резервирование на быстрый жесткий диск, а не ленту или CDROM. Как видим, к переходу на гигабитный Ethernet следует основательно подготовиться.

  • Приложения клиент-сервер

    Эта область применения опять же более характерна для сетей малого бизнеса, чем для домашних сетей. Между клиентом и сервером в подобных приложениях может передаваться большой объем данных. Подход прежний: вам необходимо проанализировать объем передающихся сетевых данных, чтобы узнать, сможет ли приложение «успеть» за увеличением пропускной способности сети и достаточно ли этих данных для нагрузки гигабитного Ethernet.

По правде говоря, мы считаем, что вряд ли большинство «строителей» домашних сетей найдут достаточно оснований для покупки гигабитного оборудования. В сетях малого бизнеса переход на гигабит может помочь, но мы рекомендуем сначала провести анализ количества передаваемых данных. С современным состоянием все понятно. Но что делать, если вы желаете учесть возможность будущей модернизации. Что вам нужно сделать сегодня, чтобы быть к ней готовым? В следующей части нашей статьи мы рассмотрим изменения, которые необходимо осуществить с самой дорогой, чаще всего и самой трудоемкой, части сети — кабелем .

Кабель для гигабитного Ethernet

Как мы уже упоминали во введении, одним из ключевых требований стандарта 1000BaseT является использования кабеля категории 5 (CAT 5) или выше. То есть гигабитный Ethernet может работать на существующей кабельной структуре 5 категории . Согласитесь, подобная возможность очень удобна. Как правило, все современные сети используют кабель пятой категории, если только ваша сеть не была установлена в 1996 году или раньше (стандарт был утвержден в 1995 году). Однако здесь существует несколько подводных камней.

  • Требуется четыре пары

    Как видно из этой статьи , 1000BaseT использует все четыре пары кабеля категории 5 (или выше) для создания четырех 250 Мбит/с каналов. (Также применяется и другая схема кодирования — пятиуровневая амплитудно-импульсная модуляция — чтобы оставаться в пределах частотного диапазона 100 МГц CAT5). В результате мы можем использовать для гигабитного Ethernet существующую кабельную структуру CAT 5.

    Поскольку 10/100BaseT использует только две пары CAT 5 из четырех, некоторые люди не подключали лишние пары при прокладке своих сетей. Пары использовались, к примеру, для телефона или для питания по Ethernet (POE). К счастью гигабитные сетевые карты и коммутаторы обладают достаточным интеллектом, чтобы откатиться на стандарт 100BaseT если все четыре пары будут недоступны. Поэтому ваша сеть в любом случае будет работать с гигабитными коммутаторами и сетевыми картами, но высокой скорости за уплаченные деньги вы не получите.

  • Не используйте дешевые разъемы

    Еще одна проблема самодеятельных сетевиков — плохая обжимка и дешевые настенные розетки. Они приводят к несоответствиям импеданса, в результате чего возникают обратные потери, а вследствие них и уменьшение пропускной способности. Конечно, вы можете попробовать поискать причину «в лоб», но все же вам лучше обзавестись сетевым тестером, который сможет обнаружить обратные потери и перекрестные помехи. Или просто смириться с низкой скоростью.

  • Ограничения по длине и топологии

    1000BaseT ограничен той же максимальной длиной сегмента, что и 10/100BaseT. Таким образом, максимальный диаметр сети составляет 200 метров (от одного компьютера до другого через один коммутатор). Что касается топологии 1000BaseT, то здесь работают те же правила, что и для 100BaseT, за исключением допустимости лишь одного повторителя на сегмент сети (или, если быть более точным, на один «полудуплексный домен коллизий»). Но поскольку гигабитный Ethernet не поддерживает полудуплексную передачу, вы можете забыть о последнем требовании. В общем если ваша сеть прекрасно себя чувствовала под 100BaseT, у вас не должно возникнуть проблем при переходе к гигабиту.

Кабель для гигабитного Ethernet, продолжение

Для прокладки новых сетей лучше всего использовать кабель CAT 5e . И хотя CAT 5 и CAT 5e оба пропускают частоту 100 МГц , кабель CAT5e производится с учетом дополнительных параметров, важных для лучшей передачи высокочастотных сигналов.

Просмотрите следующие документы Belden, чтобы подробнее узнать о спецификациях CAT 5e кабеля (на английском):

И хотя современный CAT 5 кабель будет прекрасно работать с 1000BaseT, вам лучше все же выбрать CAT 5e, если вы хотите гарантировать высокую пропускную способность. Если же вы колеблетесь, прикиньте стоимость кабеля CAT 5 и CAT 5e и действуйте по своим средствам.

Единственное, чего вам следует избегать — рекомендаций по покупке CAT 6 кабеля для гигабитного Ethernet. CAT 6 был добавлен в стандарт TIA-568 в июне 2002 года и он пропускает частоты до 200 МГц . Продавцы наверняка будут уговаривать вас купить именно более дорогую шестую категорию, но она вам понадобится, только если вы планируете построить сеть 10 Гбит/с Ethernet по медной проводке, что на данный момент вряд ли реально. А что насчет кабеля CAT 7? Забудьте про него!

Если же вы располагаете хорошей суммой, то лучше ее потратить на специалиста-сетевика , который обладает достаточным опытом прокладки гигабитных сетей . Специалист сможет грамотно проложить кабели или проверить вашу существующую сеть на работу с гигабитным Ethernet. При установке кабеля CAT 6 мы крайне рекомендуем обратиться за помощью к профессионалам, поскольку этот кабель оговаривает радиус сгиба и специальные качественные разъемы.

Гигабитное оборудование

В некотором роде вопрос «гигабит или нет» мог быть предметом спора год или пару лет назад. Если смотреть с точки зрения покупателя SOHO, переход от 10 к 10/100 Мбит/с уже случился. Новые компьютеры оснащаются 10/100 Ethernet портами, маршрутизаторы уже используют встроенные 10/100 коммутаторы, а не 10BaseT концентраторы. Однако подобная перемена не является следствием требований и пожеланий домашних «сетевиков». Они довольствуются существующим оборудованием.

За эти изменения нам следует благодарить корпоративных пользователей, которые покупают сегодня в массовых количествах только 10/100 оборудование, что позволяет опустить на него цены. Как только производители потребительского оборудования обнаружили, что использовать 10BaseT чипы по сравнению с 10/100 вариантам дороже , они долго не раздумывали.

Таким образом, вчерашняя архитектура на базе 10BaseT концентраторов незаметно перешла в современные 10/100 коммутируемые сети. Точно такой же переход мы испытаем и с 10/100 на 10/100/1000 Мбит/с. И хотя до переломного момента осталось еще год или два, переход уже начался и цены неуклонно продолжают свое падение вниз.

Все что вам нужно — купить гигабитную сетевую карту и гигабитный коммутатор. Давайте рассмотрим их чуть подробнее.

  • Сетевые карты

    Фирменные 32-битные PCI 10/100/1000BaseT сетевые карты типа Intel PRO1000 MT, Netgear GA302T и SMC SMC9552TX стоят в Интернете от $40 до $70. Продукты производителей второго эшелона дешевле примерно на $5. И хотя гигабитные сетевые карты приблизительно в два с половиной раза дороже средних 10/100 карт, вряд ли ваш кошелек вообще заметит какую-либо разницу, если только вы не закупаете их оптовыми партиями.

    Вы можете найти сетевые карты, поддерживающие не только 32-битную шину PCI, но и 64-битную, однако и стоят они дороже. Чего вы не увидите, так это CardBus адаптеров для ваших ноутбуков. По каким то причинам производители считают, что ноутбукам гигабитные сети вообще не нужны.

  • Коммутаторы

    А вот цена 10/100/1000 коммутаторов заставляет десять раз подумать о целесообразности перехода на гигабитный Ethernet. Хорошая новость: сегодня уже появились прозрачные гигабитные коммутаторы, которые стоят гораздо дешевле своих управляемых собратьев для корпоративного рынка.

    Простой четырехпортовый 10/100/1000 коммутатор Netgear GS104 можно купить меньше чем за $225. Если вы остановите свой выбор на менее известных фирмах типа TRENDnet TEG-S40TXE, то уменьшите стоимость до $150. Мало четырех портов — пожалуйста. Восьмипортовая версия Netgear GS108 обойдется вам примерно в $450, а TRENDnet TEG-S80TXD — около $280.

    Учитывая, что пятипортовый 10/100 коммутатор сегодня стоит всего $20, цены на гигабит кому-то покажутся слишком высокими. Но вспомните: еще совсем недавно вы могли купить только управляемые гигабитные коммутаторы стоимостью $100+ за порт. Цены идут в правильном направлении!

Придется ли менять компьютеры?

Откроем небольшой секрет гигабитного Ethernet: под Win98 или 98SE вы, скорее всего, не получите никакого преимущества от гигабитной скорости. И хотя с помощью редактирования реестра можно попытаться улучшить пропускную способность, вы все равно не получите существенного прироста производительности по сравнению с текущим 10/100 оборудованием.

Проблема кроется в TCP/IP стеке Win98, который не был разработан с учетом высокоскоростных сетей. У стека возникают проблемы даже с использованием 100BaseT сети, чего уж тогда говорить о гигабитной связи! Мы еще вернемся к этому вопросу во второй статье, но пока что вам следует рассматривать только Win2000 и WinXP для работы с гигабитным Ethernet.

Последним предложением мы отнюдь не подразумеваем, что только Windows 2000 и XP поддерживают гигабитные сетевые карты. Мы просто не проверяли производительность под другими операционными системами, так что воздержитесь, пожалуйста, от язвительных замечаний!

Если вы интересуетесь, придется ли вам выбрасывать старый добрый компьютер и покупать новый для использования гигабитного Ethernet, то наш ответ — «возможно». Судя по нашем практическому опыту, один герц «современных» процессоров равняется одному биту в секунду пропускной способности сети . Один из производителей гигабитного сетевого оборудования согласился с нами: любая машина с тактовой частотой 700 МГц или ниже не сможет в полной мере использовать пропускную способность гигабитного Ethernet. Так что даже с правильной операционной системой старым компьютерам гигабитный Ethernet — все равно, что мертвому припарки. Вы скорее увидите скорости 100-500 Мбит/с

Витая пара: десять гигабит под прицелом

За десять лет существования в реализациях Ethernet на витой паре удалось обеспечить стократное увеличение производительности. Казалось бы, витая пара уже не располагает возможностями для роста, но сегодня ведутся работы по стандартизации решений, которые позволят покорить десятигигабитный рубеж.

Не надо быть истинным знатоком автоспорта, чтобы понять, что максимум скорости от гоночного болида можно получить только на специальной трассе. В принципе, подобные автомобили могут ездить и по обычным дорогам. К тому же один из них совсем недавно покорил вершину Ай-Петри. Но выходить на штатные режимы, а уж тем более демонстрировать все свои способности в гонке современные болиды могут на специально подготовленной трассе, и то если на ней нет мусора, деталей конструкции поврежденных машин или пролитого масла. Причем такая трасса может проходитьпо городу.

В какой-то степени задачу, подобную организации трассы "Формулы-1" в городской черте, решает сейчас рабочая группа IEEE 802.3an, занимающаяся реализацией чемпионского в секторе локальных сетей приложения, десятигигабитного Ethernet, на столь привычных всем медных линиях. Вопрос только в том, какими должны быть эти линии и каковы особенности десятигигабитной передачи по ним.

Время разбрасывать камни

Работы над стандартом 10 Gigabit Ethernet на витой паре ведутся с ноября 2002 года. Тогда комитетом IEEE 802.3 была сформирована исследовательская группа, задача которой состояла в определении возможностей для передачи десятигигабитного трафика с использованием технологии Ethernet по витой паре с длиной линии до ста метров. Это приложение получило обозначение 10GBaseT – широкополосная передача данных со скоростью 10 Гбит/с по витой паре (T – twisted pair).

Потребность в подобном решении изначально мотивировалась высокой стоимостью оптических вариантов 10 Gigabit Ethernet. Такой исходный посыл является далеко не бесспорным, ведь для достижения столь высокой скорости передачи по витой паре требуются изощренные алгоритмы обработки сигнала, которые должны быть куда более сложными, чем у гигабитного предшественника. Впрочем, подобный момент прекрасно отображает предкризисную ситуацию в телекоммуникациях, когда всем предлагалось взять как можно больше пропускной способности, ведь неизвестно, какой производительности информационных систем потребует день грядущий.

Этот день настал, и большинство подобных призывов, за которыми фактически ничего не стояло, оказалось мыльными пузырями.

В последнее время в некоторых публикациях (десятигигабитная реализация Ethernet на витой паре пользуется широкой популярностью в средствах масс-медиа, в чем легко можно убедиться, если задать на поисковом сервере запрос 10GBaseT) откровенно пропагандируется кабельное оборудование улучшенной шестой и седьмой категории. Мол, медь дорожает, и нужно поспешить с инвестициями в кабельную систему на уровне самых современных требований. Возможно, это вынудило рабочую группу определить для себя, что основным ориентиром в исследованиях является поддержка уже установленных кабельных систем, то есть что она придерживается нынешних тенденций, касающихся продвижения телекоммуникационного оборудования.

Итак, суммарное количество установленных портов неэкранированных кабельных систем превышает 800 млн., довольно значительную долю которых уже составляют решения класса E. В этом случае, даже если число проектов, использующих 10GBaseT, после принятия стандарта будет соответствовать уровню реализации Gigabit Ethernet по меди, можно получить приличные объемы поставок оборудования. Еще одной сферой применения является реализация кластерных подключений в центрах данных. Причем в презентации IEEE 802 10GBaseT Tutorial, представленной в ноябре 2003 года на встрече IEEE в Альбукерке, данное применение приводится под номером один. Благодаря использованию десятигигабитного Ethernet на меди предполагается повышение плотности размещения компьютерного оборудования (поскольку нет необходимости устанавливать медиа-конверторы), достижение наибольшей эффективности в агрегировании трафика, которая, в частности, будет выше, чем в случае 1000BaseT. В качестве дополнительного преимущества для такого применения был представлен тот факт, что многие центры данных находятся в стадии планирования или начальной стадии развертывания. Следовательно, для них не должно возникать проблем в плане соответствия используемых технологий существующим кабельным решениям.

Технически предпосылки

Помимо рыночных возможностей и позиционирования приложения 10GBASE T по передаче данных, исследовательская группа определила основные технические ориентиры, которым должна соответствовать разработка новой спецификации Ethernet. Прежде всего, это преемственность решений нафизическом уровне, включая поддержку формата кадра Ethernet и сохранение величин минимальной и максимальной длины кадра согласно требованиям действующих стандартов группы 802.3, а также автоматический выбор (автосогласование) портом сетевого устройства скорости передачи из ряда от 10 Мбит/с до 10 Гбит/с, в зависимости от того, какая разновидность сетевой технологии используется там, где регистрируется данный порт.

Кроме того, функционирование 10 Gigabit Ethernet на витой паре должно осуществляться только в полнодуплексном режиме.
Основой для построения физического уровня определены электрические кабельные решения, соответствующие требованиям последних редакций стандартов ISO/IEC и TIA. Это системы на базе четырехпарного кабеля с волновым сопротивлением 100 Ом, в которых используется принцип "иерархической звезды" и модель построения горизонтальных кабельных трактов с четырьмя коннекторами (коммутационная панель для подключения активного оборудования, коммутационная панель горизонтальной подсистемы, точка консолидации в линии и телекоммуникационная розетка на рабочем месте).

Единственное "но", причем весьма существенное с точки зрения стандартов, – это сокращение длины кабельных трактов. Так, одной из задач исследовательской группы IEEE 802. 3an была оценка возможности передачи десятигигабитного трафика по кабельным трактам на меди длиной до 100 м в случае использования компонентов седьмой категории или 55–100 м для компонентов шестой категории. Возможное сокращение длины до 55 м мотивируется тем, что при стандартной длине канала класса E не может гарантироваться передача с требуемой скоростью, поскольку рабочие частоты превышают граничную частоту для данного кабельного оборудования. Выбор длины был сделан на основании оценок количества кабельных трактов разной длины. Согласно данным IEEE, до 70%кабельных трактов не превышают 55 м.

В этом году в IEEE принято окончательное решение о стандартизации 10 Gigabit Ethernet, к которой приступила рабочая группа IEEE 802.3an. Первая черновая редакция стандарта должна появиться в конце текущего года, а его окончательное утверждение запланировано на июль 2006 года. Причем существенным моментом, характеризующим разработку стандарта, должно стать сотрудничество рабочей группы с ISO/IEC JTC 1/SC 25 и TIA на предмет уточнения длины и других характеристик кабельных трактов, а также разработки спецификаций для улучшенного кабельного оборудования класса E.

Оглядываясь назад

Для того чтобы лучше уяснить технические особенности реализации 10 Gigabit Ethernet на витой паре, необходимо сделать небольшой экскурс в историю развития этой сетевой технологии, начиная с 10BaseT.

Рассчитанная на работу по двум парам третьей категории технология 10BaseT отличалась простотой и неприхотливостью. Это позволило ей стать лидером среди технологий, применяющихся в секторе локальных сетей. Причем данная технология продолжает широко использоваться и поныне как довольно эффективное средство для подключений сетевых устройств на рабочих местах. Первые подвижки в направлении стомегабитных решений касались категории 3:это была использующая все четыре пары технология 100BaseT4. Следующий прорыв в завоевании рынка сделала двухпарная технология 100BaseTX, рассчитанная на работу с кабельным оборудованием пятой категории. Она также оказалась более чем успешной, и на сегодняшний день сетевые интерфейсные карты на 10/100 Мбит/с являются стандартным выбором в комплектации тех же офисных компьютеров.

Гигабитный Ethernet на витой паре изначально позиционировался как технология для использования инсталлированной базы категории 5. Но вместо этого пришлось осуществить радикальную ревизию кабельных стандартов и ввести контроль дополнительных параметров. Поэтому произошло отклонение от сроков окончательной стандартизации, длившееся немногим более года. Это время потребовалось на уточнение особенностей обработки сигнала, а также разработки спецификаций для параметров эквивалентного переходного затухания на дальнем конце и величины возвратных потерь.

Результатом развития предыдущих реализаций Ethernet на витой паре стало увеличение пропускной способности в сто раз (с 10 Мбит/с до 1 Гбит/с), и произошло это в течение десяти лет. Таким образом, наращивание скорости передачи в разных реализациях технологии Ethernet согласуется с одной из формулировок закона Мура. В соответствии с этой формулировкой производительность систем удваивается каждые восемнадцать месяцев.

Если же принять во внимание работу кабельных систем, то оказалось, что для реализации такого роста производительности приложений вполне достаточно семикратного расширения частотного диапазона, используемого реализациями на витой паре (с 16 МГц до 125 МГц). Достичь этого удалось благодаря применению специальной обработки сигнала, а также одновременной передаче по всем парам и сложным системам кодирования.

Техника передачи по меди

Итак, подходы к организации передачи меняются с течением времени. В ранних реализациях Ethernet на витой паре достаточно было контролировать величину вносимого затухания на кабельном тракте, а также уровень переходного затухания на ближнем конце (Near End Crosstalk, NEXT).

Соотношение этих величин фактически являлось соотношением "сигнал-шум". Данный параметр получил название "соотношение затухания и перекрестных помех на ближнем конце" (Attenuation To Crosstalk Ratio, ACR). Оно определяется как разность величин затухания и перекрестных помех на ближнем конце, выраженных в дБ, то есть измеренных по логарифмической шкале.

В ходе разработки стандарта для гигабитного Ethernet на меди эти характеристики кабельного оборудования дополнились показателями переходного затухания на дальнем конце, а также оценкой суммарного влияния на каждую из пар, оказываемого остальными тремя парами. Ведь необходимо было организовать одновременную передачу по каждой из пар, которая к тому же ведется в обоих направлениях. Также рассматривались механизмы эхокомпенсации, благодаря которым обеспечивается качественная передача гигабитного трафика по кабельному оборудованию класса D. Как уже отмечалось, сигнал от передатчика и сигнал, движущийся к приемнику, присутствуют в тракте одновременно. Естественно, что часть передаваемого сигнала поступает на приемники на ближнем конце в виде отражений. Поскольку приемник постоянно отслеживает последовательности, передаваемые передатчиком на ближнем конце, он попросту вычитает их из принятого сигнала. Этот подход получил название "фильтрации на основе выбора из конечной совокупности принимаемого сигнала" (Finite Impulse Response, FIR).

Еще один неприятный момент заключается в перекрытии импульсов друг другом из за неравномерности распространения сигнала в разных парах. Как следствие, искажается форма последовательности, в результате чего приемник будет фиксировать импульс в той части последовательности, где его не должно быть. Для решения этой проблемы используются высокопроизводительные эквалайзеры, способные довольно точно восстанавливать изначальную форму сигнала.

На десяти гигабитах

Новый стандарт предполагает применение тех же механизмов кодирования, что и Gigabit Ethernet. При этом должна обеспечиваться величина ошибки передачи бита около 10–12, что декларировалось в начале работы исследовательской группы. В частности, разработчики стандарта 10GBaseT предложили использовать десятиуровневое кодирование PAM, в котором восемь уровней используются для передачи сигнала, а два – обеспечивают коррекцию ошибок.

Основу функционирования оборудования в 10GBASE T составляет та же полнодуплексная передача по всем четырем парам. Соответственно, десятигигабитный поток расщепляется на четыре потока по 2, 5 Гбит/с. Для передачи одного символа используются три бита. В итоге получается скорость передачи 833, 33 Мбод/с.

Негативные воздействия на сигнал – в основном те же, что и для Gigabit Ethernet:затухание в тракте, межпарные наводки на ближнем и дальнем конце, отражения и вариации задержек в силу разной скорости распространения в парах. Помимо упомянутых приемов, выдвигается обязательное требование компенсации межпарных наводок на дальнем конце на уровне 20 дБ. Такая компенсация реализуется и в некоторых гигабитных трансиверах, но для 1000BaseT она не является обязательной.

Кабельные решения

Приложение передачи данных 10GBASE T представляет собой сетевую технологию, физический уровень которой строится на основе кабельных трактов на витой паре. Эти тракты могут быть следующими:

  • 55 метровый канал класса E в соответствии с ISO/IEC 11801 2002 или канал шестой категории по стандарту ТIA на неэкранированной витой паре;
  • 55–100 метровый канал класса E на экранированной витой паре;
  • 100 метровый канал улучшенного класса E или канал расширенной шестой категории на неэкранированной витой паре;
  • 100 метровый канал класса F (экранированный кабель с индивидуальным экраном для каждой пары).

Вопрос о стандартизации укороченных трактов и другие моменты, связанные с реализацией 10GBaseT по уже установленной в соответствии с текущими требованиями проводке, пока еще подлежат обсуждению. В качестве одного из вариантов предлагается снижение рабочей частоты потока до такого уровня, чтобы она оказалась в пределах граничной частоты для кабельных решений класса E.

Существует множество вариантов предложений по реализации кабеля и соединительного оборудования расширенной шестой категории.

Производители поднимают граничную частоту кабельных решений и реализуют разные технические уловки, чтобы их продукция поддерживала 10GBaseT. Причем нельзя сказать, что в этом направлении необходим какой-то прорыв. Достаточно вспомнить категорию 5+середины девяностых: это вовсе не категория 5Е, а скорее, прототип шестой категории (к тому же окончательные спецификации последних разрабатывались для меньших граничных частот).

Остается только стандартизировать наиболее эффективные предложения производителей. Причем снова актуализируется вопрос о модульном интерфейсе, который смог бы нормально функционировать в более жестких условиях.

Зеленый свет "семерке"

Седьмая категория является единственной на данный момент стандартизированной средой передачи, которая без каких либо оговорок способна обеспечивать поддержку 10GBaseT в трактах длиной до 100 м. Кроме того, в случае использования седьмой категории существенно меняется картина влияния шумов, поскольку основным для данного типа оборудования является тепловой шум.

Достигается это благодаря особенностям конструкции кабеля и модульных разъемов. Пары составляются из жил диметром не менее 0,58 мм. Каждая пара заключается в индивидуальный экран из фольги. Экранирование каждой пары на 360° обеспечивается и в модульном разъеме. Соответственно, для такого кабельного оборудования являются менее ощутимыми наводки, в том числе и межкабельные.

Вполне возможно, что интенсивное обсуждение проблематики десятигигабитного Ethernet на меди в значительной мере инициируется производителями кабеля и коммутационного оборудования седьмой категории. И это понятно: появляется приложение, которое открывает вполне определенные перспективы именно для этой продукции, ведь до сих пор в сознании пользователей и инсталляторов она находилась где-то на периферии. Все знают о наличии подобных систем, но мало кто решается на их установку (доля класса F среди инсталлированных решений оценивается на уровне 0,4%), поскольку кабельное оборудование седьмой категории отличалось только по стоимости, не давая при этом ощутимых преимуществ в реализации приложений.

Наконец, через почти десять лет после появления этой категории у маркетологов и технических специалистов появится возможность оправдать средства, потраченные на ее продвижение и стандартизацию.

Говоря о перспективе 10GBaseT, необходимо отметить, что в техническом плане любая задача является интересной, и наработки, полученные в ходе ее решения, в случае неблагоприятной рыночной "судьбы" могут использоваться в других направлениях, например, в системах доступа. Если
же данная технология будет пользоваться ощутимым спросом, то это может повлечь за собой постановку новых технических задач, таких как уточнение стандартов на кабельные системы.

Межплатформенные наводки и способы их ограничения

Кабели, как правило, собираются в пучки, которые расходятся от коммутационных пунктов. При отсутствии экрана происходит взаимное влияние пар из разных кабелей, расположенных вблизи друг от друга. Эти межкабельные наводки получили название Alien Crosstalk, что означает "переходные помехи от других кабелей" (буквально "перекрестные наводкиот других кабелей").

Проблема усугубляется тем, что в основном производители выдерживают шаг свивки пар неизменным.

В случае межпарных наводок добиться максимального уровня переходного затухания удается за счет различия шага свивки в каждой паре. Подобный прием можно использовать для того, чтобы существенно снизить межкабельные наводки. Он состоит в варьировании шага свивки отдельной пары. Кроме того, могут варьироваться толщина оболочки кабеля и взаимное размещение пар в кабеле.

Таким образом предполагается решать данную проблему для вновь произведенных кабелей. Пока остается открытым вопрос о том, что можно сделать для уже установленной кабельной проводки.

История появления и стандартизации кабельного оборудования седьмой категории заслуживает особого внимания.

Уже с момента стандартизации пятой категории в 1995 году встал вопрос о разработке спецификаций для более производительных кабелей и соединительного оборудования. Официальное признание подобных кабельных систем произошло на 26 м совещании рабочей группы ISO/IEC JTC1 SC25 WG3, проходившем с 15 по 17 сентября 1997 года. Там были определены два новых на тот момент класса кабельных решений и соответствующие категории для компонентов: шестая категория и, следовательно, класс E с граничной частотой 200 МГц, а также седьмая категория и класс F с граничной частотой 600 МГц. Спецификации последней разрабатывались на основе немецкого национального стандарта DIN 44312 X.

Проблема модульного разъема седьмой категории оказалась весьма серьезной. Рассматривались восемь разработок разных компаний, представляющие принципиально новые конструктивные решения.

Ответственный за модульные интерфейсы комитет IEC SC 48B принял стандарты разъемов седьмой категории IEC 60603 7 7 и IEC 61076 3 104 только для двух предложений, выдвинутых соответственно компаниями Alcatel (сейчас продвижением этих разъемов занимается компания Nexans, а до середины 2000 года – подразделение Alcatel Cable and Components) и Siemon.

Особенностью разъема Nexans является обратная совместимость с RJ 45. Вилки этого разъема (GP 45) оснащены механизмом переключения типов коммутации под гнездо Nexans GG 45 (седьмая категория, задействуются 4 пары контактов по углам, разделенные экранами)или же под RJ 45.

Разъемы IEC 61076 3 104, то есть Siemon Tera, создавались как уникальное конструктивное решение, не предполагающее поддержку RJ 45. Контактные группы в этих разъемах размещаются по двухрядной схеме с разделением пар экраном. Вилки разъема Tera выпускаются в четырех, двух и однопарном исполнении, что позволяет организовывать в кабеленезависимую работу до четырех приложений.



Понравилась статья? Поделиться с друзьями: