Реальная скорость соединения, используемая в технологии Wi-Fi. Скорость Wi-Fi. Основы

Lou Frenzel

Electronic Design

Скорость последовательной передачи данных обычно обозначают термином битрейт (bit rate). Однако другой часто используемой единицей является скорость передачи в бодах (baud rate). Хотя это не одно и то же, при определенных обстоятельствах между обеими единицами существует определенное сходство. В статье дается четкое разъяснение различий между этими понятиями.

Общая информация

В большинстве случаев в сетях информация передается последовательно. Биты данных поочередно передаются по каналу связи, кабельному или беспроводному. На Рисунке 1 изображена последовательность бит, передаваемая компьютером или какой-либо другой цифровой схемой. Такой сигнал данных часто называют исходным. Данные представлены двумя уровнями напряжения, например, логической единице соответствует напряжение +3 В, а логическому нулю - +0.2 В. Могут использоваться и другие уровни. В формате кода без возврата к нулю (NRZ) (Рисунок 1) сигнал не возвращается к нейтральному положению после каждого бита, в отличие от формата с возвращением к нулю (RZ).

Битрейт

Скорость передачи данных R выражается в битах в секунду (бит/с или bps). Скорость является функцией продолжительности существования бита или времени бита (T B) (Рисунок 1):

Эту скорость называют также шириной канала и обозначают буквой C. Если время бита равно 10 нс, то скорость передачи данных определится как

R = 1/10 × 10 - 9 = 100 млн. бит/с

Обычно это записывается как 100 Мб/с.

Служебные биты

Битрейт, как правило, характеризует фактическую скорость передачи данных. Однако в большинстве последовательных протоколов данные являются только частью более сложного кадра или пакета, включающего в себя биты адреса источника, адреса получателя, обнаружения ошибок и коррекции кода, а также прочую информацию или биты управления. В кадре протокола данные называются полезной информацией (payload). Биты, не являющиеся данными, называются служебными (overhead). Иногда количество служебных бит может быть существенным - от 20% до 50%, в зависимости от общего числа полезных бит, передаваемых по каналу.

К примеру, кадр протокола Ethernet, в зависимости от количества полезных данных, может иметь до 1542 байт или октетов. Полезных данных может быть от 42 до 1500 октетов. При максимальном числе полезных октетов служебных будет только 42/1542, или 2.7%. Их было бы больше, если полезных байт было бы меньше. Это соотношение, известное также под названием эффективность протокола, обычно выражают в процентах количества полезных данных от максимального размера кадра:

Эффективность протокола = количество полезных данных/размер кадра = 1500/1542 = 0.9727 или 97.3%

Как правило, чтобы показать истинную скорость передачи данных по сети, фактическая скорость линии увеличивается на коэффициент, зависящий от количества служебной информации. В One Gigabit Ethernet фактическая скорость линии равна 1.25 Гб/с, тогда как скорость передачи полезных данных составляет 1 Гб/с. Для 10-Gbit/s Ethernet эти величины равны, соответственно, 10.3125 Гб/с и 10 Гб/с. При оценке скорости передачи данных по сети также могут использоваться такие понятия, как пропускная способность, скорость передачи полезных данных или эффективная скорость передачи данных.

Скорость передачи в бодах

Термин «бод» происходит от фамилии французского инженера Эмиля Бодо (Emile Baudot), который изобрел 5-битовый телетайпный код. Скорость передачи в бодах выражает количество изменений сигнала или символа за одну секунду. Символ - это одно из нескольких изменений напряжения, частоты или фазы.

Двоичный формат NRZ имеет два представляемых уровнями напряжения символа, по одному на каждый 0 или 1. В этом случае скорость передачи в бодах или скорость передачи символов - то же самое, что и битрейт. Однако на интервале передачи можно иметь более двух символов, в соответствии с чем на каждый символ отводится несколько бит. При этом данные по любому каналу связи могут передаваться только с помощью модуляции.

Когда средство передачи не может обработать исходный сигнал, на первый план выходит модуляция. Конечно, речь идет о беспроводных сетях. Исходные двоичные сигналы не могут передаваться непосредственно, они должны переноситься на несущую радиочастоту. В некоторых протоколах кабельной передачи данных также применяется модуляция, позволяющая повысить скорость передачи. Это называется «широкополосной передачей».
Выше: модулирующий сигнал, исходный сигнал

Используя составные символы, в каждом можно передавать по несколько бит. Например, если скорость передачи символов равна 4800 бод, и каждый символ состоит из двух бит, полная скорость передачи данных будет 9600 бит/с. Обычно количество символов представляется какой-либо степенью числа 2. Если N - количество бит в символе, то число требуемых символов будет S = 2N. Таким образом, полная скорость передачи данных:

R = скорость в бодах × log 2 S = скорость в бодах × 3.32 log 1 0 S

Если скорость в бодах равна 4800, и на символ отводится два бита, количество символов 22 = 4.

Тогда битрейт равен:

R = 4800 × 3.32log(4) = 4800 × 2 = 9600 бит/с

При одном символе на бит, как в случае с двоичным форматом NRZ, скорости передачи в битах и бодах совпадают.

Многоуровневая модуляция

Высокий битрейт можно обеспечить многими способами модуляции. Например, при частотной манипуляции (FSK) в каждом символьном интервале для представления логических 0 и 1 обычно используются две различные частоты. Здесь скорость передачи в битах равна скорости передачи в бодах. Но если каждый символ представляет два бита, то требуются четыре частоты (4FSK). В 4FSK скорость передачи в битах в два раза превышает скорость в бодах.

Еще одним распространенным примером является фазовая манипуляция (PSK). В двоичной PSK каждый символ представляет 0 или 1. Двоичному 0 соответствует 0°, а двоичной 1 - 180°. При одном бите на символ скорость в битах равна скорости в бодах. Однако соотношение числа бит и символов несложно увеличить (см. Таблицу 1).

Таблица 1. Двоичная фазовая манипуляция.

Биты

Фазовый сдвиг (градусов)

Например, в квадратурной PSK на один символ приходится два бита. При использовании такой структуры и двух бит на бод скорость передачи в битах превышает скорость в бодах в два раза. При трех битах на один бод модуляция получит обозначение 8PSK, и восемь различных фазовых сдвигов будут представлять три бита. А при 16PSK 16 фазовых сдвигов представляют 4 бита.

Одной из уникальных форм многоуровневой модуляции является квадратурная амплитудная модуляция (QAM). Для создания символов, представляющих множество битов, QAM использует комбинацию различных уровней амплитуд и смещений фаз. Например, 16QAM кодирует четыре бита на символ. Символы представляют собой сочетание различных уровней амплитуды и фазовых сдвигов.

Для наглядного отображения амплитуды и фазы несущей для каждого значения 4-битного кода используется квадратурная диаграмма, имеющая также романтическое название «сигнальное созвездие» (Рисунок 2). Каждая точке соответствует определенная амплитуда несущей и фазовый сдвиг. В общей сложности 16 символов кодируются четырьмя битами на символ, в результате чего битрейт превышает скорость передачи в бодах в 4 раза.

Почему несколько бит на бод?

Передавая больше одного бита на бод можно отправлять данные с высокой скоростью по более узкому каналу. Следует напомнить, что максимально возможная скорость передачи данных определяется пропускной способностью канала передачи.
Если рассмотреть наихудший вариант чередования нулей и единиц в потоке данных, то максимальная теоретическая скорость передачи C в битах для данной полосы пропускания B будет равна:

Или полоса пропускания при максимальной скорости:

Для передачи сигнала со скоростью 1 Мб/с требуется:

B = 1/2 = 0.5 МГц или 500 кГц

При использовании многоуровневой модуляции с несколькими битами на символ максимальная теоретическая скорость передачи данных будет равна:

Здесь N - количество символов в символьном интервале:

log 2 N = 3.32 log10N

Полоса пропускания, требуемая для обеспечения желаемой скорости при заданном количестве уровней, вычисляется следующим образом:

Например, полоса пропускания, необходимая для достижения скорости передачи 1 Мб/с при двух битах на один символ и четырех уровнях, может быть определена как:

log 2 N = 3.32 log 10 (4) = 2

B = 1/2(2) = 1/4 = 0.25 МГц

Количество символов, необходимых для получения желаемой скорости передачи данных в фиксированной полосе пропускания, может быть вычислено как:

3.32 log 10 N = C/2B

Log 10 N = C/2B = C/6.64B

N = log-1 (C/6.64B)

Используя предыдущий пример, количество символов, необходимых для передачи со скоростью 1 Мб/с по каналу 250 кГц, определится следующим образом:

log 10 N = C/6.64B = 1/6.64(0.25) = 0.60

N = log-1 (0.602) = 4 символа

Эти расчеты предполагают, что в канале отсутствуют шумы. Для учета шума нужно применить теорему Шеннона-Хартли:

C = B log 2 (S/N + 1)

C -пропускная способность канала в битах в секунду,
В - полоса пропускания канала в герцах,
S/N -отношение сигнал/шум.

В форме десятичного логарифма:

C = 3.32B log 10 (S/N + 1)

Какова максимальная скорость в канале 0.25 МГц с отношением S/N равным 30 дБ? 30 дБ переводится в 1000. Следовательно, максимальная скорость:

C = 3.32B log 10 (S/N + 1) = 3.32(0.25) log 10 (1001) = 2.5 Мб/с

Теорема Шеннона-Хартли конкретно не утверждает, что для достижения этого теоретического результата должна применяться многоуровневая модуляция. Используя предыдущую процедуру, можно узнать, сколько бит требуется на один символ:

log 10 N = C/6.64B = 2.5/6.64(0.25) = 1.5

N = log-1 (1.5) = 32 символа

Использование 32 символов подразумевает пять бит на символ (25 = 32).

Примеры измерения скорости передачи в бодах

Практически все высокоскоростные соединения используют какие-либо формы широкополосной передачи. В Wi-Fi в схемах модуляции с мультиплексированием с ортогональным частотным разделением каналов (OFDM) применяются QPSK, 16QAM и 64QAM.

То же самое верно для WiMAX и технологии сотовой связи Long-Term Evolution (LTE) 4G. Передаче сигналов аналогового и цифрового телевидения в системах кабельноого ТВ и высокоскоростного доступ в Интернет основана на 16QAM и 64QAM, в то время как в спутниковой связи используют QPSK и различные версии QAM.

Для систем наземной мобильной радиосвязи, обеспечивающих общественную безопасность, недавно были приняты стандарты модуляции речевой информации и данных с помощью 4FSK. Этот сужающий полосу пропускания способ разработан для сокращения полосы с 25 кГц на канал до 12.5 кГц, и, в конечном счете, до 6.25 кГц. В результате в том же спектральном диапазоне можно разместить больше каналов для других радиостанций.

Телевидение высокой четкости в США использует метод модуляции, называемый eight-level vestigial sideband (8-уровневая передача сигналов с частично подавленной боковой полосой), или 8VSB. В этом методе отводится три бита на символ при 8 уровнях амплитуды, что позволяет передавать 10,800 тыс. символов в секунду. При 3 битах на символ полная скорость будет равна 3 × 10,800,000 = 32.4 Мб/с. В сочетании с методом VSB, который передает только одну полную боковую полосу частот и часть другой, видео- и аудиоданные высокой четкости могут передаваться по телевизионному каналу шириной 6 МГц.

Written on 16 Августа 2006 . Posted in Беспроводные сети

Страница 12 из 13

Максимальная скорость передачи данных в протоколах 802.11b/g

Как было показано, максимальная скорость, определяемая протоколом 802.11b, составляет 11 Мбит/с, а для протокола 802.11g — 54 Мбит/с.

Однако следует четко различать полную скорость передачи и полезную скорость передачи. Дело в том, что технология доступа к среде передачи данных, структура передаваемых кадров, заголовки, прибавляемые к передаваемым кадрам на различных уровнях модели OSI, — все это предполагает наличие достаточно большого объема служебной информации. Вспомним хотя бы наличие охранных интервалов при использовании OFDM-технологии. В результате полезная или реальная скорость передачи, то есть скорость передачи пользовательских данных, всегда оказывается ниже полной скорости передачи.

Более того, реальная скорость передачи зависит и от структуры беспроводной сети. Так, если все клиенты сети используют один и тот же протокол, например 802.11g, то сеть является гомогенной и скорость передачи данных в такой сети выше, чем в смешанной сети, где имеются клиенты как 802.11g, так и 802.11b. Дело в том, что клиенты 802.11b «не слышат» клиентов 802.11g, которые используют OFDM-кодирование. Поэтому с целью обеспечения совместного доступа к среде передачи данных клиентов, использующих различные типы модуляции, в подобных смешанных сетях точки доступа должны отрабатывать определенный механизм защиты. В результате использования механизмов защиты в смешанных сетях реальная скорость передачи становится еще меньше.

Кроме того, реальная скорость передачи данных зависит и от используемого протокола (TCP или UDP) и от размера длины пакета. Естественно, что протокол UDP предусматривает более высокие скорости передачи. Теоретические максимальные скорости передачи данных для различных типов сетей и протоколов представлены в таблице 3.

Таблица. 3. Максимальные скорости передачи данных для различных типов сетей и протоколов при размере пакетов 1500 байт

Тип сети

Современный беспроводной интернет развивается очень стремительно. Еще 3 года назад о массовом распространении 4G на территории почти всей центральной России никто не задумывался, а у крупных операторов это было только в планах. Сейчас высокоскоростной интернет появляется в новых населенных пунктах. Если предыдущие поколения 2G и 3G были устоявшимися стандартами долгое время, то 4G и LTE прогрессируют с каждым годом. В данной статье вы узнаете, какова максимальная скорость у 4G интернета и как ее замерить. Также читайте в соседнем разделе полезный материал о том, и чем они отличаются друг от друга.

Какая скорость должна быть у 4 Джи?

Если брать в расчет сеть 4G LTE, которая является первым поколением новой технологии 4 Джи, то показатели будут гораздо ниже заявленных. Еще в 2008 году были установлены стандарты, согласно которым максимальная скорость в сетях 4G должна была быть следующей:

  • 100Мб/с для подвижных абонентов. К ним относятся машины, поезда и так далее;
  • 1Гб/с для статичных абонентов (пешеходы и стационарные компьютеры).


Однако в действительности дела обстоят хуже, чем по заявленным стандартам. Эти параметры были заданы создатели технологии в идеальных условиях без помех, нагрузки на сеть и прочих неприятных моментов. На деле для статичных абонентов реальная цифра не превышает 100Мб/с. Однако операторы громко заявляют о 200-300Мб/с. К этой цифре ближе всех подобрались Мегафон и Билайн, которые запустили сеть с поддержкой LTE Advancedили 4G+. Показатели этого стандарта доходят до 150Мб/c при идеальных условиях. Однако ясно дает понять: массового распространения LTE Advanced придется ждать долго. К тому же, растущее число абонентов будет увеличивать нагрузку на сеть, что приведет к снижению среднего показателя.

- Зачем вам в Решётах нубук?
- Чтоб безразмерно использовать возможности блюпупа, и коммутироваться с другими абонентами по всему региону Россия с помощью Ви-Фи!
(С) Уральские Пельмени

Впервые рабочая группа IEEE 802.11 была анонсирована в 1990 году и вот уже 25 лет идёт непрекращающаяся работа над беспроводными стандартами. Основным трендом является постоянное увеличение скоростей передачи данных. В данной статье я попробую проследить путь развития технологии и показать, за счёт чего обеспечивалось увеличение производительности и чего стоит ждать в ближайшем будущем. Предполагается, что читатель знаком с основными принципами беспроводной связи: видами модуляции, глубиной модуляции, шириной спектра и т.д. и знает основные принципы работы Wi-Fi сетей. На самом деле существует не так много способов увеличения пропускной системы связи и большинство из них было реализовано на разных этапах совершенствования стандартов группы 802.11.

Рассмотрению будут подвергнуты стандарты, определяющие физический уровень, из взаимно совместимой линейки a/b/g/n/aс. Стандарты 802.11af (Wi-Fi на частотах эфирного телевиденья), 802.11ah (Wi-Fi в диапазоне 0.9 МГц, предназначенный для реализации концепции IoT) и 802.11ad (Wi-Fi для скоростной связи периферийных устройств наподобие мониторов и внешних дисков) несовместимы друг с другом, имеют различные сферы применения и не подходят для анализа эволюции технологий передачи данных на большом интервале времени. Кроме того, вне рассмотрения останутся стандарты, определяющие стандарты безопасности (802.11i), QoS (802.11e), роуминга (802.11r) и т.д., так как они только косвенно влияют на скорость передачи данных. Здесь и далее речь идёт о канальной, так называемой брутто-скорости, которая является заведомо большей, чем фактическая скорость передачи данных из-за большого количества служебных пакетов в радиообмене.

Первым стандартом беспроводной связи был 802.11 (без буквы). Он предусматривал два типа среды передачи: радиочастота 2.4 ГГц и инфракрасный диапазон 850-950 нм. ИК-устройства не были широко распространены и в будущем развития не получили. В диапазоне 2.4 ГГц было предусмотрено два способа расширения спектра (расширение спектра является неотъемлемой процедурой в современных системах связи): расширение спектра методом скачкообразного изменения частоты (FHSS) и методом прямой последовательности (DSSS). В первом случае все сети используют одну и ту же полосу частот, но с различными алгоритмами перестроения. Во втором случае уже появляются частотные каналы от 2412 МГц до 2472 МГц с шагом 5 МГц, сохранившиеся по сей день. В качестве расширяющей последовательности используется последовательность Баркера длиной 11 чипов. При этом максимальная скорость передачи данных составляла от 1 до 2 Мбит/с. В то время даже с учётом того, что в самых идеальных условиях полезная скорость передачи данных по Wi-Fi не превышает 50% канальной, такие скорости выглядели весьма привлекательно в сравнении со скоростями модемного доступа к сети Интернет.

Для передачи сигнала в 802.11 использовалась 2-х и 4-х позиционная манипуляция, что обеспечивало работу системы даже в неблагоприятных условиях сигнал/шум и не требовало сложных приёмо-передающих модулей.
Например, для реализации информационной скорости 2 Мбит/с каждый передаваемый символ заменяется на последовательность из 11 символов.

Таким образом чиповая скорость составляет 22 Мбит/с. За один такт передачи передаются 2 бита (4 уровня сигнала). Таким образом скорость манипуляции составляет 11 бод и основной лепесток спектра при этом занимает 22 МГц, величину, которую применительно к 802.11, часто называют шириной канала (на самом деле спектр сигнала является бесконечным).


При этом согласно критерию Найквиста (число независимых импульсов в единицу времени ограничено удвоенной максимальной частотой пропускания канала) для передачи такого сигнала достаточно полосы 5.5 МГц. Теоретически устройства формата 802.11 должны удовлетворительно работать и на каналах, отстоящих друг от друга на 10 МГц (в отличии от более поздних реализаций стандарта, требующих вещания на частотах, отстоящих друг от друга не менее, чем на 20 МГц).

Очень быстро скоростей 1-2 Мбит/с стало не хватать и на смену 802.11 пришёл стандарт 802.11b, в котором скорость передачи данных была увеличена до 5.5, 11 и 22 (опционально) Мбит/с. Увеличение скорости было достигнуто путём уменьшения избыточности помехоустойчивого кодирования с 1/11 до ½ и даже 2/3 за счёт внедрения блочных (CCK) и сверхточных (PBCC) кодов. Кроме того, максимальное число ступеней модуляции было увеличено до 8-и на один передаваемый символ (3 бита на 1 бод). Ширина канала и используемые частоты не изменились. Но при уменьшении избыточности и увеличении глубины модуляции неизбежно выросли требования к соотношению сигнал/шум. Так как увеличение мощности устройств невозможно (ввиду экономии энергии мобильных устройств и законодательных ограничений), то это ограничение проявилось в небольшом сокращении зоны обслуживания на новых скоростях. Площадь обслуживания на унаследованных скоростях 1-2 Мбит/с не изменилась. От способа расширения спектра методом скачкообразной перестройки частоты было решено полностью отказаться. Больше в семействе Wi-Fi он не использовался.

Следующий шаг увеличения скорости до 54 Мбит/с был реализован в стандарте 802.11a (данный стандарт начал разрабатываться раньше, чем стандарт 802.11b, но финальная версия была выпущена позже). Увеличение скорости в основном было достигнуто за счёт увеличения глубины модуляции до 64 уровней на один символ (6 бит на 1 бод). Кроме того, была радикально пересмотрена радиочастотная часть: расширение спектра методом прямой последовательности было заменено на расширение спектра методом разделения последовательного сигнала на параллельные ортогональные поденсущие (OFDM). Использование параллельной передачи на 48 подканалах позволило снизить межсимвольную интерференцию за счёт увеличения длительности отдельных символов. Передача данных осуществлялась в диапазоне 5 ГГц. При этом ширина одного канала составляет 20 МГц.


В отличие от стандартов 802.11 и 802.11b, даже частичное перекрытие этой полосы может привести к ошибкам передачи. К счастью в диапазоне 5 ГГц расстояние между канали составляет эти самые 20 МГц.

Стандарт 802.11g не стал прорывом в плане скорости передачи данных. Фактически этот стандарт стал компиляцией 802.11a и 802.11b в диапазоне 2,4 ГГц: в нём поддерживались скорости обоих стандартов.

Однако данная технология требует высокого качества изготовления радио части устройств. Кроме того, данные скорости принципиально не реализуемы на мобильных терминалах (основной целевой группе стандарта Wi-Fi): наличие 4-х антенн на достаточном разнесении не может быть реализовано в малогабаритных устройствах как по соображениям отсутствия места, так и из-за отсутствия достаточного на 4 приёмопередатчика энергии.

В большинстве случаев скорость 600 Мбит/с является не более, чем маркетинговой уловкой и нереализуема на практике, так как фактически её можно добиться только между стационарными точками доступа, установленными в пределах одной комнаты при хорошем соотношении сигнал/шум.

Следующий шаг в скорости передачи был выполнен стандартом 802.11ac: максимальная скорость, предусмотренная стандартом, составляет до 6,93 Гбит/с, однако фактически такая скорость ещё не достигнута ни на одном оборудовании, представленном на рынке. Увеличение скорости достигнуто за счёт увеличения полосы пропускания до 80 и даже до 160 МГц. Такая полоса не может быть предоставлена в диапазоне 2,4 ГГц, поэтому стандарт 802.11ac функционирует только в диапазоне 5 ГГц. Ещё один фактор увеличения скорости – увеличение глубины модуляции до 256 уровней на один символ (8 бит на 1 бод) К сожалению, такая глубина модуляции может быть получена только вблизи точки из-за повышенных требований к соотношению сигнал/шум. Указанные улучшения позволили добиться увеличения скорости до 867 Мбит/с. Остальное увеличение получено за счёт ранее упомянутых потоков MIMO 8x8:8. 867х8=6,93 Гбит/с. Технология MIMO была усовершенствована: впервые в стандарте Wi-Fi информация в одной сети может передаваться двум абонентам одновременно с использованием различных пространственных потоков.

В более наглядном виде результаты в таблице:


В таблице перечислены основные способы увеличения пропускной способности: «-» - метод не применим, «+» - скорость была увеличена за счёт данного фактора, «=» - данный фактор остался без изменений.

Ресурсы уменьшения избыточности уже исчерпаны: максимальная скорость помехоустойчивого кода 5/6 была достигнута в стандарте 802.11a и с тех пор не увеличивалась. Увеличение глубины модуляции теоретически возможно, но следующей ступенью является 1024QAM, которая является очень требовательной к соотношению сигнал/шум, что предельно снизит радиус действия точки доступа на высоких скоростях. При этом возрастут требования к исполнению аппаратной части приёмопередатчиков. Уменьшение межсимвольного защитного интервала также вряд ли будет направлением совершенствования скорости – его уменьшение грозит увеличением ошибок, вызванных межсимвольной интерференцией. Увеличение полосы канала сверх 160 МГц так же вряд ли возможно, так как возможности по организации непересекающихся сот будут сильно ограничены. Ещё менее реальным выглядит увеличение количества MIMO-каналов: даже 2 канала являются проблемой для мобильных устройств (из-за энергопотребления и габаритов).

Из перечисленных методов увеличения скорости передачи большая часть в качестве расплаты за своё применение забирает полезную площадь покрытия: снижается пропускная способность волн (переход от 2,4 к 5 ГГц) и повышаются требования к соотношению сигнал шум (увеличение глубины модуляции, повышение скорости кода). Поэтому в своём развитии сети Wi-Fi постоянно стремятся к уменьшению площади, обслуживаемой одной точкой в пользу скорости передачи данных.

В качестве доступных направлений совершенствования могут использоваться: динамическое распределение OFDM поднесущих между абонентами в широких каналах, совершенствование алгоритма доступа к среде, направленное на уменьшение служебного траффика и использование техник компенсации помех.

Подводя итог вышесказанному попробую спрогнозировать тенденции развития сетей Wi-Fi: вряд ли в следующих стандартах удастся серьёзно увеличить скорость передачи данных (не думаю, что больше, чем в 2-3 раза), если не произойдёт качественного скачка в беспроводных технологиях: почти все возможности количественного роста исчерпаны. Обеспечить растущие потребности пользователей в передаче данных можно будет только за счёт увеличения плотности покрытия (снижения радиуса действия точек за счёт управления мощностью) и за счёт более рационального распределения существующей полосы между абонентами.

Вообще тенденция уменьшения зон обслуживания, похоже, является основным трендом в современных беспроводных коммуникациях. Некоторые специалисты считают, что стандарт LTE достиг пика своей пропускной способности и не сможет далее развиваться по фундаментальным причинам, связанным с ограниченностью частотного ресурса. Поэтому в западных мобильных сетях развиваются технологии оффлоада: при любом удобном случае телефон подключается к Wi-Fi от того же оператора. Это называют одним из основных способов спасения мобильного Интернета. Соответственно роль Wi-Fi сетей с развитием сетей 4G не только не падает, а возрастает. Что ставит перед технологией всё новые и новые скоростные вызовы.

Один из главных недостатков стандартов беспроводной связи IEEE 802.11 a/b/g — слишком низкая скорость передачи данных. Действительно, теоретическая пропускная способность протоколов IEEE 802.11 a/g составляет всего 54 Мбит/с, а если говорить о реальной скорости передачи данных, то она не превышает 25 Мбит/с. Конечно, для выполнения многих задач такой скорости сегодня уже оказывается недостаточно, поэтому на повестке дня стоит вопрос о внедрении новых стандартов беспроводной связи, обеспечивающих значительно более высокие скорости.
Идя навстречу постоянно возрастающим потребностям в высокопроизводительных беспроводных локальных сетях, Комитет по стандартам Института инженеров по электротехнике и электронике (IEEE-SA) во второй половине 2003 года инициировал создание исследовательской группы IEEE 802.11n (802.11 TGn). В задачи группы TGn входит разработка нового стандарта беспроводной связи IEEE 802.11n, предусматривающего пропускную способность беспроводного канала связи минимум 100 Мбит/с.
Стандарт IEEE 802.11n находится еще в стадии разработки, однако многие производители беспроводного оборудования уже начали выпуск беспроводных адаптеров и точек доступа, основанных на так называемой технологии MIMO, которая станет одной из основополагающих технологий для спецификации 802.11n. Таким образом, беспроводные устройства на базе технологии MIMO можно считать продуктами pre-802.11n.
В настоящей статье мы рассмотрим особенности технологии MIMO на примере беспроводного маршрутизатора ASUS WL-566gM в сочетании с беспроводным PCMCIA-адаптером ASUS WL-106gM.

История развития стандартов семейства 802.11

Протокол 802.11

Обзор протоколов семейства 802.11b/g логично начать именно с протокола 802.11, который является прародителем всех остальных протоколов, хотя сегодня уже не встречается в чистом виде. В стандарте 802.11, как и во всех остальных стандартах данного семейства, предусмотрено использование частотного диапазона от 2400 до 2483,5 МГц, то есть частотного диапазона шириной 83,5 МГц, разбитого на несколько частотных подканалов.

В основе стандарта 802.11 лежит технология уширения спектра (Spread Spectrum, SS), которая подразумевает, что первоначально узкополосный (в смысле ширины спектра) полезный информационный сигнал при передаче преобразуется таким образом, что его спектр оказывается значительно шире, чем спектр первоначального сигнала. Одновременно с уширением спектра сигнала происходит и перераспределение спектральной энергетической плотности сигнала — энергия сигнала также «размазывается» по спектру.

В протоколе 802.11 применяется технология уширения спектра методом прямой последовательности (Direct Sequence Spread Spectrum, DSSS). Суть ее заключается в том, что для уширения спектра первоначально узкополосного сигнала в каждый передаваемый информационный бит встраивается чиповая последовательность, которая представляет собой последовательность прямоугольных импульсов. Если длительность одного чипового импульса в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательностями), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Для того чтобы на приемной стороне можно было выделить полезный сигнал на уровне шума, используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определенным требованиям автокорреляции. Чиповых последовательностей, отвечающих указанным требованиям автокорреляции, существует достаточно много. В стандарте 802.11 применяются последовательности длиной в 11 чипов, называемые кодами Баркера.

В стандарте 802.11 предусмотрено два скоростных режима — 1 и 2 Мбит/с. Скорость следования отдельных чипов последовательности Баркера составляет 11Ѕ106 чип/с, а ширина спектра такого сигнала — 22 МГц. Учитывая, что ширина частотного диапазона равна 83,5 МГц, получаем, что всего в данном частотном диапазоне можно уместить три неперекрывающихся частотных канала. Весь частотный диапазон, однако, принято делить на 11 частотных перекрывающихся каналов по 22 МГц, отстоящих друг от друга на 5 МГц. К примеру, первый канал занимает частотный диапазон от 2400 до 2423 МГц и центрирован относительно частоты 2412 МГц. Второй канал центрирован относительно частоты 2417 МГц, а последний, 11-й канал — относительно частоты 2462 МГц. При таком рассмотрении первый, шестой и 11-й каналы не перекрываются друг с другом и имеют 3-мегагерцевый зазор относительно друг друга. Именно эти три канала могут применяться независимо друг от друга.

Для модуляции синусоидального несущего сигнала при информационной скорости 1 Мбит/с используется относительная двоичная фазовая модуляция (Differential Binary Phase Shift Key, DBPSK).

При информационной скорости 2 Мбит/с для модуляции несущего колебания применяется относительная квадратурная фазовая модуляция (Differential Quadrature Phase Shift Кey), что позволяет повысить информационную скорость вдвое.

Протокол 802.11b

Протокол IEEE 802.11b, принятый в июле 1999 года, является своего рода расширением базового протокола 802.11 и, кроме скоростей 1 и 2 Мбит/с, предусматривает скорости 5,5 и 11 Мбит/с. Для работы на скоростях 5,5 и 11 Мбит/с используются так называемые комплементарные коды (Complementary Code Keying, CCK).

В стандарте IEEE 802.11b речь идет о комплексных комплементарных 8-чиповых последовательностях, определенных на множестве комплексных элементов. Сами элементы 8-чиповой последовательности могут принимать одно из восьми комплексных значений.

Основное отличие CCK-последовательностей от рассмотренных ранее кодов Баркера заключается в том, что существует не строго заданная последовательность (посредством которой можно кодировать либо логический нуль, либо единицу), а целый набор последовательностей. Учитывая, что каждый элемент последовательности может принимать одно из восьми значений, ясно, что можно скомбинировать достаточно большое число разных CCK-последовательностей. Это обстоятельство позволяет кодировать в одном передаваемом символе несколько информационных бит, благодаря чему повышается информационная скорость передачи данных. Так, использование CCK-кодов позволяет кодировать 8 бит на один символ при скорости 11 Мбит/с и 4 бит на символ при скорости 5,5 Мбит/с. При этом в обоих случаях символьная скорость передачи составляет 1,385Ѕ106 символов в секунду (11/8 = 5,5/4 = 1,385), а учитывая, что каждый символ задается 8-чиповой последовательностью, получаем, что в обоих случаях скорость следования отдельных чипов составляет 11Ѕ106 чипов в секунду. Соответственно ширина спектра сигнала при скорости как 11, так и 5,5 Мбит/с составляет 22 МГц.

Протокол 802.11g

Стандарт IEEE 802.11g является логическим развитием стандарта 802.11b и предполагает передачу данных в том же частотном диапазоне, но с более высокими скоростями. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи в стандарте 802.11g составляет 54 Мбит/с.

В стандарте 802.11g используются технологии OFDM и CCK, а опционально предусмотрено применение технологии PBCC.

Для того чтобы понять суть технологии OFDM, рассмотрим более подробно многолучевую интерференцию, возникающую при распространении сигналов в открытой среде.

Эффект многолучевой интерференции сигналов заключается в том, что в результате многократных отражений от естественных преград один и тот же сигнал может попадать в приемник различными путями. Но разные пути распространения отличаются друг от друга по длине, а потому для различных путей распространения ослабление сигнала будет неодинаковым. Следовательно, в точке приема результирующий сигнал представляет собой интерференцию многих сигналов, имеющих различные амплитуды и смещенных относительно друг друга по времени, что эквивалентно сложению сигналов с разными фазами.

Следствием многолучевой интерференции является искажение принимаемого сигнала. Многолучевая интерференция присуща любому типу сигналов, но особенно негативно она сказывается на широкополосных сигналах, поскольку при использовании широкополосного сигнала в результате интерференции определенные частоты складываются синфазно, что приводит к увеличению сигнала, а некоторые, наоборот, противофазно, вызывая ослабление сигнала на данной частоте.

Говоря о многолучевой интерференции, возникающей при передаче сигналов, отмечают два крайних случая. В первом случае максимальная задержка между сигналами не превышает времени длительности одного символа и интерференция возникает в пределах одного передаваемого символа. Во втором случае максимальная задержка между сигналами больше длительности одного символа, поэтому в результате интерференции складываются сигналы, представляющие разные символы, и возникает так называемая межсимвольная интерференция (Inter Symbol Interference, ISI).

Наиболее отрицательно на искажение сигнала влияет именно межсимвольная интерференция. Поскольку символ — это дискретное состояние сигнала, характеризующееся значениями частоты несущей, амплитуды и фазы, для разных символов меняются амплитуда и фаза сигнала, а следовательно, восстановить исходный сигнал крайне сложно.

По этой причине при высоких скоростях передачи применяется метод кодирования данных, называемый ортогональным частотным разделением каналов с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM). Суть этого метода заключается в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведется параллельно на всех таких подканалах. При этом высокая скорость передачи достигается именно за счет одновременной передачи данных по всем каналам, тогда как скорость передачи в отдельном подканале может быть и невысокой.

Благодаря тому что в каждом из частотных подканалов скорость передачи данных можно сделать не слишком высокой, создаются предпосылки для эффективного подавления межсимвольной интерференции.

При частотном разделении каналов необходимо, чтобы отдельный канал был достаточно узким для минимизации искажения сигнала, но в то же время — достаточно широким для обеспечения требуемой скорости передачи. Кроме того, для экономного использования всей полосы канала, разделяемого на подканалы, желательно расположить частотные подканалы как можно ближе друг к другу, но при этом избежать межканальной интерференции, чтобы обеспечить их полную независимость. Частотные каналы, удовлетворяющие вышеперечисленным требованиям, называются ортогональными. Несущие сигналы всех частотных подканалов ортогональны друг другу. Важно, что ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а следовательно, и отсутствие межканальной интерференции.

Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (OFDM). Для его реализации в передающих устройствах используется обратное быстрое преобразование Фурье (IFFT), переводящее предварительно мультиплексированный на n-каналов сигнал из временного представления в частотное.

Одним из ключевых преимуществ метода OFDM является сочетание высокой скорости передачи с эффективным противостоянием многолучевому распространению. Конечно, сама по себе технология OFDM не исключает многолучевого распространения, но создает предпосылки для устранения эффекта межсимвольной интерференции. Дело в том, что неотъемлемой частью технологии OFDM является охранный интервал (Guard Interval, GI) — циклическое повторение окончания символа, пристраиваемое в начале символа.

Охранный интервал создает временные паузы между отдельными символами, и если длительность охранного интервала превышает максимальное время задержки сигнала в результате многолучевого распространения, то межсимвольной интерференции не возникает.

При использовании технологии OFDM длительность охранного интервала составляет одну четвертую длительности самого символа. При этом символ имеет длительность 3,2 мкс, а охранный интервал — 0,8 мкс. Таким образом, длительность символа вместе с охранным интервалом составляет 4 мкс.

Говоря о технологии частотного ортогонального разделения каналов OFDM, применяемой на различных скоростях в протоколе 802.11g, мы до сих пор не касались вопроса о методе модуляции несущего сигнала.

Напомним, что в протоколе 802.11b для модуляции использовалась либо двоичная (BDPSK), либо квадратурная (QDPSK) относительная фазовая модуляция. В протоколе 802.11g на низких скоростях передачи также применяется фазовая модуляция (только неотносительная), то есть двоичная и квадратурная фазовые модуляции BPSK и QPSK. При использовании BPSK-модуляции в одном символе кодируется только один информационный бит, а при использовании QPSK-модуляции — два информационных бита. Модуляция BPSK применяется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK — на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях используется квадратурная амплитудная модуляция QAM (Quadrature Amplitude Modulation), при которой информация кодируется за счет изменения фазы и амплитуды сигнала. В протоколе 802.11g применяется модуляция 16-QAM и 64-QAM. Первая модуляция предполагает 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе; вторая — 64 возможных состояний сигнала, что дает возможность закодировать последовательность 6 бит в одном символе. Модуляция 16-QAM используется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM — на скоростях 48 и 54 Мбит/с.

Максимальная скорость передачи данных в протоколах 802.11b/g

Итак, максимальная скорость для протокола 802.11b составляет 11 Мбит/с, а для протокола 802.11g — 54 Мбит/с.

Однако следует четко различать полную скорость передачи и полезную скорость передачи. Дело в том, что технология доступа к среде передачи данных, структура передаваемых кадров, заголовки, прибавляемые к передаваемым кадрам на различных уровнях модели OSI, — всё это предполагает довольно большой объем служебной информации. Вспомним хотя бы наличие охранных интервалов при применении OFDM-технологии. В результате полезная или реальная скорость передачи, то есть скорость передачи пользовательских данных, всегда оказывается ниже полной скорости передачи.

Более того, реальная скорость передачи зависит и от структуры беспроводной сети. Так, если все клиенты сети используют один и тот же протокол, например 802.11g, то сеть является гомогенной и скорость передачи данных в ней выше, чем в смешанной сети, где имеются клиенты как 802.11g, так и 802.11b. Дело в том, что клиенты 802.11b «не слышат» клиентов 802.11g, которые применяют OFDM-кодирование. Поэтому с целью обеспечения совместного доступа к среде передачи данных клиентов, использующих различные типы модуляции, в подобных смешанных сетях точки доступа должны отрабатывать определенный механизм защиты. В результате применения механизмов защиты в смешанных сетях реальная скорость передачи становится еще меньше.

Кроме того, реальная скорость передачи данных зависит и от используемого протокола (TCP или UDP), и от размера длины пакета. Естественно, что протокол UDP предусматривает более высокие скорости передачи. Теоретические максимальные скорости передачи данных для различных типов сетей и протоколов представлены в табл. 1.

Технология MIMO

ехнология OFDM используется в протоколах 802.11g и 802.11a, но только при скоростях до 54 Мбит/с. При более высоких скоростях метод OFDM не позволяет избежать межсимвольной интерференции, поэтому приходится применять другие методы кодирования и передачи данных. К примеру, широко используется технология интеллектуального массива антенн (Smart Antenna). Естественно, в данном случае речь идет не о кодировании данных, а лишь о методе их передачи. С помощью нескольких приемных и передающих антенн можно существенно повысить качество принимаемого сигнала. Дело в том, что при многолучевом распространении сигнала уровень принимаемой мощности является случайной функцией, зависящей от взаимного расположения передатчика и приемника, а также от геометрии окружающего пространства. При применении массива разнесенных антенн всегда можно выбрать антенну с наивысшим соотношением «сигнал/шум». В системах на базе интеллектуальных антенн скорость передачи данных не увеличивается — улучшается только качество канала.

Однако технология использования нескольких передающих и принимающих антенн позволяет повысить также пропускную способность канала связи. Данная технология получила название MIMO (Multiple Input Multiple Output). По аналогии традиционные системы, то есть системы с одной передающей и одной принимающей антенной, называют SISO (Single Input Single Output).

Теоретически MIMO-система с n передающими и n принимающими антеннами способна обеспечить пиковую пропускную способность в n раз бoльшую, чем системы SISO. Это достигается за счет того, что передатчик разбивает поток данных на независимые последовательности битов и пересылает их одновременно, используя массив антенн. Такая техника передачи называется пространственным мультиплексированием.

Рассмотрим, к примеру, MIMO-систему, состоящую из n передающих и m принимающих антенн (рис. 1).


Передатчик в такой системе посылает n независимых сигналов, используя n антенн. На приемной стороне каждая из m антенн получает сигналы, которые являются суперпозицией n сигналов от всех передающих антенн. Таким образом, сигнал R 1 , принимаемый первой антенной, можно представить в виде:

R 1 = h 11 T 1 + h 21 T 2 + ... + h n1 T n .

Записывая подобные уравнения для каждой приемной антенны, получим следующую систему:

Или, переписав данное выражение в матричном виде:

[R ] = [H ]·[T ],

где [H ] — матрица переноса, описывающая MIMO-канал связи.

Для того чтобы на приемной стороне декодер мог правильно восстановить все сигналы, он должен прежде всего определить коэффициенты h ij , характеризующие каждый из m x n каналов передачи. Для определения коэффициентов h ij в технологии MIMO используется преамбула пакета.

Определив коэффициенты матрицы переноса, можно легко восстановить переданный сигнал:

[T ] = [H ] –1 ·[R ],

где [H ] –1 — матрица, обратная к матрице переноса [H ] .

Важно отметить, что в технологии MIMO применение нескольких передающих и принимающих антенн позволяет повысить пропускную способность канала связи за счет реализации нескольких пространственно разнесенных подканалов, при этом данные передаются в одном и том же частотном диапазоне.

Технология MIMO никак не затрагивает метод кодирования данных и, в принципе, может использоваться в сочетании с любыми методами физического и логического кодирования данных. Благодаря этому технология MIMO совместима с протоколами 802.11a/b/g.


Соответственно в точке доступа ASUS WL-566gM используются три внешние антенны, что обеспечивает создание нескольких пространственно разнесенных беспроводных каналов в одном и том же частотном диапазоне. В результате уменьшается количество «мертвых зон» в беспроводной сети, а радиосигналы передаются на большее расстояние, что увеличивает пропускную способность всей сети.

Отметим, что точка доступа, интегрированная в маршрутизатор ASUS WL-566gM, построена на основе чипcета Airgo AGN300, включающего процессор MAC-уровня AGN303BB и двухполосные PHY-контроллеры AGN301RF/AGN302R. Отметим также, что чипсет Airgo AGN300 поддерживает стандарты 802.11a/b/g. В технических характеристиках чипсета Airgo AGN300 указывается, что при использовании стандартных радиоканалов с шириной полосы пропускания 20 МГц максимальная скорость передачи данных составляет 126 Мбит/с. Скорость в 240 Мбит/с достигается при применении Adaptive Channel Expansion (ACE) — технологии объединения нескольких каналов в один. В частности, речь идет об объединении двух соседних каналов в один шириной 40 МГц — именно в этом случае достигается скорость передачи данный в 240 Мбит/с.


Понятно, что для реализации технологии MIMO необходимо, чтобы все клиенты сети были оснащены беспроводными адаптерами, совместимыми с технологией MIMO. Однако поддержка режима MIMO не означает, что данный маршрутизатор не может работать с устройствами стандарта 802.11g/b. Просто если обеспечивается совместимость с данными устройствами, то все клиенты сети, даже поддерживающие технологию MIMO, будут работать по протоколу 802.11g или 802.11b.

В настройках маршрутизатора ASUS WL-566gM можно задать один из трех режимов работы беспроводной точки доступа: Auto, 54G Only, 802.11b Only. В режиме 54G Only и точка доступа, и все беспроводные клиенты сети работают по протоколу 802.11g. Данный режим предназначен для использования в гомогенных сетях, когда все клиенты сети поддерживают протокол 802.11g.

Режим 802.11b Only ориентирован на гетерогенные сети, когда несколько клиентов сети не поддерживают протокол 802.11g и способны взаимодействовать только по протоколу 802.11b. В этом режиме все клиенты сети и точка доступа функционируют по протоколу 802.11b.

В режиме Auto точка доступа должна самостоятельно определять тип беспроводной сети (гомогенная, гетерогенная) и соответствующим образом подстраиваться под сеть.

Как видите, никакого отдельного режима MIMO в настройках точки доступа нет. Впрочем, это ничему не противоречит, поскольку режим MIMO — это способ организации беспроводных каналов связи, который не противоречит протоколу 802.11g. Поэтому мы изначально предполагали, что данный режим будет задействован как в режиме Auto, так и в режиме 54G Only.

Что касается остальных возможностей по настройке беспроводной сети, то они вполне традиционны. Можно активировать или отключить беспроводную сеть, выбрать номер канала беспроводного соединения, задать идентификатор (SSID) беспроводной сети, а также установить скорость беспроводного соединения. Причем при принудительном задании скорости соединения можно установить скорость выше 54 и вплоть до 240 Мбит/с (72, 84, 96, 108, 126, 144, 168, 192, 216 и 240).

Кроме того, предусмотрен режим скрытого идентификатора беспроводной сети (Broadcast SSID).

Методы повышения безопасности беспроводного соединения вполне типичны и включают возможность настройки фильтра по MAC-адресам, режим использования скрытого идентификатора сети, а также различные методы аутентификации пользователей и шифрования данных. Конечно, такие меры, как настройка фильтра по MAC-адресам и использование режима скрытого идентификатора сети, не могут рассматриваться в качестве серьезных препятствий на пути злоумышленников. Просто данные функции являются стандартными для всех беспроводных точек доступа.

Маршрутизатор поддерживает следующие типы протоколов безопасности: WEP, WPA-PSK и WPA-EAP. При использовании протокола безопасности WEP (который, кстати, в силу его уязвимости стоит использовать только в крайнем случае) поддерживаются 64- и 128-битные ключи. Причем возможно создание до четырех ключей с указанием применяемого по умолчанию. Но еще раз подчеркнем, что данный протокол можно использовать только в исключительных случаях, поскольку никакой реальной безопасности он не гарантирует и в какой-то мере эквивалентен открытой системе без шифрования данных.

Протокол безопасности WPA-PSK с общими ключами (Pre-shared key) предполагает применение пароля (ключа) длиной от 8 до 64 символов. При использовании аутентификации по протоколу WPA-PSK применяется шифрование TKIP (Temporary Key Integrity Protocol), или AES или AES и TKIP. Естественно, AES-шифрование является более предпочтительным.

Протокол безопасности WPA-EAP подразумевает аутентификацию пользователей на внешнем RADIUS-сервере (дополнительно необходимо указать IP-адрес RADIUS-сервера и используемый порт). Данный протокол поддерживает шифрование TKIP, AES или AES и TKIP одновременно.

Теперь рассмотрим возможности настройки маршрутизатора ASUS WL-566gM.

Что касается внутренней сети (сегмент LAN), то можно задать IP-адрес и маску подсети маршрутизатора, а также настройку встроенного DHCP-сервера. Возможности настройки внешней сети (сегмент WAN) включают указание и настройку интерфейса подключения к внешней сети (Интернет). Маршрутизатор ASUS WL-566gM предусматривает следующие типы подключения к внешней сети: Dynamic IP Address, Static IP Address, PPPoE, PPTP и BigPond. Собственно, последний тип подключения в России не встречается, и про него можно забыть. Для домашних пользователей актуальна поддержка протокола PPPoE (он обычно используется при подключении по DSL-соединению) или динамическое присвоение IP-адреса. При применении подключения типа PPPoE необходимо задать также имя ISP (Internet Service Provider), указать логин и пароль для доступа в Интернет и адреса DNS-серверов (то есть всю ту информацию, которой вас снабжает провайдер Интернета). При применении динамического присвоения IP-адреса (Dynamic IP Address) потребуется указать лишь Host Name, то есть имя вашего узла в сети.

При применении статического IP-адреса (Static IP Address), кроме присвоения имени ISP, потребуется указать IP-адрес WAN-порта (WAN IP Address), маску подсети (WAN Subnet Mask), шлюз по умолчанию (WAN Gateway), а также адрес DNS-сервера.

Поскольку маршрутизатор ASUS WL-566gM является NAT-устройством, что вполне типично для устройств данного класса, в нем предусмотрены разнообразные меры для обхода ограничений протокола NAT. Так, для доступа к локальной сети из внешней сети маршрутизатор поддерживает создание демилитаризованной зоны (DMZ-зона) и возможность конфигурирования виртуального сервера.

В DMZ-зону можно включить всего один компьютер, указав принадлежность его IP-адреса к DMZ-зоне. В этом случае при указании IP-адреса WAN-порта маршрутизатора все запросы будут перенаправляться на IP-адрес компьютера в DMZ-зоне. Фактически это позволяет получить доступ к ПК во внутренней сети в обход NAT-маршрутизатора, что, конечно же, снижает безопасность, но в некоторых случаях необходимо.

Альтернативой DMZ-зоне является возможность конфигурирования виртуального сервера (технология статического перенаправления портов). Дело в том, что при использовании протокола NAT внутренняя сеть остается недоступной извне и трафик во внутреннюю сеть возможен только в том случае, если запрос создается со стороны внутренней сети. При получении пакета из внутренней сети NAT-устройство создает таблицу соответствия IP-адресов и портов получателя и отправителя пакетов, которая применяется для фильтрации трафика. При создании статической таблицы соответствия портов возможен доступ во внутреннюю сеть по определенному порту из внешней сети даже в том случае, когда запрос на доступ к сети инициализируется извне.

При конфигурировании виртуального сервера пользователи получают доступ извне к определенным приложениям, установленным на виртуальном сервере во внутренней сети. При настройке виртуального сервера задаются IP-адрес виртуального сервера, используемый протокол (TCP, UDP и т.д.), а также внутренний порт (Private Port) и внешний порт (Public Port).

Дополнительно маршрутизатор ASUS WL-566gM поддерживает технологию динамического перенаправления портов. Статическое перенаправление портов позволяет отчасти решить проблему доступа из внешней сети к сервисам локальной сети, защищаемой NAT-устройством. Однако существует и обратная задача — обеспечить пользователям локальной сети доступ во внешнюю сеть через NAT-устройство. Дело в том, что некоторые приложения (например, Интернет-игры, видеоконференции, Интернет-телефония и другие приложения, требующие установления множества сессий одновременно) не совместимы с NAT-технологией. Для того чтобы решить эту проблему, применяется так называемое динамическое перенаправление портов (иногда оно также называется Applications), когда перенаправление портов задается на уровне отдельных сетевых приложений. Если маршрутизатор поддерживает данную функцию, необходимо задать номер внутреннего порта (или интервал портов), связанный с конкретным приложением (Trigger Port), и номер внешнего порта NAT-устройства (Public Port), который будет сопоставляться с внутренним портом.

При активации динамического перенаправления портов маршрутизатор следит за исходящим трафиком из внутренней сети и запоминает IP-адрес компьютера, генерирующего этот трафик. При поступлении данных обратно в локальный сегмент включается перенаправление портов и данные пропускаются внутрь. После завершения передачи перенаправление отключается, и любой другой компьютер может создать новое перенаправление уже на свой IP-адрес.

Маршрутизатор ASUS WL-566gM имеет встроенный SPI-брандмауэр с широкими возможностями настройки: можно активировать или отключить брандмауэр, запретить web-доступ во внутреннюю сеть из внешней сети, указать порт web-доступа из внешней сети, блокировать отклик маршрутизатора на команду Ping из внешней сети, настроить расписание действия фильтра доступа из внутренней сети во внешнюю, блокировать URL-адреса (домены).

Тестирование маршрутизатора ASUS WL-566gM

ТТестирование данного маршрутизатора проходило в три этапа. На первом этапе оценивалась производительность собственно маршрутизатора при передаче данных между сегментами WAN и LAN, на втором — между сегментами WLAN и WAN, а на последнем этапе — между сегментами WLAN и LAN.

Тестирование производительности выполнялось с помощью специального программного обеспечения NetIQ Chariot версии 5.0. Для тестирования использовался стенд, состоящий из ПК и ноутбука ASUS A3A. Для того чтобы оценить преимущество технологии MIMO, тестирование проводилось с применением как встроенного в ноутбук беспроводного адаптера Intel PRO Wireless 2200BG по протоколу 802.11g, так и беспроводного PCMCIA-адаптера ASUS WL-106gM, который совместим с режимом MIMO.

На ноутбуке и ПК была установлена операционная система Microsoft Windows XP Professional SP2.

Тест 1. Скорость маршрутизации WAN—LAN (проводной сегмент)

Первоначально измерялась пропускная способность маршрутизатора при передаче данных между сегментами WAN и LAN, для чего к WAN-порту маршрутизатора подключался ПК, имитирующий внешнюю сеть, а к LAN-порту — ноутбук, имитирующий внутреннюю сеть.

После этого с помощью программного пакета NetIQ Chariot 5.0 измерялся трафик по протоколу TCP между компьютерами, подключенными к маршрутизатору, для чего в течение 5 мин запускались скрипты, эмулирующие передачу и получение файлов соответственно. Инициирование на передачу данных происходило из внутренней LAN-сети. Передача данных от LAN- к WAN-сегменту эмулировалась с применением скрипта Filesndl.scr (передача файлов), а передача в обратном направлении — с помощью скрипта Filercvl.scr (получение файлов). Для оценки производительности в дуплексном режиме эмулировались одновременные передача и получение данных.

При тестировании на беспроводном маршрутизаторе активизировался встроенный Firewall.

Тест 2. Скорость маршрутизации WAN—WLAN (беспроводной сегмент)

На следующем этапе оценивалась скорость маршрутизации при передаче данных между внешним сегментом WAN и внутренним беспроводным сегментом сети (WLAN). Для этого к порту WAN подключался ПК по интерфейсу 10/100Base-TX, а между встроенной точкой доступа и ноутбуком ASUS A3A с беспроводным адаптером устанавливалось беспроводное соединение по протоколу IEEE 802.11g и в режиме MIMO. Взаимодействие по протоколу IEEE 802.11g осуществлялось посредством использования встроенного в ноутбук беспроводного адаптера Intel PRO Wireless 2200BG, а для взаимодействия в режиме MIMO применялся беспроводной PCMCIA-адаптер ASUS WL-106gM.

Измерение скорости маршрутизации производилось точно так же, как и в предыдущем тесте. Как показало тестирование, использование различных режимов шифрования трафика (WEP, TKIP, AES) никак не отражается на скорости передачи данных. Поэтому мы решили не приводить результаты, поскольку они полностью совпадают с соответствующими результатами при отсутствии шифрования.

Тест 3. Скорость маршрутизации LAN—WLAN (беспроводной сегмент)

Для тестирования встроенной в маршрутизатор точки доступа к LAN-порту подключался ПК по интерфейсу 10/100Base-TX, а встроенная точка доступа взаимодействовала с ноутбуком, оснащенным интегрированным беспроводным контроллером. Измерение скорости передачи данных производилось точно так же, как и в предыдущем тесте.

Результаты тестирования

езультаты тестирования беспроводного маршрутизатора представлены в табл. 2.

Как видно из результатов тестирования, скорость маршрутизации, обеспечиваемая устройством, очень высока и ограничивается протокольной скоростью интерфейса Fast Ethernet. Для корпоративных пользователей, подключенных к высокоскоростным каналам Интернета, это означает, что сам по себе маршрутизатор не будет узким местом канала передачи данных, несмотря на то что обеспечивает полный анализ входящих пакетов (SPI-брандмауэр).


Как и следовало ожидать, результаты тестов в режимах передачи трафика WAN>WLAN и LAN>WLAN мало отличаются друг от друга, что вполне закономерно, поскольку процесс маршрутизации пакетов не отражается на производительности устройства. Аналогичным образом трафик в режиме WLAN>WAN совпадает с трафиком WLAN>LAN.

Что касается работы точки доступа в стандартном режиме 802.11g, то по этому поводу у нас никаких замечаний нет. Скорость передачи данных во всех режимах более 20 Мбит/с, что вполне типично для устройств 802.11g.

Использование режима MIMO позволяет увеличить скорость передачи данных в направлении от точки доступа к беспроводному клиенту до 55 Мбит/с и в обратном направлении — до 70-75 Мбит/с. Это, конечно, не заявленные 240 Мбит/с, но все же почти в три раза больше, чем показатели типичных устройств стандарта 802.11g.

В целом можно констатировать, что маршрутизатор ASUS WL-566gM вполне функционален, имеет избыточное (для домашнего пользователя) количество настроек и высокую производительность во всех режимах работы.

Редакция выражает признательность представительству компании ASUSTeK COMPUTER (www.asuscom.ru) за предоставление для обзора беспроводного маршрутизатора ASUS WL-566gM, беспроводного адаптера ASUS WL-106gM и ноутбука ASUS A3A.



Понравилась статья? Поделиться с друзьями: