Скорость соединения при использовании технологии ADSL. Скорость Wi-Fi. Основы

- Зачем вам в Решётах нубук?
- Чтоб безразмерно использовать возможности блюпупа, и коммутироваться с другими абонентами по всему региону Россия с помощью Ви-Фи!
(С) Уральские Пельмени

Впервые рабочая группа IEEE 802.11 была анонсирована в 1990 году и вот уже 25 лет идёт непрекращающаяся работа над беспроводными стандартами. Основным трендом является постоянное увеличение скоростей передачи данных. В данной статье я попробую проследить путь развития технологии и показать, за счёт чего обеспечивалось увеличение производительности и чего стоит ждать в ближайшем будущем. Предполагается, что читатель знаком с основными принципами беспроводной связи: видами модуляции, глубиной модуляции, шириной спектра и т.д. и знает основные принципы работы Wi-Fi сетей. На самом деле существует не так много способов увеличения пропускной системы связи и большинство из них было реализовано на разных этапах совершенствования стандартов группы 802.11.

Рассмотрению будут подвергнуты стандарты, определяющие физический уровень, из взаимно совместимой линейки a/b/g/n/aс. Стандарты 802.11af (Wi-Fi на частотах эфирного телевиденья), 802.11ah (Wi-Fi в диапазоне 0.9 МГц, предназначенный для реализации концепции IoT) и 802.11ad (Wi-Fi для скоростной связи периферийных устройств наподобие мониторов и внешних дисков) несовместимы друг с другом, имеют различные сферы применения и не подходят для анализа эволюции технологий передачи данных на большом интервале времени. Кроме того, вне рассмотрения останутся стандарты, определяющие стандарты безопасности (802.11i), QoS (802.11e), роуминга (802.11r) и т.д., так как они только косвенно влияют на скорость передачи данных. Здесь и далее речь идёт о канальной, так называемой брутто-скорости, которая является заведомо большей, чем фактическая скорость передачи данных из-за большого количества служебных пакетов в радиообмене.

Первым стандартом беспроводной связи был 802.11 (без буквы). Он предусматривал два типа среды передачи: радиочастота 2.4 ГГц и инфракрасный диапазон 850-950 нм. ИК-устройства не были широко распространены и в будущем развития не получили. В диапазоне 2.4 ГГц было предусмотрено два способа расширения спектра (расширение спектра является неотъемлемой процедурой в современных системах связи): расширение спектра методом скачкообразного изменения частоты (FHSS) и методом прямой последовательности (DSSS). В первом случае все сети используют одну и ту же полосу частот, но с различными алгоритмами перестроения. Во втором случае уже появляются частотные каналы от 2412 МГц до 2472 МГц с шагом 5 МГц, сохранившиеся по сей день. В качестве расширяющей последовательности используется последовательность Баркера длиной 11 чипов. При этом максимальная скорость передачи данных составляла от 1 до 2 Мбит/с. В то время даже с учётом того, что в самых идеальных условиях полезная скорость передачи данных по Wi-Fi не превышает 50% канальной, такие скорости выглядели весьма привлекательно в сравнении со скоростями модемного доступа к сети Интернет.

Для передачи сигнала в 802.11 использовалась 2-х и 4-х позиционная манипуляция, что обеспечивало работу системы даже в неблагоприятных условиях сигнал/шум и не требовало сложных приёмо-передающих модулей.
Например, для реализации информационной скорости 2 Мбит/с каждый передаваемый символ заменяется на последовательность из 11 символов.

Таким образом чиповая скорость составляет 22 Мбит/с. За один такт передачи передаются 2 бита (4 уровня сигнала). Таким образом скорость манипуляции составляет 11 бод и основной лепесток спектра при этом занимает 22 МГц, величину, которую применительно к 802.11, часто называют шириной канала (на самом деле спектр сигнала является бесконечным).


При этом согласно критерию Найквиста (число независимых импульсов в единицу времени ограничено удвоенной максимальной частотой пропускания канала) для передачи такого сигнала достаточно полосы 5.5 МГц. Теоретически устройства формата 802.11 должны удовлетворительно работать и на каналах, отстоящих друг от друга на 10 МГц (в отличии от более поздних реализаций стандарта, требующих вещания на частотах, отстоящих друг от друга не менее, чем на 20 МГц).

Очень быстро скоростей 1-2 Мбит/с стало не хватать и на смену 802.11 пришёл стандарт 802.11b, в котором скорость передачи данных была увеличена до 5.5, 11 и 22 (опционально) Мбит/с. Увеличение скорости было достигнуто путём уменьшения избыточности помехоустойчивого кодирования с 1/11 до ½ и даже 2/3 за счёт внедрения блочных (CCK) и сверхточных (PBCC) кодов. Кроме того, максимальное число ступеней модуляции было увеличено до 8-и на один передаваемый символ (3 бита на 1 бод). Ширина канала и используемые частоты не изменились. Но при уменьшении избыточности и увеличении глубины модуляции неизбежно выросли требования к соотношению сигнал/шум. Так как увеличение мощности устройств невозможно (ввиду экономии энергии мобильных устройств и законодательных ограничений), то это ограничение проявилось в небольшом сокращении зоны обслуживания на новых скоростях. Площадь обслуживания на унаследованных скоростях 1-2 Мбит/с не изменилась. От способа расширения спектра методом скачкообразной перестройки частоты было решено полностью отказаться. Больше в семействе Wi-Fi он не использовался.

Следующий шаг увеличения скорости до 54 Мбит/с был реализован в стандарте 802.11a (данный стандарт начал разрабатываться раньше, чем стандарт 802.11b, но финальная версия была выпущена позже). Увеличение скорости в основном было достигнуто за счёт увеличения глубины модуляции до 64 уровней на один символ (6 бит на 1 бод). Кроме того, была радикально пересмотрена радиочастотная часть: расширение спектра методом прямой последовательности было заменено на расширение спектра методом разделения последовательного сигнала на параллельные ортогональные поденсущие (OFDM). Использование параллельной передачи на 48 подканалах позволило снизить межсимвольную интерференцию за счёт увеличения длительности отдельных символов. Передача данных осуществлялась в диапазоне 5 ГГц. При этом ширина одного канала составляет 20 МГц.


В отличие от стандартов 802.11 и 802.11b, даже частичное перекрытие этой полосы может привести к ошибкам передачи. К счастью в диапазоне 5 ГГц расстояние между канали составляет эти самые 20 МГц.

Стандарт 802.11g не стал прорывом в плане скорости передачи данных. Фактически этот стандарт стал компиляцией 802.11a и 802.11b в диапазоне 2,4 ГГц: в нём поддерживались скорости обоих стандартов.

Однако данная технология требует высокого качества изготовления радио части устройств. Кроме того, данные скорости принципиально не реализуемы на мобильных терминалах (основной целевой группе стандарта Wi-Fi): наличие 4-х антенн на достаточном разнесении не может быть реализовано в малогабаритных устройствах как по соображениям отсутствия места, так и из-за отсутствия достаточного на 4 приёмопередатчика энергии.

В большинстве случаев скорость 600 Мбит/с является не более, чем маркетинговой уловкой и нереализуема на практике, так как фактически её можно добиться только между стационарными точками доступа, установленными в пределах одной комнаты при хорошем соотношении сигнал/шум.

Следующий шаг в скорости передачи был выполнен стандартом 802.11ac: максимальная скорость, предусмотренная стандартом, составляет до 6,93 Гбит/с, однако фактически такая скорость ещё не достигнута ни на одном оборудовании, представленном на рынке. Увеличение скорости достигнуто за счёт увеличения полосы пропускания до 80 и даже до 160 МГц. Такая полоса не может быть предоставлена в диапазоне 2,4 ГГц, поэтому стандарт 802.11ac функционирует только в диапазоне 5 ГГц. Ещё один фактор увеличения скорости – увеличение глубины модуляции до 256 уровней на один символ (8 бит на 1 бод) К сожалению, такая глубина модуляции может быть получена только вблизи точки из-за повышенных требований к соотношению сигнал/шум. Указанные улучшения позволили добиться увеличения скорости до 867 Мбит/с. Остальное увеличение получено за счёт ранее упомянутых потоков MIMO 8x8:8. 867х8=6,93 Гбит/с. Технология MIMO была усовершенствована: впервые в стандарте Wi-Fi информация в одной сети может передаваться двум абонентам одновременно с использованием различных пространственных потоков.

В более наглядном виде результаты в таблице:


В таблице перечислены основные способы увеличения пропускной способности: «-» - метод не применим, «+» - скорость была увеличена за счёт данного фактора, «=» - данный фактор остался без изменений.

Ресурсы уменьшения избыточности уже исчерпаны: максимальная скорость помехоустойчивого кода 5/6 была достигнута в стандарте 802.11a и с тех пор не увеличивалась. Увеличение глубины модуляции теоретически возможно, но следующей ступенью является 1024QAM, которая является очень требовательной к соотношению сигнал/шум, что предельно снизит радиус действия точки доступа на высоких скоростях. При этом возрастут требования к исполнению аппаратной части приёмопередатчиков. Уменьшение межсимвольного защитного интервала также вряд ли будет направлением совершенствования скорости – его уменьшение грозит увеличением ошибок, вызванных межсимвольной интерференцией. Увеличение полосы канала сверх 160 МГц так же вряд ли возможно, так как возможности по организации непересекающихся сот будут сильно ограничены. Ещё менее реальным выглядит увеличение количества MIMO-каналов: даже 2 канала являются проблемой для мобильных устройств (из-за энергопотребления и габаритов).

Из перечисленных методов увеличения скорости передачи большая часть в качестве расплаты за своё применение забирает полезную площадь покрытия: снижается пропускная способность волн (переход от 2,4 к 5 ГГц) и повышаются требования к соотношению сигнал шум (увеличение глубины модуляции, повышение скорости кода). Поэтому в своём развитии сети Wi-Fi постоянно стремятся к уменьшению площади, обслуживаемой одной точкой в пользу скорости передачи данных.

В качестве доступных направлений совершенствования могут использоваться: динамическое распределение OFDM поднесущих между абонентами в широких каналах, совершенствование алгоритма доступа к среде, направленное на уменьшение служебного траффика и использование техник компенсации помех.

Подводя итог вышесказанному попробую спрогнозировать тенденции развития сетей Wi-Fi: вряд ли в следующих стандартах удастся серьёзно увеличить скорость передачи данных (не думаю, что больше, чем в 2-3 раза), если не произойдёт качественного скачка в беспроводных технологиях: почти все возможности количественного роста исчерпаны. Обеспечить растущие потребности пользователей в передаче данных можно будет только за счёт увеличения плотности покрытия (снижения радиуса действия точек за счёт управления мощностью) и за счёт более рационального распределения существующей полосы между абонентами.

Вообще тенденция уменьшения зон обслуживания, похоже, является основным трендом в современных беспроводных коммуникациях. Некоторые специалисты считают, что стандарт LTE достиг пика своей пропускной способности и не сможет далее развиваться по фундаментальным причинам, связанным с ограниченностью частотного ресурса. Поэтому в западных мобильных сетях развиваются технологии оффлоада: при любом удобном случае телефон подключается к Wi-Fi от того же оператора. Это называют одним из основных способов спасения мобильного Интернета. Соответственно роль Wi-Fi сетей с развитием сетей 4G не только не падает, а возрастает. Что ставит перед технологией всё новые и новые скоростные вызовы.

110    Глава 2. Физический уровень

помех на линии. Другими словами, ограничение полосы пропускания частот канала ограничивает его пропускную способность для передачи двоичных данных даже для идеальных каналов. Однако схемы, использующие несколько уровней напряжений, существуют и позволяют достичь более высоких скоростей передачи данных. Мы обсудим это ниже в этой главе.

Таблица 2.1. Соотношение между скоростью передачи данных и числом гармоник для нашего примера

1-я гармоника, Гц

Количество пропускаемых гармоник

С термином «полоса пропускания» связано множество недоразумений, так как для инженеров-электриков и компьютерных специалистов он означает разные вещи. Для инженера-электрика (аналоговая) полоса пропускания, как уже говорилось выше, это значение в герцах, указывающее ширину диапазона частот. Для компьютерного специалиста (цифровая) полоса пропускания - это максимальная скорость данных в канале, то есть значение, измеряемое в битах в секунду. Фактически скорость данных определяется аналоговой полосой пропускания физического канала, применяемого для передачи цифровой информации, и эти два показателя связаны, как мы увидим далее. В этой книге будет понятно из контекста, какой термин имеется в виду в каждом конкретном случае - аналоговая (Гц) или цифровая (бит/с) полоса пропускания.

2.1.3. Максимальная скорость передачи данных через канал

В 1924 году американский ученый Х. Найквист (H. Nyquist) из компании AT&T пришел к выводу, что существует некая предельная скорость передачи даже для идеальных каналов. Он вывел уравнение, позволяющее найти максимальную скорость передачи данных в бесшумном канале с ограниченной полосой пропускания частот. В 1948 году Клод Шеннон (Claude Shannon) продолжил работу Найквиста и расширил ее для случая канала со случайным (то есть термодинамическим) шумом. Это важнейшая работа во всей теории передачи информации. Мы кратко рассмотрим результаты работы Найквиста и Шеннона, ставшие сегодня классическими.

Найквист доказал, что если произвольный сигнал прошел через низкочастотный фильтр с полосой пропускания B , то такой отфильтрованный сигнал может быть полностью восстановлен по дискретным значениям этого сигнала, измеренным с частотой

2.1. Теоретические основы передачи данных    111

2B в секунду. Производить измерения сигнала чаще, чем 2B в секунду, нет смысла, так как более высокочастотные компоненты сигнала были отфильтрованы. Если сигнал состоит изV дискретных уровней, то уравнение Найквиста будет выглядеть так:

максимальная скорость передачи данных = 2B log2 V , бит/с.

Так, например, бесшумный канал с частотой пропускания в 3 кГц не может передавать двоичные (то есть двухуровневые) сигналы на скорости, превосходящей 6000 бит/с.

Итак, мы рассмотрели случай бесшумных каналов. При наличии в канале случайного шума ситуация резко ухудшается. Уровень термодинамического шума в канале измеряется отношением мощности сигнала к мощности шума и называется отношением сигнал/шум . Если обозначить мощность сигналаS , а мощность шума -N , то отношение сигнал/шум будет равноS/N . Обычно величина отношения выражается через ее десятичный логарифм, умноженный на 10: 10 lgS/N , так как ее значение может меняться в очень большом диапазоне. Единица такой логарифмической шкалы называетсядецибелом (decibel, dB, дБ); здесь приставка «деци» означает «десять», а «бел» - это единица измерения, названная в честь изобретателя телефона Александра Грэма Белла. Таким образом, отношение сигнал/шум, равное 10, соответствует 10 дБ, отношение, равное 100, равно 20 дБ, отношение, равное 1000, равно 30 дБ и т. д. Производители стереоусилителей часто указывают полосу частот (частотный диапазон), в которой их аппаратура имеет линейную амплитудно-частотную характеристику в пределах 3 дБ. Отклонение в 3 дБ соответствует ослаблению сигнала примерно в два раза (потому что 10 log10 0,5≈ –3).

Главным результатом, который получил Шеннон, было утверждение о том, что максимальная скорость передачи данных или емкость канала с полосой частот B Гц и отношением сигнал/шум, равнымS/N , вычисляется по формуле:

максимальная скорость передачи данных = B log2 (1 +S/N ), бит/с.

Это наилучшее значение емкости, которое можно наблюдать для реального канала. Например, полоса пропускания канала ADSL (Asymmetric Digital Subscriber Line, ассиметричная цифровая абонентская линия), по которому осуществляется доступ в Интернет через телефонные сети, равна приблизительно 1 МГц. Отношение сигнал/ шум в значительной степени зависит от расстояния между компьютером пользователя и телефонной станцией. Для коротких линий длиной от 1 до 2 км очень хорошим считается значение около 40 дБ. С такими характеристиками канал никогда не сможет передавать более 13 Мбит/с, независимо от способа модуляции сигнала, то есть количества используемых уровней сигнала, частоты дискретизации и т. д. Поставщики услуг заявляют скорость передачи данных до 12 Мбит/с, однако пользователям редко удается наблюдать такое качество передачи данных. Тем не менее это великолепный результат для шестидесяти лет развития технологий передачи информации, в течение которых произошел огромный скачок от емкости каналов, характерной для времен Шеннона, и до существующей в современных реальных сетях.

Результат, полученный Шенноном и подкрепленный постулатами теории информации, применим к любому каналу с Гауссовским (термальным) шумом. Попытки доказать обратное заранее обречены на провал. Для того чтобы добиться в канале ADSL скорости, превышающей 13 Мбит/с, необходимо либо улучшить отношение

Интернет легко и прочно вошел в жизнь современного человека и стал ее неотъемлемой частью. Сеть - это общение, работа, увлечения. Многое ныне связано с ней. Поэтому развиваются и способы соединения с Интернетом, среди которых можно упомянуть оптоволоконные, коаксильные кабели, Wi-Fi и 3G. При этом скорость зависит от провайдера и выбранного тарифа. Важен и способ подключения к Сети. Рассмотрим некоторые из них подробнее.

Прежде чем поговорить о скорости, с которой могут передаваться данные в сети Интернет, нужно определиться с тем, как эти данные измеряются. Среди профессионалов, занимающихся компьютерными технологиями, и любителей-пользователей ПК принят в качестве единицы передачи данных байт, бит. Международный стандарт установил, что данные единицы следует использовать с приставкой СИ. Как у любой единицы измерения, есть точные характеристики у бита и байта. Так, мегабит равняется ста двадцати пяти тысячам 8-ми битовых байт, а сто двадцать пять килобайт равны примерно ста двадцати двум кибибайтам. В телекоммуникационных или компьютерных сетях используют обозначение «мегабит», которое характеризует скорость, с которой передаются данные в сети.

А теперь от теории перейдем к рассмотрению существующих линий связи, которые различаются способами Выделяют проводные линии, кабельные и беспроводные. Первые применяются для передачи компьютерных данных и телефонных сигналов. По ним организовываются для передачи сведений каналы как аналоговые, так и цифровые. К кабельным линиям связи, которые применимы в компьютерных сетях, относят три типа кабеля: (скорость передачи данных по нему составляет от 10 до 100 мегабит в секунду), коаксиальный (применяется в сетях Ethernet) и Последний способен передавать сигнал только в одном направлении. Но при этом он наиболее защищен от помех и способен на большой скорости передавать информацию - до трех гигабит в секунду.

К беспроводным линиям относят сотовую и спутниковую связь. Причем специалисты признают, что будущее именно за такими средствами связи, для которых не нужны провода.

Сети 3G получили распространение в России благодаря ведущим сотовым операторам: Билайну, МТС и Мегафону. Чтобы воспользоваться доступом в сеть, достаточно иметь сотовый телефон или USB-модем, который поддерживает сети 3-го поколения. Телефон автоматически начинает работать в сети 3G, если ему не мешает сигнал GSM. При этом не требуются дополнительные настройки. Чтобы повысить скорость передачи данных, устройство нужно переключить в режим «3G Only», который позволяет переводить 3G-терминал (модем или сотовый телефон) в режим UMTS. В результате даже при слабом сигнале может повыситься скорость загрузки из Интернета данных.

Такие радиоканалы для передачи данных, как Wi-Fi, WiMAX способны передавать информацию на расстояние до пятидесяти километров и обеспечивать при этом скорость до семидесяти мегабит в секунду.

В сети UMTS передачи данных равна сорока восьми килобайтам в секунду. Этого вполне достаточно чтобы просматривать web-страницы. Но благодаря новым разработкам, появилась технология HSPA, которая получила название 3,5G. Это высокоскоростная передача пакетных данных от сети к клиенту (HSDPA) и от клиента в сеть (HSUPA). Благодаря новой технологии, информация передается со скоростью 3,6 Мбит/сек. Не все современные устройства еще могут работать с ней.

Доступ к Интернету осуществляется и с помощью кабелей. Эта форма подключения к сети распространена среди обладателей стационарных ПК. При использовании коаксиального кабеля скорость передачи данных может составлять от двухсот пятидесяти до пятисот килобит в секунду. Если применяются два кабеля, то по одному поступает немодулированный сигнал, а по второму - сигнал таймера. Данные передаются по формату HDLC, включающему в себя кроме самих сведений, информацию о начале и конце сообщения, а также контрольные сведения.

Почему при использовании технологии ADSL скорость передачи данных всегда меньше скорости соединения? Почему ADSL-модем соединяется на скорости 12 Мбит/с, а скорость, измеряемая speedtest.net, не превышает 8 Мбит/с?

При использовании технологии ADSL скорость передачи данных всегда меньше скорости соединения как минимум на 13-15% . Это технологическое ограничение, о котором мы далее расскажем подробнее. Оно не зависит ни от провайдера, ни от используемого модема.
В идеальных условиях при скорости соединения 12 Мбит/с можно рассчитывать на максимальную реальную скорость ~ 10 Мбит/с.

В реальности, помимо технологического ограничения, есть еще целый ряд факторов, снижающих скорость передачи. Об этих факторах мы расскажем далее.


Технология ADSL (Asymmetric Digital Subscriber Line) - асимметричная технология передачи данных, в которой доступная полоса пропускания канала распределена между входящим (Download ) и исходящим (Upload ) трафиком асимметрично. Таким образом, при подключении ADSL-модема используется скорость к абоненту (Download ) и скорость от абонента (Upload ).
В ADSL-сетях передачи данных скорость подключения измеряется в Мегабитах в секунду (Мбит/с) или Килобитах в секунду (Кбит/с) .
Например: цифры 10240/768 говорят о том, что максимальная входящая скорость подключения к абоненту составит 10240 Кбит/с (скорость, с которой данные будут поступать на ваш локальный компьютер), а максимальная исходящая скорость подключения от абонента составит 768 Кбит/с (скорость, с которой данные будут поступать от вашего локального компьютера на удаленный сервер).
При этом максимальная скорость при скачивании файлов (скорость закачки) составит ~ 1000 Килобайт в секунду (КБ/сек) .
Эта цифра получена по следующей формуле:
скорость подключения (10240) - 15% (1500) / 8 (для перевода килобит в килобайты) .


Дело в том, что интернет-браузеры или менеджеры закачек/загрузок показывают скорость передачи в Килобайтах в секунду .



Например, в браузере Internet Expolrer скорость закачки файла отображается в поле Скорость передачи (Transfer rate): xxx КБ/сек (KB/Sec).


Браузеры и/или менеджеры закачек/загрузок используют эту цифру для оценки скорости передачи, чтобы рассчитать общее время загрузки файла. Но обращаем ваше внимание, что по ряду причин скорость передачи данных отображается неточно. Например, данные могут буферизироваться (при этом таймеры запускаются с небольшой задержкой, что приводит к неправильным показаниям). Также скорость передачи данных может зависеть от производительности компьютера.


Реальную скорость соединения рекомендуем проверить следующим образом. Самый надежный способ для получения более достоверных результатов - замерить скорость скачивания файла с сайта вашего интернет-провайдера.
Нужно скачать какой-нибудь файл с сайта провайдера и посмотреть скорость закачки этого файла.

Многие пользователи часто используют популярные интернет-сервисы для проверки скорости интернет-канала (например, speedtest.net). Мы обращаем ваше внимание, что проверка скорости с помощью интернет-сервисов не гарантирует достоверного измерения. В данном случае точность измерения скорости вашего интернет-канала будет зависеть от выбранного сервера и его загруженности, его местоположения, загруженности вашего интернет-канала и других факторов.


Подробно рассмотрим факторы, которые влияют на реальную скорость соединения:

  • В качестве транспортного протокола коммуникационное оборудование (IP ADSL-коммутаторы) использует технологию АТМ (Asynchronous Transfer Mode - асинхронный способ передачи данных). АТМ - сетевая высокопроизводительная технология коммутации и мультиплексирования, основанная на передаче данных в виде кадров (ячейки) фиксированного размера (53 байта).
    Как известно, Интернет использует протокол IP в качестве протокола связи, и в частности протокол TCP/IP. Технология ADSL в качестве транспортного протокола используют ATM, и поэтому данные передаются по вашей ADSL-линии с помощью TCP/IP через ATM. Т.е. IP-кадры упаковываются (инкапсулируются) в АТМ-ячейки и передаются по DSL-линии, а затем принимающим оборудованием снова распаковываются, и получаются обычные IP-кадры.
    Крупные пакеты при этом будут поделены на 48-байтные части. Если пакет не делится без остатка на 48, то к нему добавляется заполнение, чтобы получилось целое число ячеек по 48 байт. После деления пакета на ячейки по 48 байт к каждой из получившихся ячеек добавляется заголовок (5 байт).
    В результате происходит снижение скорости на уровне 10% от скорости передачи данных.
  • Использование протокола TCP/IP при передаче данных снижает скорость на уровне 3% от скорости передачи данных, т.к. передаваемую полезную информацию (данные) дополняет служебная (протокольная) информация.

Указанные выше факторы - это и есть, те самые технологические ограничения, о которых шла речь в начале статьи. Эти ограничения и приводят к тому, что скорость передачи данных всегда меньше скорости соединения как минимум на 13-15% .


Но существуют и другие факторы, снижающие скорость передачи данных.

  • Теоретически в окне браузера или менеджера закачек/загрузок при загрузке файла вы должны видеть скорость передачи, вычисляемой по формуле скорость подключения - 15% (расходы при использовании TCP/IP и ATM) / 8 (для перевода килобит в килобайты) , но в реальности отображается скорость ниже, и этому есть свои причины:

    • Настройки компьютера. Например, недостаточно памяти (виртуальной/оперативной), устаревший процессор, нестабильная работа (сбои) операционной системы (синий экран) или программного обеспечения, недостаток свободного места на жестком диске, наличие на компьютере вредоносных программ/вирусов и т.д.

    • Потери пакетов при передаче данных. Большое количество потерь возможно на плохих линиях (каналах связи) или при использовании предельно допустимой скорости подключения.
      Если происходит потеря пакетов при передаче кадров, то протокол TCP/IP замечает отсутствующий пакет в общем потоке данных, не признает его получения и затем инициирует повторную передачу потерянных данных. Процедура ретрансляции приводит к дополнительным задержкам.
      Таким образом, протокол TCP/IP, помимо важной функции контроля и транспортировки данных, при наличии больших потерь пакетов на линии замедляет скорость передачи данных.
      Для проверки качества соединения с сервером в сети Интернет можно использовать утилиту ping (пинг). В командной строке операционной системы выполните команду ping -t имя_сайта , например ping -t www.download.com . Подождите секунд 30 и затем нажмите Ctrl+C для завершения работы утилиты. В статистике будет указан % потерь пакетов. Если потери пакетов составят свыше 5%, то производительность протокола TCP/IP будет плохой при работе с указанным сайтом.

    • Перегрузка серверов и шлюзов провайдера. Зависит от структуры сети провайдера (например, много шлюзов) или низкой пропускной способности исходящего канала провайдера. Проблема наблюдается при пиковой нагрузке со стороны пользователей. Слишком большое количество обращений на сервер может превысить максимум его использования в часы пиковой нагрузки и вызовет замедления в работе.

    • Проблемы с маршрутизацией также могут вызвать снижение скорости. При обнаружении проблем с маршрутизацией пакеты могут перенаправляться по альтернативным маршрутам, что вызовет задержки при передаче данных.

    • Использование протокола PPPoE может приводить к снижению скорости. PPPoE - это туннелирующий сетевой протокол канального уровня передачи кадров PPP через Ethernet. В основном используется DSL-сервисами. PPPoE ресурсоемкий протокол, и при передаче сетевых данных требования к процессору возрастают. В зависимости от реализации и использования PPPoE можно увидеть снижение максимальной скорости до 5-25%.

    • Недостаточная (низкая) производительность сервера BRAS (Broadband Remote Access Server). Маршрутизатор широкополосного удаленного доступа (BRAS) маршрутизирует трафик к/от DSL-коммутатора (DSLAM) в сетях интернет-провайдера. BRAS находится в ядре сети провайдера и агрегирует пользовательские подключения из сети уровня доступа. Маршрутизатор производит логическую терминацию туннелей точка-точка (PPP). Это могут быть инкапсулированные туннели PPP через Ethernet (PPPoE) или PPP через ATM (PPPoA). BRAS также является интерфейсом к системам аутентификации, авторизации и учета трафика.

    • Возможно ограничение скорости по тарифному плану на сервере BRAS. Типовой случай, когда скорость физического соединения одна, а скорость приема данных ограничена оплаченным тарифным планом.

    • При использовании дополнительного сервиса, например IPTV (цифровое телевидение), поток принимаемого телевидения тоже занимает определенную полосу, как правило около 4 Мбит/с для каналов стандартного разрешения. Максимальная скорость приема данных, при использовании сервиса IPTV, может быть рассчитана по следующей формуле:
      скорость подключения - 15% - скорость потока IPTV .
      Например, скорость подключения (10240) - 15% (1500) - скорость потока IPTV (4000) = 4700 Кбит/с (587 Кбайт/с).


Работаю с недавнего времени в техподдержке одного известного в России, но не в Москве, интернет-провайдера. Захотелось максимально доступно рассказать Пикабушникам как самостоятельно настроить свою домашнюю wi-fi сеть и почему же скорость по замерам зачастую отличается от заявленной по тарифу. Если вкратце, потому что Wi-Fi.

Термин «Wi-Fi» изначально был придуман как игра слов для привлечения внимания потребителя «намёком» на Hi-Fi (англ. High Fidelity - высокая точность). Несмотря на то, что поначалу фигурировало словосочетание «Wireless Fidelity» («беспроводная точность»), на данный момент от такой формулировки отказались, и термин «Wi-Fi» никак не расшифровывается. (wiki)

Под аббревиатурой Wi-Fi скрывается множество стандартов, которые принято обобщённо называть IEEE 802.11x. В частности, сегодня наиболее распространены стандарты IEEE 802.11g (до 54 Мбит/с) и IEEE 802.11n (до 600 Мбит/с). В реальных условиях вам очень повезёт, если максимальная скорость передачи данных составит хотя бы половину от заявленной. Дело в том, что, с одной стороны, заявленная максимальная пропускная способность линии связи – это полная пропускная способность, которая используется не только для передачи полезной информации, но и для служебных данных, которых набирается примерно на половину общего объёма полезной информации. С другой же стороны на скорость передачи данных влияет окружающая среда. Например, типичный беспроводной адаптер «пробивает» три-четыре капитальные стены, а иногда (если в стенах много металлических элементов) и того меньше. В условиях прямой видимости можно ожидать дальности связи в несколько десятков метров.

Пока получается скучновато, но я стараюсь найти баланс между информативностью и наглядностью.

Итак, у вас дома наверняка уже есть как минимум одно устройство, поддерживающее передачу данных по wi-fi, например ноутбук или смартфон. Соответственно вам хочется иметь возможность быть "на связи" в любой точке квартиры не будучи связанным проводами и чтобы интернет страницы и видео открывались без тормозов. Для этого нужен интернет, который вам протянет провайдер и wifi точка доступа, которую он же вам может предоставить на условиях аренды или в собственность. О разнице между точкой доступа и wi-fi роутером сейчас говорить не будем, скажу лишь, что скорее всего ваш выбор падет именно на роутер (маршрутизатор).

Простейший роутер с поддержкой стандарта 802.11n можно приобрести за 1,5-2 т.р. (Подобного класса роутер предоставляет обычно и провайдер.) Такое устройство чаще всего может выдать до 64 Мбит/с реальной скорости, если у вас современный ноутбук с wifi адаптером того же 802.11n, а беспроводная сеть нормально настроена. На смартфонах и планшетах адаптеры обычно послабее и реальную скорость которую они могут получить как правило не превышает 30 Мбит/с, чего им, в общем-то, хватает. О том какой стандарт wifi поддерживает ваше устройство информацию можно найти в технических характеристиках на сайте производителя.

На ноутбуках так же или смотрим состояние сетевого подключения. Пуск ->

Панель управления -> Сеть и Интернет -> Центр управления сетями и общим доступом -> Изменение параметров адаптера ->

Правый клик по вашему беспроводному подключению -> Состояние. Тут ищем строку "Скорость", если значение 54 Мбит/с, то нормальной скоростью загрузки по замерам будет 18-22 Мбит/с, а если 150 Мбит/с, то от 40 до 50 Мбит/с.

Вот мы и дошли до сути данного эпоса. Настройка домашней беспроводной сети начинается с расположения роутера.

1. Удостоверьтесь, что разместили маршрутизатор/точку доступа в центральном местоположении по отношению к вашей будущей беспроводной сети для наилучшей производительности. Постарайтесь расположить маршрутизатор/точку доступа как можно выше в помещении, так чтобы сигнал распределялся по всему дому. Если у Вас двух-этажный дом, большая квартира, Вам может понадобится повторитель (репитер, ретранслятор), чтобы расширить рабочий диапазон сигнала.

2. Расположите домашние приборы, такие как беспроводные телефоны, bluetooth-устройства, микроволновые печи и телевизоры, как можно дальше от маршрутизатора/точки доступа. Это значительно снизит различные помехи, которые могут вызывать подобные приборы при их работе на определенной частоте. Здесь еще стоит добавить, что радиосигнал от роутера к устройству идет по прямой и если на пути сигнала окажется телевизор или отражающие поверхности типа стекла или зеркала, это так же негативно повлияет на качество сигнала, а значит на скорость и на радиус покрытия. Есть и еще факторы негативно влияющие на качество wifi соединения, но основные я затронул.

3. Не позволяйте вашим соседям или злоумышленникам подключаться к вашей беспроводной сети. Обезопасьте беспроводную сеть, включив функцию WPA/WPA2 безопасности на маршрутизаторе (пароль на wifi).

Настоятельно рекомендую к ознакомлению всем владельцам роутеров в многоквартирных домах для понимания почему скорость по wifi скачет, ниже заявленной или вообще соединение прерывается. Показано на примере роутера Zyxel, но выбор канала обычно предусмотрен и в настройках роутеров других марок.

Кстати выражаю огромный респект составителям данной базы, потому что лучшего материала я еще не встречал. Очень доступно и интересно об интернет технологиях.

Обычно чтобы зайти в настройки роутера нужно вбить в адресную строку браузера адрес самого роутера. Посмотреть его можно нажав в том же состоянии подключения (см. выше) кнопку Сведения. Строка "Основной шлюз" или "Шлюз по умолчанию". Нужный адрес и данные для входа могут быть так же указаны на самом роутере.

Чаще всего бывают:

192.168.0.1

192.168.1.1

192.168.10.1

192.168.100.1

Стандартные данные для входа в настройки популярных моделей роутеров:

Перезагружать роутер по питанию (выключать из розетки на 10 секунд) после смены канала не обязательно, но возможно придется подождать 30-40 секунд пока роутер и ваше устройство не согласуются работать на новой частоте. Грубо говоря wifi сеть может отвалиться ненадолго или пока ее не подключат на устройстве вручную.

Для более простого определения оптимального канала (чем указано в статье по ссылке) установите на свой смартфон или планшет (Android) приложение Wifi Analyzer, просканируйте им окружающие вас wifi сети. Далее настройте на вашем роутере канал, которому приложение даст максимальный рейтинг и не забудьте сохранить изменения.

Хотелось бы чтобы данный пост прочитало и осмыслило максимальное количество людей, ведь тогда у меня и других сотрудников техподдержки освободится масса времени на то, чтобы помочь тем людям у которых реально могут быть проблемы с соединением, требующие срочного решения. А у Вас будет меньше поводов ругать провайдера за "плохой" интернет. За рейтингом не гонюсь, поэтому добавлю 3 коммента для минусов. Так же буду рад любой обратной связи, дабы повысить свой профессионализм и радовать Клиентов грамотными консультациями. Ну а если появятся подписчики, то буду рад продолжить клепать посты на it-тематику и о работе техподдержки. Спасибо, что дочитали.



Понравилась статья? Поделиться с друзьями: