Характеристики видеокарт Intel последнего поколения. Встроенная графика Intel HD Graphics

Эволюция графики Intel | Intel вступает в гонку GPU

В мире GPU в плане производительности и внимания к своей продукции центральное место занимают AMD и Nvidia. Хотя эти компании прославились своими технологиями, ни одна из них, по сути, не являются крупнейшим поставщиком графических процессоров. Этот титул принадлежит Intel. Корпорация пыталась конкурировать с AMD и Nvidia по производительности и порой даже выпускала полноценные видеокарты. Но ее сильная сторона – в интеграции графических технологий в свои чипсеты и процессоры. Таким образом, GPU Intel сейчас присутствуют в большинстве современных компьютеров. Но из-за ограничений интегрированных решений графические модули компании, как правило, предлагают производительность начального уровня. Самые последние разработки оказались заметно более впечатляющими. Некоторые решения даже опережают дискретные видеокарты начального уровня от AMD и Nvidia. Intel HD Graphics возможно и отстает от других GPU, но нужно признать, что дни GMA 950 и его предшественников закончились.

Эволюция графики Intel | Первый специализированный GPU Intel: i740 (1998 год)

В 1998 году Intel выпустила свою первую графическую карту – i740 под кодовым названием "Auburn". Она работала на тактовой частоте 220 МГц и использовала относительно небольшое количество видеопамяти VRAM 2 - 8 Мбайт. Сопоставимые видеокарты того времени, как правило, оснащались видеопамятью объемом 8 - 32 Мбайт. Кроме того карта поддерживала DirectX 5.0 и OpenGL 1.1. Чтобы обойти недостачу встроенной памяти, Intel планировала воспользоваться функцией, встроенной в интерфейс AGP, позволяющей карте использовать оперативную память компьютера. Таким образом, i740 использовала интегрированную память как кадровый буфер, а все текстуры хранила в оперативной памяти платформы. Учитывая, что компании не приходилось переплачивать за дорогую память, она могла продавать i740 дешевле конкурентов. К сожалению этот GPU столкнулся с рядом трудностей. Доступ к оперативной памяти осуществлялся не так быстро, как к интегрированной видеопамяти, и это негативно сказывалось на производительности. Кроме того такое решение снижало производительность центрального процессора, так как для работы ему оставалось меньше пропускной способности и объема ОЗУ. Сырые драйверы еще сильнее навредили производительности карты, и качество изображения было под вопросом из-за медленного цифро-аналогового преобразователя. В конечном счете i740 оказалось полностью провальной. Intel пыталась исправить ситуацию, убеждая производителей материнских плат добавлять карту в комплект с платформами на базе 440BX, но это тоже не привело к успеху.

Эволюция графики Intel | Графический чип i752 и чипсеты серии 81x (1999 год)

После провала с i740 Intel разработала и небольшое время продавала вторую видеокарту под названием i752 "Portola". Однако она была выпущена в очень ограниченных количествах. Примерно в то же время Intel начала интегрировать свое графическое ядро в такие чипсеты, как i810 ("Whitney") и i815 ("Solano"). GPU встраивались в северный мост, став первыми интегрированными графическими процессорами Intel. Их производительность зависела от двух факторов: скорость оперативной памяти, которая часто была связана с системной шиной FSB, и в свою очередь зависела от процессора, и скорость самого CPU. На тот момент Intel использовала конфигурации FSB 66, 100 или 133 МГц наряду с асинхронной SDRAM, обеспечивающей системе максимальную пропускную способность 533, 800 или 1066 Мбайт/с соответственно. Хотя пропускная способность делилась с процессором, iGPU никогда не получал доступ ко всему каналу. Производители материнских плат могли размещать на своих платформах дополнительно 4 Мбайта выделенной видеопамяти, подключенной непосредственно к графическому процессору через AGP x4, предоставляя дополнительные 1066 Мбайт/с.

Производительность этих iGPU была низкой. Кроме того, из-за интегрированной графики в чипсете i810 отсутствовал интерфейс AGP, тем самым ограничивая модернизацию медленных видеокарт на базе PCI. Чипсет i815 имел порт AGP наряду с iGPU, но установка дискретной видеокарты отключала iGPU. В результате эти графические решения были ориентированы на пользователей бюджетных ПК начального уровня.

Эволюция графики Intel | Intel Extreme Graphics (2001 год)

В 2001 году Intel запустила новое семейство Extreme Graphics, которое было тесно связано с предыдущим поколением, включая два пиксельных конвейера и ограниченное аппаратное ускорение MPEG-2. Программная поддержка API была почти идентичной чипсету i815, хотя поддержка OpenGL была расширена до версии API 1.3.

Производительность iGPU Intel Extreme Graphics в значительной степени зависела от чипсета, памяти и центрального процессора. Первая реализация появились в семействе чипсетов Intel i830 (Almador), разработанных для Pentium III-M. Они по-прежнему использовали устаревающую память SDRAM, которая ограничивала максимальную пропускную способность до 1066 Мбайт/с, как и в ранних GPU. Тактовая частота на чипсетах Almador снизилась с 230 МГц (i815) до 166 МГц для экономии энергии и снижения тепловыделения.

Настольная версия был представлена позже в 2002 году в чипсетах i845 Brookdale , предназначенных для процессоров Pentium 4. Они также работали при более низкой тактовой частоте, чем i815 (200 МГц), но могли использовать память SDRAM или DDR. Благодаря более быстрым центральным процессорам iGPU в чипсете i845 в паре с SDRAM работал быстрее моделей i815, несмотря на более низкие частоты. Версии, использующие ОЗУ DDR, еще сильнее подтолкнули уровень производительности. Интегрированные решения не могли обогнать GeForce 2 Ultra Nvidia, которой на тот момент было уже больше года, но они неплохо подходили для легких игр.

Эволюция графики Intel | Intel Extreme Graphics 2 (2003 год)

Intel повторно использовала графический чип с двумя пиксельными конвейерами в семействе Extreme Graphics 2, выпущенном в 2003 году. Компания вновь представила две версии GPU. Первой появилась мобильная версия в чипсетах i852 и i855, предназначенных для Pentium M. Эти версии чипа работали на частотах 133 и 266 МГц, в зависимости от выбора ОЕМ. Второй вариант чипа использовался в чипсетах i865 Springdale для Pentium 4. Процессор с тактовой частотой 266 МГц кооперировался с более быстрой памятью DDR, которая могла работать при частоте до 400 МГц, обеспечивая ему более высокую пропускную способность, чем для предыдущих iGPU.

Хотя производительность по сравнению со старой линейкой Intel Extreme Graphics заметно увеличилась, графические требования игр также расширились. В результате эти графические чипы (англ.) были способны обеспечить приемлемую частоту кадров только в старых играх.

Эволюция графики Intel | GMA 900 (2004 год)

В 2004 году Intel завершила выпуск линейки Extreme Graphics, отправив на пенсию ядро с двумя пиксельными конвейерами, которое использовалось во всех предыдущих графических процессорах Intel. Следующие несколько лет Intel будет продавать свою графику под именем Graphics Media Accelerator (или GMA). Первым из этой серии был GPU GMA 900, интегрированный в набор микросхем семейства i915 (Grantsdale/Alviso). Он поддерживал DirectX 9.0 и обладал четырьмя пиксельными конвейерами, но ему не хватало вершинных шейдеров, и эти вычисления делались силами центрального процессора. Частота GPU могла быть 333 МГц или 133 МГц для маломощных систем. GPU работал как с DDR, так и с DDR2. Но независимо от конфигурации, производительность была относительно низкой.

Некоторые производители изготавливали специальные карты расширения в дополнение к GMA 900, чтобы добавить выход DVI.

Эволюция графики Intel | GMA 950: Pentium 4 и Atom (2005 год)

Графический процессор GMA 950 интегрировался в чипсеты Intel i945 (Lakeport и Calistoga) и может похвастаться относительно долгим жизненным циклом. Эти чипсеты работали с процессорами Pentium 4, Core Duo, Core 2 Duo и Atom. Однако архитектура была почти идентичной GMA 900 и наследовала многие ее недостатки, включая отсутствие вершинных шейдеров. Ядро получило незначительные программные улучшения совместимости и поддержку DirectX 9.0c. Это было важным обновлением для графического чипа, поскольку оно добавляло поддержку Aero в Windows Vista. Благодаря повышению частоты (400 МГц) и поддержке более быстрых процессоров и памяти немного увеличилась производительность. Мобильные версии GPU могли также работать при тактовой частоте 166 МГц для экономии энергии и снижения тепловыделения.

Эволюция графики Intel | GMA 3000, 3100 и 3150 (2006 год)

В 2006 году Intel вновь изменила наименование своей графики, начав с GMA 3000. Это был значительный шаг вперед по сравнению со старым GMA 950 в плане производительности и технологичности. Предыдущее поколение было ограничено четырьмя пиксельными конвейерами без вершинных шейдеров. Между тем, новый GMA 3000 включал восемь многоцелевых исполнительных блоков EU, способных выполнять несколько задач, включая вершинные вычисления и обработку пикселей. Intel повысила тактовую частоту до 667 МГц, заметно прибавив GMA 3000 скорости по сравнению с GMA 950.

После премьеры GMA 3000 Intel добавила в семейство еще два графических чипа: GMA 3100 и 3150. Несмотря на то, что они появились после GMA 3000, оба GPU фактически были больше похожи на GMA 950. Они имели только по четыре пиксельных конвейера и полагались на центральный процессор для обработки вершин. Повторное использование GMA 950 после ребрендинга в GMA 3100 и 3150 позволило Intel предложить несколько продуктов. До этого Intel сосредотачивала усилия только на одном GPU в своей линейке.

Эволюция графики Intel | GMA X3000 (2006 год)

После GMA 3000 Intel снова изменила наименование, представив четвертое поколение графических процессоров. Однако GMA X3000 был почти идентичен GMA 3000 и включал лишь незначительные изменения. Основное их различие заключалось в объеме используемой памяти – GMA 3000 мог использовать только 256 Мбайт системной памяти для графики, а GMA X3000 увеличил этот показатель до 384 Мбайт. Intel также расширила поддержку видеокодеков в GMA X3000, чтобы включить полное ускорение MPEG-2 и ограниченное ускорение VC-1.

Примерно в то же время Intel представила GMA X3100 и GMA X3500. По сути это были модернизированные чипы GMA X3000, получившие поддержку Pixel Shader 4.0, позволяющую работать с новыми API-интерфейсами, например DirectX 10. Тактовая частота GMA X3100 была ниже, чем у других версий, поскольку он был предназначен для мобильных платформ.

Эволюция графики Intel | Последний GMA (2008 год)

После X3000 Intel разработала только одну серию чипсетов с интегрированной графикой. Семейство Intel GMA 4500 состояло из четырех моделей, все они использовали одинаковую архитектуру с 10-ю исполнительными блоками. Для настольных чипсетов было выпущено три версии GPU. Самым медленным из них был GMA 4500 c частотой 533 МГц. Два других: GMA X4500 и X4500HD, работали на тактовой частоте 800 МГц. Главное отличие X4500HD от X4500 заключалось в использовании полного аппаратного ускорения VC-1 и AVC.

Мобильная версия графического чипа называлась GMA X4500MHD и работала на частоте 400 МГц или 533 МГц. По аналогии с X4500HD, X4500MHD поддерживал полное аппаратное ускорение VC-1 и AVC.

Эволюция графики Intel | Larrabee (2009 год)

В 2009 году Intel сделал еще одну попытку выйти на рынок видеокарт, представив Larrabee . Понимая, что ее основным преимуществом является глубочайшее понимание архитектуры x86, Intel хотела создать GPU на базе шины ISA. Вместо проектирования с нуля разработка Larrabee отталкивалась от первого процессора Pentium, который Intel решила модифицировать для того, чтобы создать скалярный блок внутри GPU. Старая процессорная архитектура была значительно переделана, обзавелась новыми алгоритмами и технологией Hyper-Threading для увеличения производительности. Несмотря на то, что технология Hyper-Threading в Larrabee была похожа на ту, которая использовать в обычных процессорах Intel, Larrabee была способна выполнять задачи в четыре потока на ядро вместо двух.

Для обработки вершин Intel создала необычно большой 512-битный блок вычислений с плавающей запятой, состоящий из 16 отдельных элементов, способных работать как единый компонент или самостоятельные единицы. Это FPU теоретически имел более чем в 10 раз больше пропускной способности, чем аналогичные чипы Nvidia того времени.

В конечном счете инициатива Larrabee была отменена, хотя Intel продолжает развивать эту технологию.

Эволюция графики Intel | Первое поколение Intel HD Graphics (2010 год)

Intel представила линейку HD Graphics в 2010 году, чтобы восстановить позиции, которые потеряла семейство GMA. Графическое ядро HD Graphics в первом поколении процессоров Core i3, i5 и i7 было похоже на GMA 4500, за исключением двух дополнительных исполнительных блоков. Тактовая частота осталась примерно на том же уровне и стартовала с 166 МГц в маломощных мобильных системах и останавливалась на отметке 900 МГц в более дорогих CPU для настольных ПК. Хотя 32-нанометровый процессор и 45-нанометровый GMCH были не полностью интегрированы на одном кремниевом кристалле, оба компонента находились в корпусе процессора. Это позволило снизить задержки между контроллером памяти внутри GMCH и ЦП. Поддержка API со времен GMA существенно не изменилась, хотя общая производительность увеличилась более чем на 50 процентов.

Эволюция графики Intel | Sandy Bridge: второе поколение Intel HD Graphics (2011 год)

В Sandy Bridge Intel HD Graphics сделала еще один шаг вперед в плане производительности. Вместо двух отдельных кристаллов под крышкой Intel объединила процессоры на одном кристалле, еще больше сократив задержку между компонентами. Кроме того Intel расширила функциональность графического чипа, добавив технологию Quick Sync для ускорения перекодирования и более эффективный видеодекодер. Поддержка API расширилась только до DirectX 10.1 и OpenGL 3.1, но значительно увеличилась тактовая частота – теперь она варьировалась в пределах 350 - 1350 МГц.

Благодаря более широкому набору функций Intel решила сегментировать линейку чипов. Младшие модели получили метку HD (базировались на ядре GT1 с шестью EU и ограниченным видеодекодером), решения среднего уровня носили название HD 2000 (тот же GT1 с шестью EU, но полнофункциональный блок кодирования/декодирования), а чипы верхнего уровня назывались HD 3000 (ядро GT2 с 12 EU плюс все преимущества Quick Sync).

Эволюция графики Intel | Xeon Phi (2012 год)

В то время как концепция Larrabee была более ориентирована на игры, компания увидела ее будущее в приложениях с тяжелыми вычислительными задачами и создала в 2012 году сопроцессор Xeon Phi . Одна из первых моделей под названием Xeon Phi 5110P содержала 60 процессоров x86 с большими 512-битными блоками расчета векторов с тактовой частотой 1 ГГц. На такой скорости они могли обеспечить более 1 TFLOPS вычислительной мощности, потребляя в среднем 225 Вт.

В результате высокой скорости вычислений по отношению к потребляемой мощности Xeon Phi 31S1P использовался при создании суперкомпьютера Тяньхэ-2 в 2013 году, который по сегодняшний день считается одним из самых быстрых суперкомпьютеров в мире.

Эволюция графики Intel | Ivy Bridge: Intel HD 4000 (2012 год)

С появлением Ivy Bridge Intel переработала свою графическую архитектуру. По аналогии с iGPU в Sandy Bridge графическое ядро в Ivy Bridge продавалась в трех различных версиях: HD (GT1 с шестью EU и ограниченным блоком кодирования/декодирования), HD 2500 (GT1 с шестью EU и полнофункциональным блоком кодирования/декодирования) и HD 4000 (GT2 с 16 EU и полнофункциональным блоком кодирования/декодирования). HD 4000 работал при более низкой частоте 1150 МГц, чем Intel HD 3000, но имел четыре дополнительных исполнительных блока и был значительно быстрее своего предшественника. В среднем прирост скорости в Skyrim составил 33,9 процента. Отчасти прирост производительности связан с улучшенной архитектурой, которая впервые перешла на Pixel Shader 5.0, плюс появилась поддержка DirectX 11.0 и OpenCL 1.2.

Производительность технологии Intel Quick Sync также значительно увеличилась. Транскодирование видео файлов H.264 из одного формата в другой выполнялось в два раза быстрее. Аппаратное ускорение видео также было усовершенствовано и Intel HD 4000 технически способен декодировать одновременно несколько видеопотоков в 4K.

Эволюция графики Intel | Intel расширяет графические линейку чипами Haswell (2013 год)

В архитектурном плане ядро HD Graphics в Haswell похоже на графическое ядро в Ivy Bridge и может рассматриваться как его расширение. Чтобы получить больше производительности из GPU для Haswell Intel использовала грубую силу. На этот раз компания предпочла установить в GT1 Haswell десять исполнительных блоков вместо шести в предыдущем поколении. Было включено полное декодирование видео, но отключены функции ускоренного кодирования и Quick Sync. Кроме того Intel еще сильнее разнообразила ассортимент GPU. Версия GT2 c 20 EU использовалась в трех различных графических ядрах: HD Graphics 4200, 4400 и 4600. В основном они различались по тактовой частоте.

Также Intel представила GPU более высокого класса под названием GT3. Он вмещал в себя 40 исполнительных блоков и обеспечивал значительно более высокий уровень производительности. Процессоры с ядром GT3 продавались под маркой HD Graphics 5000 и 5100. Редкая версия GT3e Intel Iris Pro 5200 включала 128 Мбайт памяти eDRAM в корпусе процессора и была первым воплощением семейства Intel Iris Pro. Несмотря на то, что Iris Pro 5200 работал быстрее решений без дополнительной eDRAM, его влияние на рынок было ограничено, так как GPU появился лишь в нескольких топовых процессорах.

Версия iGPU Haswell с низким энергопотреблением имела только четыре EU и использовалась в процессорах Intel Atom под кодовым названием Bay Trail . С появлением высокопроизводительного GT3 и экономичного Bay Trail, iGPU Haswell насчитывал восемь различных моделей. Для сравнения в поколении Sandy Bridge и Ivy Bridge было всего по три версии.

Эволюция графики Intel | Broadwell (2014 год)

В Broadwell Intel снова модернизировала iGPU для более эффективного масштабирования. В новой архитектуре исполнительные блоки были организованы в восемь подсекций. Таким образом добавлять EU было еще проще, так как Intel могла дублировать подсекции несколько раз. Версия GT1 содержала две подсекции (хотя только 12 EU были активны). Следующие три продукта: HD Graphics 5300, 5500, 5600 и P5700 использовали чип GT2 с 24 EU (но некоторые версии имели только 23 активных EU).

Более быстрые ядра GT3 и GT3e содержали по 48 EU и использовались в HD Graphics 6000, Iris Graphics 6100, Iris Pro Graphics 6200 и Iris Pro Graphics P6300. Подобно чипам Haswell Iris Graphics, модели линейки Broadwell Iris Graphics включали графическое ядро GT3e со 128 Мбайт встроенной памяти eDRAM. Каждая группа из восьми исполнительных блоков имела 64 Кбайт общей кэш-памяти. Эти графические процессоры поддерживали DirectX 12, OpenGL 4.4 и OpenCL 2.0.

Эволюция графики Intel | Skylake (2015 год)

Последняя версия интегрированной графики Intel реализована в процессорах на архитектуре Skylake . Эти графические чипы близки с iGPU Broadwell, имеют одинаковое архитектурное построение и равное количество EU почти во всех моделях. Основные изменения коснулись именования. Intel изменила названия на HD Graphics 500. GPU начального уровня стали называться HD Graphics и HD Graphics 510 и использовать кристалл GT1 с 12 EU. HD Graphics 515, 520, 530 и P530 используют чип GT2 с 24 EU.

Начиная со Skylake Intel еще сильнее разделила продукты серии Iris и Iris Pro. Iris 540 и 550 будут поставляться с 48 исполнительными блоками в чипе GT3e. Пока не ясно, какое название ядра будет у Iris Pro 580, но оно будет содержать в общей сложности 72 EU и, вероятно, окажется значительно быстрее, чем графический процессор Iris Pro 6200 в CPU Broadwell. Не ясно, сколько eDRAM будет в этих чипах, но Intel, скорее всего, будет и дальше разделять графику Iris и Iris Pro по уровню производительности. Iris 540 будет иметь только 64 Мбайт памяти eDRAM, то есть половину от GT3e в Broadwell. Что касается Iris Pro или Iris 550, Intel пока не объявляла их точных характеристик.

10.07.2013

В последние годы Intel уделяет немало внимания улучшению характеристик и производительности собственной интегрированной графики, в чем заметно преуспела. Именно этот факт заметно сократил продажи недорогих дискретных видеокарт. Мы решили проверить, на что способна новая Intel HD Graphics 4600, которая пришла на смену HD 4000 в процессорах Haswell.


Если всего три-пять лет назад вопрос о производительности интегрированной графики практически никого не интересовал, так как всем было ясно, что она нужна исключительно для работы в 2D и сильно устаревших 3D-приложениях, то в последние годы ситуация сильно изменилась. Вот уже несколько лет Intel, уделяет повышению производительности своей HD Graphics не меньше, а быть может даже больше внимания, чем улучшению производительности процессорных ядер.

И это дает результаты. Ни на что неспособный, бюджетный вариант для тех, кто не играет в игры, постепенно превратился в серьезного конкурента недорогим дискретным видеокартам. Это заметно сократило долю рынка решений AMD и nVIDIA, а первая даже пересмотрела организацию собственных линеек видеокарт, отказавшись от выпуска решений бюджетного класса семейства Radeon HD 7000. Правда, AMD указывает на то, что это было сделано по причине того, что APU компании предоставляют схожую с бюджетными дискретными видеокартами производительность. Но не будут же они открыто говорить о том, что графика Intel также весьма конкурентоспособна среди видеокарт низшей ценовой категории.


Мы, в рамках теста процессора Intel Core i7-4770K решили провести отдельный тест графической части, которая интегрирована на кристалл Haswell и имеет название Intel HD Graphics 4600, решили проверить, на что она способна? Причем для адекватной оценки усилий инженеров Intel, мы решили столкнуть лбами сразу три последних поколения интегрированной графики, причем, самых производительных версий. Отдельно было решено проверить, как покажет себя Intel HD 4600 в сравнении с дискретной видеокартой GeForce GT 630. Интересно? Вот и нам тоже. Но прежде чем переходить к тестам, давайте выясним, что за графическое ядро скрывается в кристалле Haswell.

Intel HD Graphics 4600

Intel HD Graphics 4600 – не абсолютно новая разработка, а эволюционное развитие архитектуры, которая впервые появилась в процессорах Core первого поколения на ядрах Clarkdale and Arrandale в январе 2010 года. Именно тогда Intel отказалась от классической архитектуры с раздельными пиксельными и вершинными конвейерами в пользу прогрессивной унифицированной шейдерной архитектуры. На этой основе, регулярно ее улучшая, инженеры компании и разработали все последующие версии Intel HD Graphics, чего отлично способствовала ее модульность, то есть возможность достаточно простого добавления исполнительных блоков. В значительной мере благодаря этой возможности, а также отработке техпроцесса и небольшим улучшениям архитектуры, компания каждый год выпускает процессоры, имеющие более производительную графику.


Intel HD Graphics 4600 получил уже 20 исполнительных блоков, которые по функционалу соответствуют потоковым процессорам в графических процессорах AMD, и ядрам CUDA в GPU nVIDIA. Для сравнения, у HD 4000 из состава Ivy Bridge из было 16, а у HD 3000, которая была топовой графикой для Sandy Bridge их было всего 12. Общее количество ALU в новинке составило 80 штук, в то время как в предыдущей модели их было 64.

Как ни крути, а при равной частоте, вычислительная мощность HD 4600 при равной частоте стала на 25 процентов выше, чем у HD 4000, что очень неплохо, учитывая, что между выпуском этих решений прошло лишь чуть больше года. А вот количество блоков растеризации и текстурирования осталось прежним – 2 и 4 штуки соответсвенно. Дело в том, что ROP и TMU являются весьма энергозатратными, а для интегрированной графики это весьма критичный момент, не в пример десктопным картам.


Добиться улучшения производительности HD 4600 относительно HD 4000 удалось и за счет повышения частоты. Но небольшого (вновь вопрос энергопотребления помешал), до 1250 мегагерц против 1150. Зато частота GPU в простое стала заметно ниже – 350 мегагерц против 650, что сделало процессоры Haswell более экономичными в режимах с частичными нагрузками.

А вот с пропускной способностью подсистемы памяти сделать что-то сложно. Ведь, как и любая другая интегрированная графика, Intel HD Graphics 4600 использует для своих целей не локальную, а системную оперативную память, канал которой приходится делить с процессором. Это серьезно бьет по производительности графики, которой зачастую приходится оперировать значительно большими объемами данных, нежели процессорным ядрам. И кэш третьего уровня, который HD 4600 использует на равных правах с процессорными ядрами, здесь не спасет, так как его объем слишком мал. А потому, чем быстрее будет оперативная память, тем лучше будет чувствовать себя интегрированная графика. Впрочем, до проведения тестов воздержимся от вывода о том, что память является бутылочным горлышком, которая мешает HD 4600 развернуться.


Кстати, у Intel есть решение проблемы с пропускной способностью подсистемы памяти, которое применено в некоторых мобильных процессорах Haswell. Версия графического ядра под названием Intel Iris Pro Graphics 5200 может использовать быструю eDRAM память, чип которой, емкостью 128 мегабайт, расположен прямо на подложке процессора. Используя его как кэш L4, Iris Pro может кэшировать туда критически важные данные, что позволяет нивелировать влияние невысокой пропускной способности оперативной памяти. Кстати, и исполнительных блоков у нее заметно больше чем в HD 4600 – сразу 40 штук! Впрочем, об Iris Pro мы сегодня говорить не будем, все же это решения заслуживает отдельного материала.


Вернемся к HD 4600. В плане поддерживаемых API особых изменений нет. Как и лучшие, на сегодняшний день дискретные видеокарты, новая графика Intel поддерживает DirectX 11.1 (шейдеры версии 5.0), OpenGL 4.0 и OpenCL 1.2. Естественно, имеется поддержка тесселяции, HDR, полноэкранного сглаживания и других современных технологий улучшения изображения. Ну и о возможности работы одновременно с тремя мониторами не забудем. Впрочем, она была и у HD 4000.

Благодаря в очередной раз улучшенному блоку аппаратной обработки видео под названием QuickSync, Intel HD Graphics 4600 стала еще более всеядна и производительна при работе с видеоконтентом. Это касается скорости перекодирования в приложениях, которые поддерживают QuickSynk (в данный момент это только MediaEspresso от Cyberlink), так и просмотра фильмов в Ultra HD, с которым HD 4600 справляется легко и непринужденно даже в больших битрейтах. Также отметим, что он получил поддержку форматов Motion JPEG и SVC, которые постепенно набирают популярность.

Теоретические расчеты производительности

Перед тем как переходить к тестам, давайте вычислим теоретическую производительность графических ядер Intel трех поколений – HD 3000, HD 4000 и HD 4600 и дискретной GeForce GT 630, которая будет представлять бюджетный вариант дискретной видеокарты. Новая HD 4600, как и HD 4000 могут исполнять 16 операций с плавающей запятой на один исполнительный блок за такт. Старая HD 3000 исполняет лишь 12 операций, а каждое CUDA-ядро GeForce справляется с 2 операциями. Несложные расчеты дают такие результаты пиковой производительности:

HD 4600 – 400 GFLOPS
GeForce GT 630 – 311 GFLOPS
HD 4000 – 294 GFLOPS
HD 3000 – 194 GFLOPS

Расклад явно не в пользу GeForce. Правда, при текстурировании ситуация будет совсем иной. Здесь уже GeForce оказывается впереди за счет наличия сразу 16 TMU, зато на фоне предшественников HD 4600 выглядит очень солидно. Общий расклад по скорости закраски сцены такой:

GeForce GT 630 – 13 Мтекс/сек
HD 4600 – 5 Мтекс/сек
HD 4000 – 4,6 Мтекс/сек
HD 3000 – 1,35 Мтекс/сек

По скорости растеризации первенство вновь за GeForce, но не столь большое:

GeForce GT 630 – 3,2 Мпикс/сек
HD 4600 – 2,5 Мпикс/сек
HD 4000 – 2,3 Мпикс/сек
HD 3000 – 1,35 Мпикс/сек

О пропускной способности памяти говорить не будем, так как она у графики Intel динамически делится с процессорными ядрами, в то время как GeForce GT 630 использует выделенный массив быстрой GDDR-5. Как видите, этот GeForce, если судить по теоретическим данным будет сложным соперником для HD 4600.

Тесты

Пора переходить к самому интересному – тестам. Начнем мы со сравнения производительности графических ядер Intel трех поколений – HD 3000, HD 4000 и HD 4600. В нашем тесте они работали в составе трех топовых процессоров Intel: Core i7-2700K, Core i7-3770K и Core i7-4770K соответсвенно. Частоты GPU при максимальной нагрузке составляли 1350, 1150 и 1250 мегагерц.

Частота оперативной памяти для всех трех процессоров была одинаковой – 1866 мегагерц, как и режим работы – двухканальный. Для всех тестов этой группы использовались минимальные настройки и разрешение 1920x1080 без использования AA и AF. Кроме 3DMark, который запускался на стандартных настройках. Также для всех тестов указана версия используемого DirectX. В DirectX 11 тесты не проводились, так как он не поддерживается HD 3000.


Начнем традиционно с синтетических тестов. Тест графики Cloud Gate из состава нового 3DMark демонстрирует разительную разницу в производительности. Intel HD 4600 опередила HD 4000 на 42 процента, а HD 3000 и вовсе на 156 процентов! Отличный старт.


Тест Unigine Heaven чуть меньшую разницу в производительности графики Intel двух последних поколений: HD 4600 на 36 процентов быстрее предшественницы. Разница с HD 3000 вновь более чем двукратная.


Игра Crysis 2 продемонстрировала еще больший прирост: HD 4600 быстрее HD 4000 почти в полтора раза! Отрыв от HD 3000 огромен – 130 процентов!


F1 2011 оказалась чуть менее критична к устаревшей графике. Разница между HD 4600 и HD 4000 “всего” 28 процентов, а отставание HD 3000 чуть менее чем двукратное. Кстати, поиграть в эту игру можно и на самой старой графике из этого списка, а более новые версии позволяют увеличивать настройки и добиваться лучшей графики при сохранении должно уровня производительности.


Metro 2033 оценила превосходство HD 4600 над HD 4000 в солидные 39 процентов. А HD 3000 продемонстрировал “силу”, отстав всего на 66 процентов, что на фоне выглядит почти победой для старичка. Кстати, заметьте, что в режиме DX10, Intel HD Graphics 4600 почти дотянулся до играбельного уровня FPS. Если снизить разрешение, то можно насладиться Metro 2033 без “тормозов”.


В Tomb Raider на минимальных настройках тоже вполне можно поиграть на интегрированной HD 4600. Чего не скажешь о ее предшественниках – HD 4000 и HD 3000, которые отстали на 42 и рекордный 131 процент соответсвенно.

Заключение по итогам сравнительного теста Intel HD Graphics трех последних поколений сделать несложно. Новая HD 4600 из состава процессоров Haswell действительно стала большим шагом вперед по производительности, заметно опередив предшественниц, несмотря на то, что пропускная способность оперативной памяти осталась прежней. Больше всего радует тот факт, что она добилась играбельного фреймрейта в свежих играх.

А как Intel HD 4600 покажет себя в сравнении с бюджетной дискретной видеокартой GeForce GT 630, которая уступает лишь по пиковой производительности, но имеет заметное преимущество по скорости текстурирования, растеризации и пропускной способности памяти? Последний факт особенно критичен, учитывая, что мы взяли полноценный GeForce GT 630 от ASUS с 128-битной шиной и быстрой GDDR5-памятью. Проверим, для начала в синтетике. Кстати, все тесты этого блока делались на максимальных настройках графики с использованием DirectX 11, в разрешении Full HD, и с форсированной 16-кратной анизотропной фильтрацией, но без сглаживания.


Мало кто в редакции был готов поставить на то, что HD 4600 сможет на равных бороться с GT630, а потому результаты синтетических тестов удивили. И пара 3DMark и Unigine Heaven показали пусть и небольшое, но преимущество Intel HD Graphics последнего поколения! Отличный результат.


В игровых тестах ситуация изменилась, и HD 4600 уже не доминирует. Но, тем не менее, она серьезно отстала от GeForce GT 630 лишь в игре Metro 2033 – более чем в полтора раза. В играх Battlefield 3, Crysis 2 и F1 2011 разница в производительности уже не столь критична – 17, 8 и 9 процентов соответсвенно. А в двух играх Intel HD 4600 и вовсе показала себя лучше дискретной GT 630, опередив ее в DiRT Showdown на 12 процентов, а в новой Tomb Raider, и вовсе, сразу на 22 процента! Весьма серьезные показатели, которые вполне способны нивелировать проигрыш в других играх.


Ну и в довершение тест на скорость перекодирования ролика в программе Cyberlink MediaEspresso 6.7, который позволяет оценить скорость кодирования видео с использованием технологии Intel QuickSync. Как видите, здесь даже комментарии не нужны, прогресс на лицо. HD 4600 на четверть быстрее HD 4000 и более чем в два раза превосходит по производительности блока обработки видео устаревший HD 3000.

Выводы

На фоне не слишком ярко выступившей в наших тестах процессорной части Core i7-4770K, новое графическое ядро Intel HD Graphics 4600 стало для нас именно той частью, которое позволяет с уверенностью заявить о том, что процессоры Haswell действительно являются заметным шагом вперед относительно предыдущего поколения процессоров Core. HD 4600 с легкостью опередила предыдущее поколения графики HD 4000 по результатам всех тестов. Причем средний отрыв оказался равен солидным 39 процентам! Позапрошлогодняя HD 3000 на фоне новинки выглядит и вовсе уныло, в среднем уступив с более чем в два раза. Эти результаты являются отличной демонстрацией того, что инженеры Intel не зря едят свой хлеб.

Ну и самое главное, интегрированная графика Intel в новом поколении доросла до того уровня, когда на ней вполне можно играть не только с устаревшие, но и самые новые игры. Кроме того, появление HD 4600 сделало совершенно бессмысленной покупку недорогой дискретной видеокарты, такой как GeForce GT 630. Как показали наши тесты, их производительность предельно близка, а установка такой видеокарты принесет лишь увеличение энергопотребления, шума, и никакой реальной пользы. К тому же не стоит забывать, что весь топовый процессор Core i7-4770K, включая графическое ядро HD 4600 и остальные блоки потребляет 84 ватта, а GT 630 в паре со скромным двуядерным CPU будет требовать не менее 130 ватт.


Так что, забудьте про дешевые видеокарты, даже если они относятся к последнему поколению, а также можете выбросить свои устаревшие решения, даже если это весьма солидно выглядящие GeForce 8800 GTS 320 или Radeon HD 3850. Они не смогут заметно превзойти Intel HD Graphics 4600, при несравнимых затратах энергии. И еще один важный момент, получить эту мощный интегрированную графику вы можете не только в составе топового Core i7-4770K, который мы протестировали, но и в гораздо более доступных процессорах Haswell, в том числе Core i5, а в перспективе и Core i3.

«Зачем нужна эта встройка? Дайте больше ядер, мегагерц и кэша! » - вопрошает и восклицает среднестатистический компьютерный пользователь. Действительно, когда в компьютере используется дискретная видеокарта, то необходимость в интегрированной графике отпадает. Признаюсь, я слукавил относительно того, что сегодня центральный процессор без встроенного видео тяжелее найти, чем с оным. Такие платформы есть - это LGA2011-v3 для чипов Intel и AM3+ для «камней» AMD. В обоих случаях речь идет о топовых решениях, а за них надо платить. Мейнстрим-платформы, такие как Intel LGA1151/1150 и AMD FM2+, поголовно оснащаются процессорами с интегрированной графикой. Да, в ноутбуках «встройка» незаменима. Хотя бы потому, что в режиме 2D мобильные компьютеры дольше работают от аккумулятора. В десктопах толк от интегрированного видео есть в офисных сборках и так называемых HTPC. Во-первых, мы экономим на комплектующих. Во-вторых, мы опять экономим на энергопотреблении. Тем не менее в последнее время AMD и Intel всерьез говорят о том, что их встроенная графика - всем графикам графика! Годится в том числе и для гейминга. Это мы и проверим.

Играем в современные игры на встроенной в процессор графике

300% прироста

Впервые встроенная в процессор графика (iGPU) появилась в решениях Intel Clarkdale (архитектура Core первого поколения) в 2010 году. Именно интегрированная в процессор. Важная поправка, так как само понятие «встроенное видео» образовалось гораздо раньше. У Intel - в далеком 1999 году с выходом 810-го чипсета для Pentium II/III. В Clarkdale интегрированное видео HD Graphics реализовали в виде отдельной микросхемы, размещенной под теплораспределительной крышкой процессора. Графика производилась по старому на тот момент времени 45-нанометровому техпроцессу, основная вычислительная часть - по 32-нанометровым нормам. Первыми решениями Intel, в которых блок HD Graphics «поселился» вместе с остальными компонентами на одном кристалле, стали процессоры Sandy Bridge.

Intel Clarkdale - первый процессор со встроенной графикой

С тех пор встроенная в «камень» графика для мейнстрим-платформ LGA115* стала стандартом де-факто. Поколения Ivy Bridge, Haswell, Broadwell, Skylake - все обзавелись интегрированным видео.

Встроенная в процессор графика появилась 6 лет назад

В отличие от вычислительной части, «встройка» в решениях Intel заметно прогрессирует. HD Graphics 3000 в настольных процессорах Sandy Bridge K-серии насчитывает 12 исполнительных устройств. У HD Graphics 4000 в Ivy Bridge - 16; у HD Graphics 4600 в Haswell - 20, у HD Graphics 530 в Skylake - 25. Постоянно растут частоты как самого GPU, так и оперативной памяти. В итоге производительность встроенного видео за четыре года увеличилась в 3-4 раза! А ведь есть еще гораздо более мощная серия «встроек» Iris Pro, которые используются в определенных процессорах Intel. 300% процентов за четыре поколения - это вам не 5% в год .

Производительность встроенной графики Intel

Встроенная в процессор графика - это тот сегмент, в котором Intel приходится поспевать за AMD. В большинстве случаев решения «красных» оказываются быстрее. Ничего удивительно в этом нет, ведь AMD разрабатывает мощные игровые видеокарты. Вот и во встроенной графике настольных процессоров используется та же архитектура и те же наработки: GCN (Graphics Core Next) и 28 нанометров.

Гибридные чипы AMD дебютировали в 2011 году. Семейство кристаллов Llano стало первым, в котором встроенная графика была совмещена с вычислительной частью на одном кристалле. Маркетологи AMD смекнули, что тягаться с Intel на ее условиях не получится, поэтому ввели термин APU (Accelerated Processing Unit, процессор с видеоускорителем), хотя идея вынашивалась «красными» еще с 2006 года. После Llano вышли еще три поколения «гибридников»: Trinity, Richland и Kaveri (Godavari). Как я уже говорил, в современных чипах встроенное видео архитектурно ничем не отличается от графики, используемой в дискретных 3D-ускорителях Radeon. В итоге в чипах 2015-2016 годов половина транзисторного бюджета расходуется именно на iGPU.

Современная встроенная графика занимает половину полезной площади центрального процессора

Самое интересное в том, что развитие APU повлияло на будущее… игровых приставок. Вот и в PlayStation 4 с Xbox One используется чип AMD Jaguar - восьмиядерный, с графикой на архитектуре GCN. Ниже приведена таблица с характеристиками. Radeon R7 - это самое мощное интегрированное видео, какое есть у «красных» на сегодняшний день. Блок используется в гибридных процессорах AMD A10. Radeon R7 360 - это дискретная видеокарта начального уровня, которую, согласно моим рекомендациям , можно считать в 2016 году условно игровой. Как видите, современная «встройка» в плане характеристик несильно уступает Low-end-адаптеру. Нельзя сказать, что и графика игровых приставок обладает выдающимися характеристиками.

Само по себе появление процессоров со встроенной графикой во многих случаях ставит крест на необходимости покупать дискретный адаптер начального уровня. Однако уже сегодня интегрированное видео AMD и Intel посягает на святое - игровой сегмент. Например, в природе существует четырехъядерный процессор Core i7-6770HQ (2,6/3,5 ГГц) на архитектуре Skylake. В нем задействованы встроенная графика Iris Pro 580 и 128 Мбайт памяти eDRAM в роли кэша четвертого уровня. Интегрированное видео насчитывает сразу 72 исполнительных блока, работающих на частоте 950 МГц. Это мощнее графики Iris Pro 6200, в которой используется 48 исполнительных устройств. В итоге Iris Pro 580 оказывается быстрее таких дискретных видеокарт, как Radeon R7 360 и GeForce GTX 750, а также в ряде случаев навязывает конкуренцию GeForce GTX 750 Ti и Radeon R7 370. То ли еще будет, когда AMD переведет свои APU на 16-нанометровый техпроцесс, а оба производителя со временем начнут использовать вместе со встроенной графикой память HBM/HMC .

Intel Skull Canyon - компактный компьютер с самой мощной встроенной графикой

Тестирование

Для испытания современной встроенной графики я взял четыре процессора: по два от AMD и Intel. Все чипы оснащены разными iGPU. Так, у гибридников AMD A8 (плюс A10-7700K) видео Radeon R7 идет с 384 унифицированными процессорами. У старшей серии - A10 - на 128 блоков больше. Выше у флагмана и частота. Есть еще серия A6 - в ней с графическим потенциалом совсем все грустно, так как используется «встройка» Radeon R5 с 256 унифицированными процессорами. Рассматривать ее для игр в Full HD я не стал.

Самой мощной встроенной графикой обладают процессоры AMD A10 и Intel Broadwell

Что касается продукции Intel, то в самых ходовых чипах Skylake Core i3/i5/i7 для платформы LGA1151 используется модуль HD Graphics 530. Как я уже говорил, он содержит 25 исполнительных устройств: на 5 больше, чем у HD Graphics 4600 (Haswell), но на 23 меньше, чем у Iris Pro 6200 (Broadwell). В тесте использовался младший четырехъядерник - Core i5-6400.

AMD A8-7670K AMD A10-7890K Intel Core i5-6400 (обзор) Intel Core i5-5675C (обзор)
Техпроцесс 28 нм 28 нм 14 нм 14 нм
Поколение Kaveri (Godavari) Kaveri (Godavari) Skylake Broadwell
Платформа FM2+ FM2+ LGA1151 LGA1150
Количество ядер/потоков 4/4 4/4 4/4 4/4
Тактовая частота 3,6 (3,9) ГГц 4,1 (4,3) ГГц 2,7 (3,3) ГГц 3,1 (3,6) ГГц
Кэш третьего уровня Нет Нет 6 Мбайт 4 Мбайт
Встроенная графика Radeon R7, 757 МГц Radeon R7, 866 МГц HD Graphics 530, 950 МГц Iris Pro 6200, 1100 МГц
Контроллер памяти DDR3-2133, двухканальный DDR3-2133, двухканальный DDR4-2133, DDR3L-1333/1600 двухканальный DDR3-1600, двухканальный
Уровень TDP 95 Вт 95 Вт 65 Вт 65 Вт
Цена 7000 руб. 11 500 руб. 13 000 руб. 20 000 руб.
Купить

Ниже расписаны конфигурации всех тестовых стендов. Когда речь заходит о производительности встроенного видео, то необходимо уделить должное внимание выбору оперативной памяти, так как от нее тоже зависит, сколько FPS покажет интегрированная графика в итоге. В моем случае использовались киты DDR3/DDR4, функционирующие на эффективной частоте 2400 МГц.

Тестовые стенды
№1: №2: №3: №4:
Процессоры: AMD A8-7670K, AMD A10-7890K; Процессор: Intel Core i5-6400; Процессор: Intel Core i5-5675C; Процессор: AMD FX-4300;
Материнская плата: ASUS 970 PRO GAMING/AURA;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт. Видеокарта: NVIDIA GeForce GTX 750 Ti;
Оперативная память: DDR3-1866 (11-13-13-35), 2x 8 Гбайт.
Материнская плата: ASUS CROSSBLADE Ranger; Материнская плата: ASUS Z170 PRO GAMING; Материнская плата: ASRock Z97 Fatal1ty Performance;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт. Оперативная память: DDR4-2400 (14-14-14-36), 2x 8 Гбайт. Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт.
Материнская плата: ASUS CROSSBLADE Ranger; Материнская плата: ASUS Z170 PRO GAMING;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт. Оперативная память: DDR4-2400 (14-14-14-36), 2x 8 Гбайт.
Материнская плата: ASUS CROSSBLADE Ranger;
Оперативная память: DDR3-2400 (11-13-13-35), 2x 8 Гбайт.
Операционная система: Windows 10 Pro x64;
Периферия: монитор LG 31MU97;
Драйвер AMD: 16.4.1 Hotfix;
Драйвер Intel: 15.40.64.4404;
Драйвер NVIDIA: 364.72.

Поддержка оперативной памяти для процессоров AMD Kaveri

Такие комплекты выбраны неспроста. Согласно официальным данным, встроенный контроллер памяти процессоров Kaveri работает с памятью DDR3-2133, однако материнские платы на чипсете A88X (за счет дополнительного делителя) поддерживают и DDR3-2400. Чипы Intel вкупе с флагманской логикой Z170/Z97 Express взаимодействуют и с более скоростной памятью, пресетов в BIOS заметно больше. Что касается тестового стенда, то для платформы LGA1151 использовался двухканальный кит Kingston Savage HX428C14SB2K2/16, который без каких-либо проблем работает в разгоне до 3000 МГц. В других системах задействовалась память ADATA AX3U2400W8G11-DGV.

Выбор оперативной памяти

Небольшой эксперимент. В случае с процессорами Core i3/i5/i7 для платформы LGA1151 применение более быстрой памяти для ускорения графики не всегда рационально. Например, для Core i5-6400 (HD Graphics 530) смена комплекта DDR4-2400 МГц на DDR4-3000 в Bioshock Infinite дала всего 1,3 FPS. То есть при заданных мною настройках качества графики производительность «уперлась» именно в графическую подсистему.

Зависимость производительности встроенной графики процессора Intel от частоты оперативной памяти

При использовании гибридных процессоров AMD ситуация выглядит лучше. Увеличение скорости работы ОЗУ дает более внушительный прирост FPS, в дельте частот 1866-2400 МГц мы имеем дело с прибавкой в 2-4 кадра в секунду. Думаю, использование во всех тестовых стендах оперативной памяти с эффективной частотой 2400 МГц - это рациональное решение. И более приближенное к реальности.

Зависимость производительности встроенной графики процессора AMD от частоты оперативной памяти

Судить о быстродействии интегрированной графики будем по результатам тринадцати игровых приложений. Я их условно разделил на четыре категории. В первую входят популярные, но нетребовательные ПК-хиты. В них играют миллионы. Поэтому такие игры («танки», Word of Warcraft, League of Legends, Minecraft - сюда же) не имеют права быть требовательными. Мы вправе ожидать комфортного уровня FPS при высоких настройках качества графики в разрешении Full HD. Остальные категории были просто разделены на три временных отрезка: игры 2013/14, 2015 и 2016 годов.

Производительность встроенной графики зависит от частоты оперативной памяти

Качество графики подбиралось индивидуально для каждой программы. Для нетребовательных игр - это преимущественно высокие настройки. Для остальных приложений (за исключением Bioshock Infinite, Battlefield 4 и DiRT Rally) - низкое качество графики. Все же тестировать будем встроенную графику в разрешении Full HD. Скриншоты с описанием всех настроек качества графики расположены в одноименной. Будем считать играбельным показатель в 25 кадр/с.

Нетребовательные игры Игры 2013/14 годов Игры 2015 года Игры 2016 года
Dota 2 - высокое; Bioshock Infinite - среднее; Fallout 4 - низкое; Rise of the Tomb Raider - низкое;
Diablo III - высокое; Battlefield 4 -среднее; GTA V - стандартное; Need for Speed - низкое;
StarCraft II - высоко. Far Cry 4 - низкое. XCOM 2 - низкое.
DiRT Rally - высокое.
Diablo III - высокое; Battlefield 4 -среднее; GTA V - стандартное;
StarCraft II - высоко. Far Cry 4 - низкое. «Ведьмак 3: Дикая Охота» - низкое;
DiRT Rally - высокое.
Diablo III - высокое; Battlefield 4 -среднее;
StarCraft II - высоко. Far Cry 4 - низкое.
Diablo III - высокое;
StarCraft II - высоко.

HD

Основная цель тестирования - изучить производительность встроенной графики процессоров в разрешении Full HD, но для начала разомнемся на более низком HD. Вполне комфортно в таких условиях чувствовали себя iGPU Radeon R7 (как для A8, так и A10) и Iris Pro 6200. А вот HD Graphics 530 со своими 25 исполнительными устройствами в ряде случаев выдавала совершенно неиграбельную картинку. Конкретно: в пяти играх из тринадцати, так как в Rise of the Tomb Raider, Far Cry 4, «Ведьмак 3: Дикая Охота», Need for Speed и XCOM 2 снижать качество графики уже некуда. Очевидно, что в Full HD интегрированное видео чипа Skylake ожидает полный провал.

HD Graphics 530 сливает уже в разрешении 720p

Графика Radeon R7, используемая в A8-7670K, не справилась с тремя играми, Iris Pro 6200 - с двумя, а встройка A10-7890K - с одной.

Результаты тестирования в разрешении 1280x720 точек

Интересно, что есть игры, в которых интегрированное видео Core i5-5675C серьезно обходит Radeon R7. Например, в Diablo III, StarCraft II, Battlefield 4 и GTA V. В низком разрешении сказывается не только наличие 48 исполнительных устройств, но и процессорозависимость. А также наличие кэша четвертого уровня. В то же время A10-7890K обошел своего оппонента в более требовательных Rise of the Tomb Raider, Far Cry 4, «Ведьмак 3» и DiRT Rally. Архитектура GCN хорошо проявляет себя в современных (и не очень) хитах.

Часть 24: Intel HD Graphics третьего и четвертого поколений

Так сложилось, что с производительностью нынешнего поколения интегрированной графики Intel мы знакомились на примере старших ее модификаций или в ноутбучном исполнении , а вот последняя статья, где изучались Celeron, Pentium и Core i3 была опубликована более года назад, так что ограничивалась Sandy Bridge и Ivy Bridge. С точки зрения потенциального покупателя, разумеется, такая ситуация неправильна. Ведь интегрированное графическое ядро в топовом настольном процессоре обычно используют те, кому его характеристики не важны, так что, по большому счету, и HDG 2500 достаточно. Если недостаточно, то просто обычно приобретается дискретная видеокарта, тем более, что обладатели компьютеров на Core i7 или Core i5 легко могут позволить себе не экономить на последней. Да и в старшие модели ноутбуков производители нередко ставят дискретку по принципу «чтобы было». Пусть часто таковым оказывается GPU, сравнимый по производительности со встроенным, но отбиться от такой «заботы» не всегда представляется возможным.

А вот в бюджетном сегменте все совсем не так. Конечно, и на Pentium (не говоря уже о Core i3) можно собрать неплохой игровой компьютер. Причем если ограничиваться однопользовательским режимом, то даже не «неплохой», а хороший (в чем мы уже убедились). Однако при серьезных требованиях к производительности обычно приходится приобретать дорогие видеокарты, не экономя и прочих системах, так что тут уже можно не слишком экономить на процессоре (тем более, что, как мы уже не раз писали, на данный момент все процессоры потребительского сегмента весьма недороги). Кому же нужны самые дешевые модели? В основном тем, кому приходится экономить каждый доллар (а еще чаще - рубль или гривну), так что покупка приличной дискретной видеокарты даже не рассматривается (или рассматривается, но где-то в будущем). «Неприличную» же ныне, как не раз уже было показано, приобретать вообще смысла нет - выброшенные деньги, которые все равно не позволят получить качественное преимущество над использованием интегрированной графики. Но в этом случае характеристики последней могут начать иметь определяющее значение - просто потому, что в интерактивных приложениях (к коим относятся и игры) количественные характеристики выливаются во вполне качественные различия. Иными словами, нет большой разницы - за сколько минут в конечном итоге получится импортировать в базу или обработать большое количество изображений: конечно, 15 минут лучше 30, однако в конечном итоге работа будет выполнена (пусть и придется выпить лишнюю чашку кофе или поискать себе еще какое-нибудь занятие). В то же время 15 (и даже 20-25) и 30 кадров в секунду в игре - уже качественные отличия: во втором случае в игру можно играть с выбранными настройками, а в первом еще нет. В общем, вопрос принципиальный. Так что ответ на него интересен многим. Вот сегодня мы его и поищем.

Тестирование: цели и задачи, конфигурации, методика

Этот раздел сравнительно большого объема будет общим и одинаковым для всех статей: к сожалению, далеко не всем людям достаточно что-либо объяснить один раз:) Тем более, далеко не все читатели будут внимательно изучать все статьи цикла - вероятность «начать с середины» или просто ограничиться одним-двумя материалами крайне велика, в чем мы отдаем себе полный отчет. Поэтому сразу приносим извинения тем, кто против постоянного повторения одних и тех же истин. Которое, впрочем, как известно мать учения:)

Итак, во-первых и в главных следует учитывать, что в рамках данного тестирования мы не занимаемся исключительно компонентами - мы тестируем системы, из них состоящие. Отдельно процессоры тестируются в рамках статей «основной линейки». Всегда в фиксированной конфигурации - с мощной видеокартой, большим объемом ОЗУ и т. п. Есть у нас на сайте и тестирования непосредственно видеокарт в игровых приложениях, обновляемые ежемесячно . В рамках i3D-Speed все видеокарты (от простенькой бюджетки до multi-GPU) тестируются на мощной конфигурации, выбранной из расчета достаточности для графической составляющей любой мощности. То есть мы считаем, что с точки зрения традиционного «компонентного» тестирования этих двух линеек статей вполне достаточно.

Но вот для практического использования полученных в их рамках результатов нужно определенное связующее звено. Дело в том, что приложений, производительность которых не зависит от центрального процессора, в природе не существует. Бывают, конечно, случаи, когда она ограничивается другими компонентами, но и это очень часто для разных процессоров происходит на разном уровне. Игровые же и подобные приложения существенным образом зависят от производительности GPU, но и нагрузку на CPU дают немалую. Если задача оказывается слишком «легкой» для графики, все начинает определять только процессор. Если «тяжелой», то влияние процессора, наоборот, становится минимальным, и его даже можно иногда не учитывать. В промежутке между этими предельными случаями важны оба компонента, причем степень их важности может меняться местами. Априори неизвестным образом. То есть из того, что один процессор быстрее другого с использованием мощной видеокарты, не следует, что соотношение сохранится, если ее заменить на бюджетную. Точнее, в каких-то режимах сохранится, в каких-то - изменится, в каких-то все просто окажутся одинаковыми. Аналогичная проблема свойственна и видеокартам - уровень «достаточности» CPU меняется в зависимости от GPU и режима его работы.

Казалось бы, достаточно просто тестировать все связки «процессор+видео». Решение очевидное и правильное в теории, но практически неосуществимое на практике, поскольку объем работы растет в геометрической прогрессии. Иными словами, 40 видеокарт на одной системе - 40 тестовых конфигураций. 40 процессоров с одной видеокартой - тоже 40 конфигураций. А если это объединить, получится 1600 тестовых конфигураций. Хотя, конечно, если всю эту работу удастся проделать, будут получены поистине бесценные результаты. Но к моменту их получения они станут уже никому не нужными, поскольку устареют (забегая вперед - даже выбранная нами «упрощенная» методика позволяет за рабочую неделю протестировать не более десятка конфигураций, так что 1600 - задача на три года при использовании одного стенда).

Но можно подойти и с другой стороны: не пытаться найти точные ответы на все вопросы, а ограничиться качественными оценками. Хотя бы для части процессоров можно попробовать «нащупать» нижний уровень производительности. Которым является интегрированная графика, благо в последнее время она превращается в неотъемлемую составляющую большинства современных процессоров. И есть младшие модели дискретных адаптеров, которые как минимум не хуже. Но в разы проще и медленнее, нежели топовые решения - на графическом рынке пока еще разброс характеристик больше, чем на процессорном. При таком выборе оборудования мы можем и существенно сократить список тестовых конфигураций и режимов. Действительно - наиболее актуальными результаты будут для покупателей бюджетных компьютеров, поскольку при цене системного блока долларов так в 1000, можно отдать 10% этой суммы за чуть более мощную видеокарту, нежели нижний уровень, а не связываться с тем же интегрированным видео. Просто - чтобы было. Так что процессоры среднего класса и выше часто тестировать со слабым видео не потребуется. Иногда, конечно, мы этим заниматься тоже будем - для того, чтобы иметь необходимые ориентиры, но лишь иногда. Кроме того, для систем такого класса не требуются тесты в каких-то выдающихся режимах, типа 2560 x 1600 со старшими вариациями на тему полноэкранного сглаживания:) Словом, работу можно существенным образом упростить.

Еще больше объем работы сокращает то, что 90% приложений стандартной процессорной методики от производительности видео вообще не зависит. В предыдущей серии мы использовали все программы, так что четыре ее части являются вполне достаточным доказательством данного факта. Кому все еще недостаточно - тут уж мы ничего поделать не можем:) Как бы то ни было, но GPGPU до сих пор является не более чем любопытным экспериментом, да и все работы в данном направлении показывают, что для систем со слабыми GPU он вообще особой актуальностью не отличается: мощные видеокарты на «хороших» задачах действительно способны что-то ускорить, а вот при попытке выжать что-то путное из дискретки начального уровня очень часто весь пар уходит в свисток - усложнение алгоритмов и лишние пересылки данных «съедают» весь потенциальный прирост. Из чего, впрочем, не следует делать вывод, что мы пройдем мимо какого-либо любопытного и популярного приложения, способного активно использовать ресурсы GPU. Разумеется, не пройдем и в данную экспериментальную же методику его добавим. Только вот пока основная проблема в том, что ничего подобного не попадается. Точнее, «любопытные» программы уже есть, а вот популярными они все никак по тем или иным причинам никак не становятся. То же транскодирование видео, вокруг которого было сломано немало копий, на деле мало кому требуется регулярно, да и качество работы разработанными энтузиастами программ оставляет желать много лучшего (это еще очень мягко говоря). Причем (вот она гримаса судьбы) быстрее всего выполняется при помощи специализированных аппаратных блоков, имеющихся в интегрированных GPU Intel, а вовсе не на конвейерах универсального назначения.

Таким образом, у нас остается не так уж и много программ, которые имеет смысл «гонять» на системах со слабой графикой. Фактически «стандартная» методика упрощается буквально до пяти групп, три из которых в ней являются экспериментальными. Это:Интерактивная работа в трехмерных пакетах Без измененийМатематические и инженерные расчеты Выброшены MAPLE и MATLAB, поскольку ничего на экран не выводят, а вот оставшиеся три приложения читателям интересны, судя по отзывам (понятно, что так уж сильно экономить на рабочем месте вряд ли целесообразно, но вдруг придется поработать за слабым компьютером). Фактически получается так, что по составу эти две группы в результате совпадают, но в предыдущем случае учитывается «графический» балл соответствующего теста, а в этом - «процессорный»: как показала практика тестирования, на деле оба они зависят и от процессора, и от видеокарты, что нам и требуетсяИгры Без измененийИгры с низким разрешением и настройками качества В рамках «основной» методики эта группа практически никак не используется и на общий балл не влияет, но сделана она как раз для систем со слабой графикой. В первую очередь, мобильных, однако не так уж они отличаются от того, что мы тестируем в этой серииПроигрывание видео высокой четкости В особых комментариях не нуждается

Поскольку групп у нас не так и много, причем все они являются достаточно специфическими, общую оценку мы ставить не будем. В первую очередь нас интересуют результаты. Которые, как водится, будут полностью совместимы с полученными на конфигурациях основной линейки тестирования, благо мы уже точно знаем, что видеокарты на прочих приложениях никак не сказываются. Так что при желании можно просто заменить соответствующий кусок в «большой» таблице , благо мы их ни в коей мере не скрываем. Однако стоит учитывать, что баллы этого тестирования с основной линейкой никак не совместимы: здесь за масштабную единицу мы берем систему с Celeron G540 и Radeon HD 6450 512 МБ GDDR3, так что для самостоятельных махинаций следует скачать таблицу в формате Microsoft Excel , в которой все результаты приведены как в преобразованном в баллы, так и в «натуральном» виде.

Конфигурация тестовых стендов

Процессор Pentium G2140 Pentium G3430 Core i3-3245 Core i3-4130 Core i3-3250 Core i3-4330
Название ядра Ivy Bridge DC Haswell DC Ivy Bridge DC Haswell DC Ivy Bridge DC Haswell DC
Кол-во ядер/потоков вычисления 2/2 2/2 2/4 2/4 2/4 2/4
Частота ядра, ГГц 3,3 3,3 3,4 3,4 3,5 3,5
Кэш L3, МиБ 3 3 3 3 3 4
Оперативная память 2×DDR3-1600
Видеоядро HDG HDG HDG 4000 HDG 4400 HDG 2500 HDG 4600
24 40 64 80 24 80
Частота видео (std/max), МГц 650/1050 350/1100 650/1050 350/1150 650/1050 350/1150
TDP, Вт 55 53 55 54 55 54

Десктопные Celeron на микроархитектуре Haswell анонсированы недавно и до наших рук еще добраться не успели, а Bay Trail - вообще отдельная история: только BGA-исполнение и TDP до 10 Вт делают эти модели как максимум конкурентами CULV-процессоров, но никак не «стандартным настольным» платформам. А вот Pentium и Core i3 разных модификаций массово доступны и для LGA1155, и для новой LGA1150. Соответственно, в нашем тестировании примут участие три пары процессоров - два Pentium и четыре Core i3. C Pentium все просто - мы взяли два процессора с равной тактовой частотой вычислительных ядер: старый G2140 и новый G3430. Обратите внимание, что графическое ядро младших моделей по прежнему называется HD Graphics, хотя это уже четвертый GPU с таким названием, причем от предыдущих двух он отличается не только архитектурно, но и число конвееров увеличилось с 6 до 10. То есть разница с Ivy Bridge будет обязательно, ну а с до сих пор встречающимися в продаже Pentium и Celeron на Sandy Bridge и сравнивать нечего - функциональность сильно разная, что мы уже отмечали чуть более года назад.

В семействе Core i3 неразберихи с названиями нет. Более того - порядка вообще стало больше - ранее компания предлагала как процессоры с ядром HDG 2500 (самым массовым в настольных Ivy Bridge), так и несколько модификаций с HDG 4000. При этом обеспечивалось равенство отпускных цен, но частота вычислительных ядер всегда была больше (при этом условии) у моделей с младшим графическим ядром. Новое же поколение разделилось на два семейства. Наследниками старых Core i3 являются модели линейки 41х0, аналогичные им по частотам и емкости кэш-памяти и укомплектованные HDG 4440. Относительно новым же товаром стали более дорогие процессоры линейки 43х0, где на борту не только старший среди «сокетных» процессоров GPU HDG 4600, но и все 4 МиБ кэш-памяти L3 задействованы: как в Core i3 первого поколения или в мобильных двухъядерных Core i7. В общем, позиционирование новых процессоров стало более простым и логичным: больше платим - больше получаем. По всем параметрам. Пересечения же по тактовой частоте с предыдущим поколением тоже есть, что и дало нам две равные по ней пары 3245-4130 и 3250-4330.

Процессор A6-6400K A8-6600K
Название ядра Richland Richland
Кол-во модулей/потоков вычисления 1/2 2/4
Частота ядра (std/max), ГГц 3,9/4,1 3,9/4,2
Кэш L3, МиБ - -
Оперативная память 2×DDR3-1866 2×DDR3-1866
Видеоядро Radeon HD 8470D Radeon HD 8570D
Кол-во графических процессоров 192 256
Частота видео (std/max), МГц 800 844
TDP, Вт 65 100

Четвертая пара участников тестирования - APU AMD. Более дешевые, чем процессоры Intel, но... Как уже было выяснено ранее, по графической производительности Core i7-3225 (с HDG 4000) примерно соответствовал лишь А4 линейки Trinity. Последняя же и в младшем сегменте уже заменена на Richland (вот А8 на Kaveri придется еще подождать) с небольшим увеличением производительности. У Intel прирост более весомый, однако даже топовая настольная модель компании летом не смогла достичь уровня современных А8. С тех пор драйверы обновились, что привело к некоторым любопытным эффектам, но мы все равно априори были уверены, что А8 останется недостижимым для младших процессоров Intel уровнем. Вопрос только - насколько? И как соотносится графическая производительность с более доступными А6. А вот А4 - неинтересен: как уже было сказано выше, такой уровень графической производительности уже и старым Core i3 был доступен. Пусть заметно дороже, но и производительность процессорной составляющей тоже сильно отличается, так что просто нужно выбирать - что важнее. Надеемся, что сегодняшнее тестирование позволит упростить эту задачу.

Еще один гость из другого мира - видеокарта на базе GeForce GT 630. Нечто с таким названием мы уже тестировали год назад, но именно, что с названием: старые продукты основывались на GF108, а новые используют чип GK208. Сама NVIDIA утверждает, что это новая разработка, на деле же GPU очень похож на обрезанный GK107 (ранее использовался в GT 640 и выше). Причем обрезанный программным образом - оба имеют одинаковую площадь и частично совпадающую разводку. Почему частично? Потому, что у GK208 отсутствует один канал памяти, да и шинный интерфейс это лишь PCIe x8, а не х16. Таким образом, очевидно, что при сравнимых частотах GT 630 не конкурент старым GT 640, несмотря на одинаковое количество графических процессоров. А вот сравнительно со старым же GT 630 DDR3 все должно быть не так уж и плохо: «узкая» шина памяти частично компенсируется ее более высокой тактовой частотой (1800 МГц против официальных 1600 МГц, которые в реальных продуктах часто усыхали и до 1400 МГц), а арифметические возможности чипа много выше - на уровне GT 640. Другой вопрос, нужен ли в современном компьютере такой уровень или лучше обойтись интегрированным видео? :) Зато, что немаловажно, карты на GK208 получаются компактными и сплошь снабжены пассивным охлаждением (ибо греется GPU слабо), а по цене они могут поспорить и с GT 610 / 620, отличающимися совсем уж никакой производительностью. В общем, определенная ниша у этих решений есть - хотя бы апгрейд старых компактных систем. Ну а точный уровень производительности мы определим при помощи карты от ASUS с 2 ГБ DDR3 (модификацию с 1 ГБ мы тестировать не стали ибо не за чем - разный объем в видеокартах такого уровня никак не скажется), работающей совместно с Core i3-4330 (чтоб уж точно процессор не мешал).

Интерактивная работа в трехмерных пакетах

Как мы уже писали , в драйвере версии 9.18.10.3257 программисты Intel исправили очередную порцию ошибок, что привело к любопытному эффекту: даже Pentium на Ivy Bridge (прибавив 20% к прошлогодним результатам) уже выходит на уровень любых APU AMD (за исключением, может быть, Kaveri, но эти модели только-только начинают поступать в торговые сети). Более того - это уровень младших игровых дискретных чипов NVIDIA, даже работающих в паре с более быстрым процессором. В общем, больше не стоит бояться интегрированной графики Intel. Особенно после выхода Haswell - это еще более высокий уровень производительности. Причем, как видим, установка младшей игровой дискретки (что было для таких программ практически обязательным во времена Sandy Bridge) производительность заметно снижает, т. е. этого лучше уже не делать.

Математические и инженерные расчеты

Здесь и ранее HD Graphics не слишком мешала, поскольку результаты в основном зависели от однопоточной производительности процессора, что ставило устройства Intel в выигрышное положение, а теперь ситуация только усугубилась. Но, кстати, обратите внимание - дискретная видеокарта позволяет улучшить результаты. Просто потому, что не претендует ни на кэш-память процессора, ни на тепловой пакет. Впрочем, выигрыш крайне невелик, что, в совокупности со снижением «графического» балла не позволяет изменить вывод - если и покупать дискретную видеокарту для программ профессионального назначения, то уж точно не младшую игровую.

Aliens vs. Predator

Как и следовало ожидать, HDG третьего поколения и HDG 2500 идентичны - такое мы не раз еще увидим, так что в будущем не будем подробно останавливаться на этом результате. 4400 лишь немногим быстрее, чем 4000, что простительно - одно из младших решений против некогда старшего. HDG 4600 же почти достигает производительности А6 - заметный шаг вперед ибо, как мы уже говорили, HDG 4000 хватало лишь на борьбу с А4. А разница между двумя HDG еще больше. Хотя на практике в таком режиме все разбивается о то, что даже А8-6600К (более быстрого, чем GT 630 кстати) все равно недостаточно для получения комфортной частоты кадров. Поэтому настройки придется снижать.

На минимуме, естественно, все летает. Кроме младшей графической конфигурации Ivy Bridge - даже в таком режиме ее еле хватало, чтобы перевалить за границу в 30 FPS. Так что радует, что у новой графики таких проблем хотя бы нет. И даже от дискретки уровня GT 630 уже отстает только Pentium и то немного, а устанавливать такие карты в компьютер на базе любого нового Core i3 точно дурная затея. Ну а APU впереди с большим отрывом от прочих. Результат не стал неожиданным, хотя надежды на хотя бы примерный паритет старших Core i3 с хотя бы намного более дешевыми А6. Видали мы некогда более низкие результаты даже у совсем старых А8, конечно, однако инженеры и программисты AMD тоже без дела не сидели последний год:)

Batman: Arkham Asylum GOTY Edition

Качественный (в рамках наших тестирований) режим этой игры «сдался» интегрированной графике от Intel после появления HDG 4000, а более новые GPU компании, естественно, еще быстрее. И даже Pentium не хватило самую малость, чтоб дотянуть до 30 FPS. Достижение, которое, впрочем, меркнет на фоне того, что даже старый А4-5300 или совсем уж древний А6-3500 все равно быстрее - высокую планку задала AMD, ничего не скажешь. Собственно, нет ничего удивительного и в том, что APU этой компании уже и младшую дискретку с рынка вытесняют. А у Intel, несмотря на бурный прогресс, труба пониже и дым пожиже :) Впрочем, тоже уже понятно, что и в системы на ее новых процессорах ставить решения класса GT 630 (тем более ниже) уже не имеет смысла - принципиального прироста производительности не будет.

При низком качестве картинки и старом графическом движке получается уже по большей части сравнение процессоров. С небольшими вариациями: все-таки HDG 2500 (и его родственники бюджетных семейств) слишком слабое решение, а использование дискретки меньше мешает процессорной составляющей работать в полную силу. Но в общем и целом в таком режиме можно было играть даже на Celeron G555 , а прогресс со времен его появления позволяет уже так сильно себя не ограничивать.

Crysis: Warhead x64

Пример обратной ситуации - пока еще с этой игрой при выбранных настройках не может справиться никакое интегрированное графическое решение. Причем, как видим, несмотря на неуклонное увеличение производительности, ближайший год вряд ли что-то сильно изменится. Что не удивительно, поскольку даже дискретного Radeon HD 7750 DDR5 на такое хватает практически без запаса по скорости . Но если оценивать не только сами абсолютные результаты, а динамику их прироста, оценка ситуации несколько меняется. Как видим, современные Pentium уже вышли на уровень, который всего-то год назад был доступен лишь некоторым модификациям Core i3. А старшие представители последних по производительности графического ядра ныне выступают на уровне APU семейства A6 или... Дискретных видеокарт не такого уж и давнего времени, типа Radeon HD 6670 DDR3. Или же вполне современных GeForce GT 630. То есть граница между старшими (и даже уже не самыми старшими) моделями интегрированных GPU и младшими дискретными все более размывается.

Стоит снизить качество картинки до уровня игр десятилетней давности, как сразу оказывается, что хватит чего угодно, что вполне коррелирует с «житейской мудростью». Но и делает такие режимы не слишком показательными, конечно, однако как мы не раз уже говорили, выбраны они в свое время были в попытках заставить обеспечивать приемлемую производительность графику более низких классов - к примеру, интегрированную в низкопотребляющие Celeron трехлетней давности. Впрочем, кое-какую интересную информацию из них «выжать» можно и сейчас. В частности, неплохо виден прогресс драйверов Intel - чуть более года назад Pentium G2120 здесь выдавал менее 50 кадров в секунду, а с новыми драйверами G2140 стал в полтора раза быстрее. Однако и этого недостаточно для того, чтобы угнаться хотя бы за дешевыми AMD A6, а вот новые Pentium в играх с простой графикой (либо изначально простой, либо упрощенной настройками) могут уже «пободаться» и с А8. И, опять же, единственный плюс слабой дискретки - не мешает процессорной части выкладываться на полную. Хотя эффект от этого при использовании недорогих видеокарт, как видим, значительным не назовешь.

F1 2010

Хоть игре скоро будет уже четыре года, однако она по-прежнему является крепким орешком для интегрированной графики. Но немного по-иному, нежели Crysis - если там вся нагрузка ложилась именно на GPU, то тут уже важна и производительность процессора, причем желательна поддержка последним более двух потоков вычисления. В результате большинство младших решений держатся на уровне 12,5 FPS благодаря самому движку - он по-возможности пытается «не падать» ниже дополнительно упрощая картинку. Вот HDG 4000 и выше, равно как и интегрированные Radeon HD работают «честно», но все равно слишком медленно. Да и немудрено - как мы уже знаем с таким режимом справляются более-менее лишь топовые А10. А еще лучше как и ранее использовать дискретку. Желательно хотя бы Radeon HD 7730 DDR5 или выше.

В легком режиме уже даже при слабой графике видны недостатки двухпоточных процессоров. Впрочем, в очередной раз заметнее всего это проявляется при использовании процессоров AMD, а вот у Intel разница между Pentium и Core i3 невелика (причем новый Pentium может и обогнать старый i3). Поэтому минимумом стоит считать что-нибудь класса А8. Либо покупать дискретную видеокарту - специфика движков EGO (используемых во всей серии Formula One) такова, что даже снижение качества графики не делает ее бесполезной.

Far Cry 2

Far Cry 2 еще старше, так что тут уже и в качественном режиме с задачей не справляются только процессоры Intel и AMD A4/A6. В общем-то, качественное отличие Intel HD Graphics от APU или младшей дискретки - как видим, оно сохраняется до сих пор, несмотря на очень заметное увеличение производительности в новом поколении GPU.

Зато для легкого режима не хватало только Sandy Bridge , а в случае более современных устройств получаем почти тестирование производительности самих процессоров. С вполне предсказуемым результатом.

Metro 2033

Фактически еще один стресс-тест для интегрированной графики - получить от нее что-то более-менее приемлемое еще долго не получится. Зато для оценки собственно производительности GPU подходит хорошо. Впрочем, здесь почти ничего нового для нас уже нет за исключением, пожалуй, наиболее заметной разницы между двумя поколениями IGP Intel - Haswell действительно стал большим шагом вперед, позволившим компании почти догнать интегрированные Radeon. Точнее, с А4 мог уже конкурировать и HDG 4000, что, однако, на достижение не тянуло - слишком низкий уровень для относительно дорогих решений. А вот примерный паритет с А8 - уже куда ни шло. В теории, разумеется - на практике, как мы уже знаем даже дискретки за $100 слишком мало.

Собственно, и с режимом низкого качества (в этой игре не такого уж и низкого, надо заметить - минимальное поддерживаемое ей разрешение 1024 х 768 лишь недавно было часто используемым на практике) интегрированная графика справляться «научилась» не так давно. Причем не всякая - первыми границу пробили А6 на базе Llano, а переход на Trinity оказался в этом семействе даже шагом назад (ибо игра умеет полноценно задействовать многоядерные процессоры), но, в общем, их хватает. А более медленных решений - нет. Однако опять наблюдаем, что в рамках новой платформы Intel «хватает» даже Pentium, а вот большинство продуктов для предыдущей не справлялось из-за слабости массового HDG 2500. То есть фактически имеем переход количества в качество - то, что год назад «не могли» многие Core i5, сегодня «может» Pentium. Или любые Core i3, а не отдельные модели данного семейства. Что ж - тоже хорошо.

Сводные результаты

Что имеем в сухом остатке? Если вспомнить, что 100 баллов - это Radeon HD 6450 в паре с Celeron, то немало. Действительно - массовая графика для LGA1155 (а это HDG 2500 и его аналог в Celeron/Pentium или вообще слабенькие даже функционально IGP Sandy Bridge) не сумела добраться даже до данного уровня. Новые же Pentium его превосходят, т. е. встроенный в них GPU с легкостью обгоняет такие дискретные продукты, как упомянутый Radeon HD 6450 или GeForce GT 610/620. Понятно, что все они игровыми решениями могут называться только из вежливости, однако существуют и до сих пор продаются (не говоря уже о более старых видеокартах сравнимого уровня, продолжающих использоваться многими экономными пользователями компьютеров). Кроме того, позади остались и А4 для платформы FM1 - тоже базовый уровень, конечно, да еще и для устаревшей платформы двухлетней давности, однако пару лет назад мало кто верил, что Intel вообще удастся догнать AMD в обозримой перспективе: графика Sandy Bridge в любом варианте не шла ни в какое сравнение с настольными APU всех модификаций.

Core i3 на первый взгляд «подросли» слабее - HDG 4400 быстрее, чем HDG 4000 лишь на 20%, а не в полтора раза. Что легко объяснимо - если в бюджетном сегменте количество конвееров увеличилось с 6 до 10, то «этажом выше» только с 16 до 20. Однако не стоит забывать, что 4000 в предыдущем поколении являлось топовым GPU, причем применяющимся лишь в небольшой части настольных процессоров, а 4400 - нижний уровень новых настольных Core: в большинстве уже используется HDG 4600, имеющий чуть более высокую производительность. Фактически даже можно говорить о переходе количества в качество - всего-то год назад только HDG 4000 (тот самый - редкий вариант) мог обеспечить в играх частоту кадров на уровне APU AMD линейки A4, а вот сейчас уже образовался паритет и с более быстрыми А6. Естественно, на победу это никак не похоже - все-таки по цене даже А8 держатся на уровне Pentium, а Core i3 - более быстрые, но и заметно более дорогие процессоры, однако факт постепенно выравнивания позиций имеет место быть. Впрочем, выход APU на базе Kaveri вполне возможно сумеет восстановить статус-кво, однако массового распространения этих устройств (и их продвижения в нижние сегменты ассортимента AMD) придется еще подождать. А замена Trinity на Richland, как мы уже писали, являлась лишь косметическим обновлением. Совсем не похожим на переход с Ivy Bridge на Haswell.

Разумеется, «наращивание интегрированных мускулов» в продукции обоих вендоров все более и более сужает потенциальные сферы применения младших дискретных решений. Новый GT 630 оказался лишь немногим быстрее старого (узким местом является система памяти) и по-прежнему отстает от А8/А10. Да и отрыв от младших решений AMD и Intel сократился уже настолько, что приобретение дискретного видеоадаптера такого уровня вообще перестало быть оправданным мероприятием - прирост производительности не компенсирует лишних расходов и прочих недостатков подхода. В общем, единственное, на что могут претендовать видеокарты этого сегмента - модернизация старых компьютеров. Да и тут более привлекательным решением в большинстве случаев будет либо покупка более быстрой дискретки, либо просто замена платформы.

Ну а на режимы минимальных настроек можно уже постепенно переставать прекращать обращать внимание - с ними справляются уже все современные решения. Во всяком случае, настольные - суррогатным системам комфортными результатами все еще не могут похвастаться даже при упрощении графики до уровня десятилетней давности.

OpenCL

Несмотря на активные разговоры о гетерогенных вычислениях, пока сфера их применения остается очень ограниченной. Особенно если говорить о тех областях, которые применимы к интегрированной графике - использование дискретных GPU для некоторых «тяжелых» расчетов в сфере HPC началось уже несколько лет назад, однако это имеет слабое отношение к массовому рынку. А основной проблемой для последнего стало, как нам кажется, то, что OpenCL вовсе не такой уж «оупен», как декларировалось. Фактически программисты вынуждены учитывать особенности реализации спецификаций всеми тремя вендорами, т. е. работать на слишком уж низком уровне. Характерным примером незрелости технологии оказался в свое время WinZip - за победными реляциями о выходе в свет приложения хоть сколь-нибудь широкого назначения с поддержкой OpenCL, не все заметили, что речь идет о поддержке только реализации AMD, но не Intel и NVIDIA.

Что любопытно, эти особенности вылазят до сих пор даже в синтетических бенчмарках, многие из которых просто исполняют разные ветки кода на разных решениях. В частности таков и Basemark CL, который мы некоторое время назад начали использовать в рамках тестов этой линейки. К чему это приводит на практике - хорошо видно на примере нашего исследования самих программ: эта утилита явно неравнодушна к GPU от AMD. А если еще и вспомнить, что не так уж и давно процессоры Intel выполняли OCL-код только на основных ядрах, но не задействуя GPU, становится понятно, почему именно эта программа стала любимым бенчмарком AMD, использование которого рекомендовалось всем тестерам. С недавних пор, впрочем, перестали рекомендовать. Попробуем понять почему, учитывая, естественно, что Basemark CL для межплатформенного сравнения нужно использовать очень аккуратно.

На диаграмме мы собрали результаты всех протестированных в данной программе процессоров, что нарисовало крайне любопытную картину. Во-первых, как видим, HDG 2500 или «безномерной» родственник данного GPU обеспечивают производительность лишь на уровне младших мобильных решений. Понятно почему - код хорошо параллелится, так что шесть конвееров это шесть конвееров, хоть в CULV Celeron, хоть в настольном Core i3. А вот Pentium на Haswell уже намного быстрее. Впрочем, рассматривать его как серьезный OpenCL-ускоритель все равно не получается: на до A6, ни до процессоров с HDG 4000 (опять же - неважно: мобильных или настольных) он все равно никак не дотягивается. Но определенные преференции при использовании OpenCL можно получить и с его помощью - хотя бы большие, чем получит покупатель любых процессоров на ядре AMD Kabini. А вот HDG 4400 - куда более привлекательный вариант: как видим, всего лишь Core i3 нового поколения оказался равен топовому Core i7 предыдущего! Да и сравнительно с конкурирующими продуктами это не так и плохо - уровень некоторых А8. Понятно, что они дешевле, но разница в цене с младшими Core i3 все ж таки много меньше, нежели со старшими Core i7:) А HDG 4600 это уже уровень А10. Причем несложно заметить, что большие бенефиции от внедрения OpenCL могут получить все экономные покупатели, а не только те, кто выбирает продукцию AMD: разница между i3 и i7 менее 10%. В общем, победные реляции портят только результаты Kaveri - AMD удалось в очередной раз прыгнуть выше головы. Но мало этих APU пока, в отличие от лежащих на каждом углу Core i3. К тому же, более дешевых и более производительных на классическом х86-коде, что при текущем положении дел с внедрением OpenCL крайне важно (процессор, который в большем количестве программ быстрее, а в небольшом - медленнее, выглядит привлекательнее того, который побеждает лишь в экзотическом специально подобранном окружении).

Результаты GT 630 можно особо не комментировать - как уже не раз было отмечено, не любит этот бенчмарк решения NVIDIA (причем и используется в данном случае код OpenCL 1.1, а не 1.2). С другой стороны, от повторения такой ситуации в реальных программах никто не застрахован. Ну а в данном случае, как видим, младшая дискретка легко может отстать даже от недорогой интегрированной графики. Что является дополнительным гвоздем в ее гроб:)

Итого

Если при выборе процессора высокого уровня (да еще и в предположении об использовании дискретной видеокарты) особых преимуществ Haswell над Ivy Bridge найти никому не удалось, то в бюджетном сегменте и при использовании интегрированной графики положение дел обратное: «старые» процессоры покупать нет никакого смысла. Разве что для модернизации системы на Sandy Bridge с сохранением системной платы, но тут уж лучше просто прикупить видеокарту- дешевле и эффективнее. А новая система - исключительно на LGA1150. В том, конечно, случае, если выбирать из решений Intel - как видим, отставание от APU AMD сильно сократилось, но не исчезло полностью. Таким образом, при желании сэкономить и ориентируясь в первую очередь на производительность графического ядра, хорошим выбором по-прежнему остается платформа FM2/FM2+: тот же A8-6600K стоит дешевле любого Core i3, а A8-5600K может посостязаться по цене и с Pentium. Естественно, не стоит в данном случае забывать и о том, что эта экономия вовсе не бесплатна - процессорная часть сильно разная, что зачастую весьма актуально (во всяком случае, в данном сегменте), а в случае последующей покупки дискретной видеокарты доплата за «хороший» интегрированный GPU пропадет целиком и полностью. Кроме того, и «аппетиты» у APU AMD несколько выше, чем свойственно двухъядерным процессорам Intel. В общем, прямыми конкурентами они не являются, но, повторимся, если на первом месте производительность встроенной графики, то лучше по-прежнему обращать внимание именно на разработки AMD - новое поколение устройств от Intel отставание в этом вопросе сократило, однако далеко не до нуля, даже если отвлечься от разницы в цене.

Ну а в глобальном смысле прогресс нас, безусловно, радует. Особенно если говорить о базовом уровне производительности. Можно, конечно, в очередной раз пожурить Intel за некоторую неразбериху - ведь это уже четвертое графическое ядро с безликим названием «HD Graphics», но важнее то, что его производительность увеличилась в традиционные полтора раза. Это не делает HDG игровым решением, однако сам факт «подъема планки» уже хороший сигнал программистам. Да и выше порядка прибавилось - все-таки вплоть до Ivy Bridge включительно «основной» уровень графики Intel в настольном сегменте совпадал с «базовым»: самым массовым GPU был HDG 2500. Теперь же Core i3 отличает от Pentium не только поддержка Hyper-Threading, но и более мощная графика: как минимум HDG 4400, а уже это видеоядро лучше любого GPU Ivy Bridge. Пусть и не в полтора уже раза, но этот (и более высокий) уровень графических возможностей теперь получает каждый покупатель - за специальными моделями процессоров гоняться уже не нужно. Что, опять же, позволяет рассчитывать на более полную его утилизацию со стороны программистов.

И, разумеется, такое усиление графических возможностей младших процессоров - очередной гвоздь в гроб бюджетных дискретных видеокарт. Несмотря на то, что преимущество в производительности все еще сохраняется даже в «60-долларовом» сегменте, оно уже слишком невелико для того, чтобы покупать отдельное устройство, а не пользоваться «бесплатным» IGP. То есть практический смысл остается лишь у видеокарт ценой 100 и более долларов. Причем уже только для игрового применения - во всех остальных сферах интегрированная графика не хуже, и, главное, не хуже любая интегрированная графика, а не только считанные модели, как было два-три года назад.

В процессорах Intel также, как и у конкурентов, есть интегрированная (встроенная) графика. Она позволяет отказаться от покупки дорогой видеокарты, если в ней нет никакой нужды. Также встроенная в процессор графика полезна в ноутбуках, так как позволяет экономить заряд батареи за счет использования этой графики только в мощных приложениях. Все остальное время отдувается графическое ядро процессора.

Введение

Выбору встроенной графики уделяется особое внимание в 2 случаях:

  • вы не собираетесь покупать отдельный адаптер, так как вам не нужна высокая производительность для вашего стационарного ПК

В основном именно эти две ситуации заставляют людей обратить особое внимание на интегрированную графику.

Здесь, как и в остальных наших статьях не будут рассмотрены чипы до 2010 года выпуска. А значит коснемся лишь Intel HD Graphics, Iris Graphics и Iris Pro Graphics

Непонятным остается вопрос установки встроенной графики в мощные игровые процессоры, ведь их используют лишь в паре с мощной видеокартой, которой и в подметки не годится даже самая мощная встроенная графика. Скорее всего это происходит из-за дороговизны перестройки линии сборки процессоров, ведь ядра у многих чипов идентичны и собраны они почти одинаково, а менять сборку ради пары моделей никто не собирается. Но в таком случае мы бы получили большую производительность в связи с тем, что большее число транзисторов будут работать на процессор, но и цена в таком случае поднимется.

Все знают, что встроенная графика от AMD мощнее, чем у Intel. Скорее всего это связано с тем, что они раньше задумались над созданием гибридных «камней» (с видеоядром). Если хотите узнать про про маркировку и линейки всей графики AMD (в том числе и встроенной), то вам , а подобная статья про , также доступна по ссылке.

Интересный факт: в PS4 стоит интегрированная в процессор графика, а не отдельный графический чип.

Классификация

Ошибка, которую допускают множество людей заключается в том, что интегрированная графика – это не обязательно встроенное в процессор графическое ядро. Интегрированная графика – это графика, которая встроена в материнскую плату или в процессор.

Таким образом встроенную графику разделяют на:

  • Графика с разделяемой памятью – эта графика встроена в процессор и использует оперативную память вместо отдельной видеопамяти. Эти чипы отличает низкое энергопотребление, тепловыделение и стоимость, но производительность в 3D не сравнится в другими решениями.
  • Дискретная графика – аппаратная часть представляет собой отдельный чип на материнской плате. Имеет отдельную память и, как правило, быстрее, чем предыдущий тип.
  • Гибридная графика – это комбинация двух предыдущих типов.

Теперь понятно, что в чипах от Intel применяется графика с разделяемой памятью.

Поколения

Впервые Intel HD Graphics появилось в процессорах Westmere (но и до этого была встроенная графика).

Для определения производительности видеопроцессора надо рассматривать каждое поколение в отдельности. Лучшим способом определения производительности будет просмотр количества исполнительных блоков и их частоты.

Вот так обстоят дела с поколениями графики:

Поколения встроенной графики по номерам
Микроархитектуры Обычные модели Мощные модели
5 Westmere HD*
6 Sandy Bridge HD* /2000/3000
7 Ivy Bridge HD*/ 2500/4000
7 Haswell/Bay Trail HD* /4200-5000 Iris* 5100/Iris Pro* 5200
8 Broadwell/Braswell/Cherry Trail HD* /5300-6000 Iris* 6100/Iris Pro* 6200
9 Skylake/Braswell/Cherry Trail HD* 510-530/40x Iris* 540/50/Iris Pro* 580

Где Graphics заменено на *.

Если стало интересно узнать про сами микроархитектуры, то вам можете глянуть эту .

Буквенный индекс P означает, что речь идет о процессоре Xeon (серверные чипы).

В каждом поколении до Skylake есть модель HD Graphics, но эти модели отличаются друг от друга. После Westmere просто HD Graphics ставится лишь в Pentium и Celeron. И стоит отличать отдельно HD Graphics в мобильных процессорах Atom, Celeron, Pentium, которые построены на мобильной микроархитектуре.

В мобильных архитектурах до недавнего времени примялись только одинаковые модели HD Graphics, соответствующим разным микроархитектурам. Графика разных поколений отличается по производительности, и в скобках обычно указывается это самое поколение, например Intel HD Graphics (Bay Trail). Теперь же при выходе нового 8 поколения втроенной графики они также будут различаться. Так по производительности отличаются HD Graphics 400 и 405.

Внутри одного поколения производительность возрастает с увеличение цифры, что логично.

С поколения Haswell начала действовать немного другая маркировка чипов.

Новая маркировка c Haswell

Первая цифра:

  • 4 – Haswell
  • 5 – Broadwell

Но у этого правила есть исключения, и в нескольких строках ниже мы все объясним.

Остальные цифры имеют следующее значение:

*- означает, что разряд тысяч увеличивается на единицу

GT3e отличает дополнительный кэш eDRAM, который увеличивает скорость памяти.

Но с поколения Skylake классификация вновь изменилась. Распределение моделей по производительности можно увидеть в одной из предыдущих таблиц.

Связь маркировки процессора и встроенной в него графики

Вот такими буквами маркируются процессоры с особенностями встроенной графики:

  • P – означает отключенное видеоядро
  • C – усиленная интегрированная графика для LGA
  • R – усиленная интегрированная графика для BGA (неттопы)
  • H – усиленная интегрированная графика в мобильных процессорах (Iris Pro)

Как сравнивать видеочипы

Их сравнение на глаз довольно затруднительно, поэтому рекомендуем вам заглянуть на эту , где можно увидеть информацию обо всех интгегрированных решениях Intel, и , где можно посмотреть рейтинг производительности видеоадаптеров и их результаты в бенчмарках. Чтобы узнать о том, какая графика стоит нужном вам процессоре, зайдите на сайт Intel, ищите ваш процессор по фильтрам, а затем загляните в графу «Встроенная в процессор графика».

Заключение

Надеемся, что данный материал помог вам разобраться в интегрированной графике, в особенности от Intel, а также поможет вам в выборе процессора для компьютера. Если возникли вопросы, то сначала посмотрите указания в разделе «Введение», а если вопросы остались, то милости просим в комментарии!



Понравилась статья? Поделиться с друзьями: