H.265 (HEVC) — маркетинговый трюк или что-то большее? Что несёт с собой грядущая смена стандарта кодирования

x265 - это открытая реализация нового стандарта кодирования видео H.265 HighEfficiencyVideoCoding (HEVC). Стандарт H.265 является логическим продолжением H.264 и характеризуется более эффективными алгоритмами сжатия. Стандарт предполагает примерно двукратное уменьшение размера файла при одинаковом визуальном качестве, по сравнению с H.264 и поддержку высоких разрешений вплоть до 8K UHD (8192×4320).

Преимущества H.265

Гибкий кодек H.264 получил широкое применение в сетях распространения потокового видео, на спутниковых платформах, а также при записи Blu-ray дисков. Он весьма хорош для масштабирования, благодаря чему он был предложен в качестве стандарта для 3D с частотой 48-60 кадров в секунду, и даже для 4К (хотя кодек не создавался для данного формата). H.264 вполне справляется с этими задачами. Стандарт, принятый для Blu-ray дисков, пока не включает в себя каких-либо рекомендаций относительно данных технологий, однако кодек H.264 сам по себе способен их поддерживать.

Особенность кодека H.264 заключается в том, что при способности кодировать видео в этих форматах, он не может обеспечить степень сжатия, которая бы сделала размеры получаемых файлов меньше.

Новый стандарт в кодеке H.265 смог существенно уменьшить размеры сжатых файлов и тем самым заслужил международное признание в качестве средства продвижения новых форматов видео. В H.265 использованы новые технологии сжатия и «умная» модель кодирования/декодирования, что позволяет экономно использовать пропускные ресурсы канала. Кодек разрабатывался с учётом всех особенностей 4К (поддержку 10-битового видео, высокую частоту кадров).

Размеры кодирования определяются настройками квантователя (цифрового преобразователя), где более низкие q-показатели соответствуют более высокому качеству (и большему размеру файлов). Базовый кодированный файл состоит из 500 кадров, его размер – 1,5 Гб, YUV 4:2:0, частота кадров – 50 в секунду. Для сравнения использован элементарный размер потокового файла, он отображает то, что передаётся на декодер для создания изображения на выходе. Исследованы элементарные потоки, размер декодируемого файла всегда составляет 1,5 Гб, вне зависимости от уровня качества, выбранного при его создании.

Основное преимущество H.265 в сравнении с H.264: экономия пропускной способности канала до 50%. При установке q=24 в преобразователе мы получаем файл размером 57% от созданного в H.264, при установке q=30 – 59%, а q=40 даёт 47%. При установке q=40 финальный файл далёк от совершенства, однако он позволяет экономить пропускную полосу более чем вдвое.

Производительность и качество изображения

H.265 требует большей производительности процессора для кодирования и декодирования в сравнении с H.264.
Функция гипер-поточности и установка параллелизации в 12/8 потока немного ускоряют процесс кодирования. Возможности тестового декодера с процессорами на базе SandyBridge-E (6 физических ядер) и Haswell (4 физических ядра, поддержка последней AVX2 и лучшим характеристикам производительности) опережают IvyBridge (4 физических ядра).
Кодирование при помощи x265 идёт дольше, чем кодирование с x264. Например, IvyBridge 3770K кодирует в H.264 файл за 129 секунд, в H.265 - за 247 секунд.

Изображение (на примере фрагмента игры в баскетбол) характеризуется высокой скоростью движения, записано с частотой 50 кадров в секунду. Высокая частота движений в кадре обычно приводит к зависанию процессора или колебанию картинки.

На изображении представлено оригинальное некомпрессированное YUV видео

На изображении представлено видео, кодированное в H.265 при показателях q=24, и видео, кодированного в H.264 при показателях q=24.

Разница между изображениями минимальна. Деревянный пол под прыгающим игроком менее размыт в H.264 варианте, однако качество H.265 варианта отличное, при том, что размер этого файла примерно вдвое меньше.

На изображении представлено видео, кодированное в H.265 и H.264 с показателем q=30.

При установке преобразователя q=30 (размеры файлов соответственно 6.39 Мб и 10.87 Мб) показатели качества потокового видео при использовании кодека H.265 оказались лучшими, чем у потока, кодированного в H.264.

Поддержка кодирования/декодирования доступна во многом оборудовании. Современные процессоры более чем готовы к декодированию H.265 при наличии соответствующего программного обеспечения. В долгосрочной перспективе H.265, скорее всего, заменит H.264 в качестве главного решения для расширенной обработки видео. Параллельная модель H.265 кодирования должна хорошо показать себя на фоне многоядерных устройств.
Внедрение нового формата для высокоэффективной обработки видео может оказать огромное влияние на рынок видеонаблюдения уже в ближайшие годы. Главное преимущество нового стандарта кодирования (H.265/HEVC) в сравнении с H.264/MPEG4 - это снижение битрейта примерно на 40%, качество получаемого изображения остается таким же.

IP-камеры с кодеком H.265 обеспечивают высококачественное изображение и снижают нагрузку сети и хранилища данных на 40%. Внедрение нового стандарта H.265 позволит увеличить количество эффективных мегапикселей у сетевых камер (10,15,20 Мп), а также снизить цифровые шумы и более четко отрабатывать функции WDR (Wide Dynamic Range).

Ассортимент оборудования Optimus активно пополняется современными моделями с кодеком сжатия H.265.

Очередное обновление Adobe Premiere Pro CC 2015 до версии 9.1 принесло возможность экспорта в долгожданном H265. Но многие не ожидали, что их мощные компьютеры новый кодек мощными совсем не считает.

Честно говоря, сравнивать скорость кодирования новым кодеком H265 (High Efficiency Video Coding) с кодеком H264 - дело совершенно неблагодарное. HEVC предлагает нам практически вдвое меньший битрейт при одинаковом визуальном качестве картинки, в сравнении с H264. Особенно это актуально для 4K контента и, тем более для видео в разрешении 8K.

Прогресс неизбежен и обновлять монтажные компьютеры все равно придется. Я же хочу сравнить время рендера в проекте с разрешением FullHD.

Параметры видео: файлы*.MTS, кодек AVC, 24 Mbs, длительность 04:10.

Эффекты на timeline: Lumetry Color (задействованы LUT, Levels, Saturation, Sharpen, Vignette), Magic Bullet Looks (задействован Cosmo).

Тестовый компьютер:

Процессор: 6-core Intel Core i7 5820K @ 3,8 GHz

Оперативная память: 32 GB DDR4 2400 MHz

Сделаем рендер этого видеоролика, замеряя время и наблюдая за загрузкой системы.

Настройки экспорта в H264: Level High 4.2 VBR 1pass 15-20 Mbps. Время экспорта 81% - 10:18

Настройки экспорта в H265: VBR 1 pass 7-10 Mbps. Quality: Higher. Время экспорта 82% - 15:38

По большому счету разница составила полтора раза. Если в настройках H265 выставить качество Highest, то время экспорта возрастает приблизительно до получаса. Т.е. в максимальном качестве H265 рендерит примерно в 3 раза дольше, чем H264. Мы говорим о разрешении FullHD.

Примечательно, что новый HEVC, по всей видимости не поддерживает видеокарту GeForce 960GTX. Ходят слухи, что, якобы, нужна видеокарта 970 или 980. На сайте Adobe такой информации нет. В любом случае, загрузка процессора при экспорте достигает 100%:

Для сравнения, при рендере в H264 силами видеокарты, нагрузка на процессор составляет около 40-50%:

Следует понимать еще одну вещь: ели бы у меня была более быстрая видеокарта, а процессор был медленнее (например 4-х ядерный i7), то разница во времени могла быть, к примеру, не 3-х кратная, а 5-кратная, т.к. H264 на видеокарте рендерился бы еще быстрее, а H265 на процессоре - медленнее.

Также немного удивил YouTube. После загрузки видеоролика в H265 появилась надпись:

Возможно, для YouTube требуется кодировать H265 в каком-то определенном профиле, разбираться особо не хотелось, поэтому залил версию H264. Кстати, YouTube анонсировал поддержку видео в разрешении 8K, так что проблемы с HEVC на YouTube в скором времени должны исзчезнуть.

В ближайшее время планирую посмотреть разницу при экспорте видео в 4K. Возможно, отсутствие аппаратной поддержки GPU существенно увеличит разницу при кодировании в этих двух форматах.

Теперь кодируем по-новому! Первые версии HEVC, Н.265 (High Efficiency Video Coding), новейшего стандарта видеокомпрессии, появились еще в 2013-м году. Среди специалистов было много споров, приживется данный формат в сфере видеонаблюдения или нет: в частности, говорилось о недоказанной эффективности (тесты в лабораторных условиях не в счет), высоких затратах на новое оборудование (кодек требует более мощной производительности устройств) и прочих важных моментах.

Однако уже сегодня можно сказать, что кодек компрессии Н.265 уверенно вошел на рынок и диктует свои условия. Соответственно, многие производители, согласно требованиям времени и прогресса, выпускают оборудование с поддержкой видеосжатия нового формата.

Алгоритмы работы Н.264, кодека предыдущего поколения, который вышел в далеком 2003-м, всем более или менее известны. О некоторых принципах видеосжатия при помощи кодека Н.264 можно прочитать

Теперь кодируем по-новому!

Н.265 – новейшая революционная разработка в области форматов видеокомпрессии. Специалисты полагают, этот кодек способен ощутимо пошатнуть status quo и в области обращения потребительского медиаконтента, и в профессиональной сфере (например, в системах видеонаблюдения).

Стандарт Н.265 использует в своей работе более сильные и совершенные алгоритмы сжатия видео. При одинаковом визуальном качестве новый кодек Н.265 предполагает примерно двукратное уменьшение размера файла по сравнению с «ужатым» его предшественником Н.264. Это позволяет серьезно сэкономить на дисковом пространстве регистраторов и видеосерверов. А вдвое меньший битрейт прилично уменьшит трафик в сетях передачи видеоданных.

Благодаря более мощным механизмам компрессии, кодек Н.265 отлично справляется с кодированием видео высокого и высочайшего разрешения более 8K UHD (8192×4320). Причем для качественного воспроизведения видеоинформации разрешением 4К кодеру необходим поток со скоростью всего 50 МВ/с.

Однако вернемся в привычные реалии, где множество камер имеют все же стандартное, а не запредельное разрешение: 1,3 Мп, 2 Мп, 3-Мп и выше. Испытания кодера показали эффективную его работу с разрешением видео выше 1 Мп. Тогда разница между сжатым файлом и оригиналом действительно видна. С видеопотоком, имеющем разрешение менее 1 Мп, по-прежнему мастерски справляется кодек Н.264.

И, что немаловажно, Н.265 сжимает видео практически без потерь, качество «ужатого» видео остается на высоком уровне. Специальные алгоритмы компрессии устраняют присущие Н.264 артефакты, такие как зернистость или размытые края движущихся объектов. С применением нового кодека такие моменты устранены.

Конкретные цифры: испытание последних версий кодека Н.265 дало ошеломительные результаты. Объем видео, обработанного по новому стандарту, оказался почти на 85% меньше, чем при использовании Н.264!

Дано: 2 Мп камера с фреймрейтом 25 к/с и сцена съемки со средней интенсивностью движения. При использовании кодека Н.264 битрейт будет равен примерно 4 Мб/с. В то время как при компрессии кодеком Н.265 – всего около 1 Мб/с!

Разумеется, более мощные алгоритмы видеокомпрессии предполагают использование большего числа «лошадиных сил», т.е более высокопроизводительного оборудования. И в этом еще одно отличие новейшего кодека сжатия от его предшественника Н.264, который используется повсеместно и встречается даже в самых слабеньких смартфонах. Но прогресс не стоит на месте, и уже сейчас для пользования новыми алгоритмами видеосжатия не нужно покупать сверхмощный процессор, рассчитанный для решения задач НАСА. Вполне достаточно тех многоядерных устройств, что предлагаются производителем сейчас.

Итого:
- Н.265, по сравнению с Н.264, рассчитан на обработку видео с разрешением от 4К и выше (6, 8, 12 Мп).
- Н.265 сжимает видео в разы сильнее, что позволяет экономить дисковое пространство и уменьшить нагрузку на каналы передачи данных вполовину.
- Н.265 производит видеокомпрессию практически без потерь, оставляя качество на более высоком уровне, без пиксельности и размытия объектов в движении
- Н.265 использует более мощные алгоритмы компрессии и позволяет получать объем видео до 85% меньше, чем закодированный при помощи Н.264.
- для эффективной работы, кодеку Н.265 требуется более мощные по производительности элементы и процессоры в оборудовании.

Даже такое поверхностное сравнение форматов сжатия Н.264 и Н.265 показывает ряд преимуществ нового кодека Н.265. Стандарт будет востребован в разных областях бизнеса: интернет-компании и видеохостинги, IP и цифровое ТВ, системы конференц-связи и т.д. Для систем видеонаблюдения новый формат сжатия также принесет неизмеримую пользу. За новым, Н.265-м кодеком – будущее!

Видео 4K занимает тонну пространства, что затрудняет загрузку и потоковое вещание в лучшем качестве. К счастью, одна технология меняет это, и она известна как High Efficiency Video Coding (HEVC) или H.265 .

Потребуется много времени, чтобы эта новая технология стала вездесущей, но это происходит: 4K UHD Blu-ray использует HEVC, VLC 3.0 воспроизводить 4K с помощью надежного HEVC, а iPhone может даже сохранить записанное видео в HEVC для экономии памяти.

Но как это работает, и почему так важно для видео 4K?

Текущий стандарт: AVC/H.264

Когда вы смотрите диск Blu-ray, видео на YouTube или фильм из iTunes, все они имеют идентичный исходный файл, который был получен в студии редактирования. Чтобы разместить этот фильм на диске Blu-ray или сделать его достаточно маленьким, чтобы удобно загружать из интернета, видео должно быть сжато .

AVC также использует межкадровое сжатие , которое рассматривает несколько кадров и отмечает, какие части кадра меняются, а какие нет. Алгоритм сжатия также развивает фрейм на макроблоки и говорит: «Знаешь что? Эти куски не меняются 100 кадров подряд, поэтому давайте просто отображать их снова, вместо того, чтобы хранить все части изображения 100 раз». Это может значительно уменьшить размер файла.

Это всего лишь два упрощенных примера использования методов AVC/H.264 . Но, они позволяют сделать видеофайл более эффективным, не ставя под угрозу качество.

Конечно, любое видео потеряет качество, если вы слишком сильно его сжимаете, но чем умнее эти методы, тем сильнее вы можете сжать видео без больших потерь.

HEVC/H.265 сжимает видео более эффективно

Высокоэффективное видеокодирование, также известное как HEVC или H.265 , является следующим шагом в этой эволюции. В нем реализовано множество методов, используемых в AVC/H.264, чтобы сделать сжатие видео еще более эффективным .

Например, когда AVC просматривает несколько кадров на наличие изменений, макроблоки могут иметь несколько разных форм и размеров, максимум до 16×16 пикселей. С HEVC эти фрагменты могут быть размером до 64×64, что намного больше, чем 16×16, это означает, что алгоритм может запоминать меньшее количество фрагментов, тем самым уменьшая размер общего видео.

Опять же, в HEVC используются другие методы, но это одно из самых больших улучшений – оно позволяет HEVC сжимать видео вдвое сильнее, чем AVC, при том же уровне качества. Это особенно важно для видео 4K , которое занимает огромное пространство с AVC. HEVC делает 4K видео намного более удобным для потоковой передачи, загрузки или копирования на ваш жесткий диск.

HEVC медленнее без аппаратного декодирования

HEVC является утвержденным стандартом с 2013 года, так почему его не используют во всех видео?

Алгоритмы сжатия H.265 сложны – для вычисления этого процесса на лету требуется очень много «математики». Существует два основных способа, которыми компьютер может декодировать это видео: программное декодирование , при котором он использует процессор компьютера для выполнения этих расчетов, и аппаратное декодирование , при котором он переносит нагрузку на графическую карту (или интегрированный графический чип на процессоре). Графическая карта намного эффективнее, если у нее есть встроенная поддержка кодека видео, которое вы пытаетесь воспроизвести.

Таким образом, хотя многие ПК и программы могут пытаться воспроизвести видео HEVC, оно может «заикаться» или быть очень медленным без аппаратного декодирования. Таким образом, HEVC не принесёт много пользы, если у вас нет видеокарты и видеопроигрывателя, которые поддерживают аппаратное декодирование HEVC .

Это не проблема для автономных устройств воспроизведения. 4K проигрыватели Blu-ray, в том числе Xbox One, уже сконструированы с учетом HEVC. Но когда дело доходит до воспроизведения видео HEVC на компьютере, всё становится сложнее.

Вашему устройству потребуется одно из следующих аппаратных средств для быстрого декодирования видео HEVC:

  • Intel 6-го поколения «SkyLake» или более новые процессоры
  • AMD 6-го поколения «Carizzo» или более новые APU
  • NVIDIA GeForce GTX 950, 960 или более новые видеокарты
  • AMD Radeon R9 Fury, R9 Fury X, R9 Nano или более новые графические карты

Вам также понадобится использовать операционную систему и видеоплеер, который поддерживает не только видео HEVC, но и аппаратное декодирование HEVC, – этот момент немного «мутный». Многие приложения имеют поддержку аппаратного декодирования HEVC, но в некоторых случаях оно может работать только с некоторыми фишками из списка выше. Возможно, вам придётся включить аппаратное ускорение в вашем плеере, чтобы он работал правильно.

С течением времени большее количество компьютеров сможет обрабатывать видео такого типа, и больше плееров будут поддерживать H.265. Для этого может потребоваться некоторое время, чтобы стандарт стал повсеместным, и до этого Вам придётся хранить свои 4K видео в AVC/H.264 при больших размерах файлов (или сжимать их больше и терять качество изображения). Но чем шире будет поддерживаться больше HEVC/H.265, тем лучше будет видео.

В данный момент идет активная разработка энкодера, но он все ещё находится в состоянии «бета»-версии. Работает медленно и не очень эффективно. Релизы новых версий выходят очень часто.

Что требуется?

Выберите один из методов:

  1. Скачайте исходники из официального репозитория и скомпилируйте энкодер x265.exe под свою систему.
  2. Скачайте одну из последних сборок x265.exe с нашего сайта.
  3. Используйте программу кодирования с графической оболочкой (см. конец страницы).

Использование энкодера x265 из командной строки

Энкодер берет на вход файлы в формате YUV или Y4M. Размер картинки (ширина и высота), а также частота кадров (FPS) должны быть заданы. Кодирование запускается с командной строки, по аналогии с x264. Кодировать можно с постоянным битрейтом (флаг —bitrate) или с постоянным качеством (флаг —crf). Пример для постоянного битрейта:

x265.exe input.yuv --input-res 1920x1080 --fps 50 --bitrate 14000 --input-depth 8 -o output.x265

Пример для постоянного качества:

x265.exe input.yuv --input-res 1920x1080 --fps 50 --crf 17 --input-depth 8 -o output.x265

На выходе будет файл в сыром формате x265: output.x265 Разработчики подготовили набор параметров для соотношений время/качество кодирования. Эти параметры задаются с помощью флага —preset. Полный список (от самого быстрого до самого медленного): ultrafast , faster , fast , medium , slow , veryslow , placebo . По умолчанию используется пресет ‘medium’. Пример для установки пресета:

x265.exe input.yuv --input-res 1920x1080 --fps 50 --crf 17 --input-depth 8 --preset veryslow -o output.x265

Для тонкой настройки кодирования существует огромное множество различных флагов, которые можно настраивать под свои потребности. Например, строчка с дополнительными параметрами обеспечивающая более высокое качество, может выглядеть так:

x265.exe input.y4m --q 17 --merange 64 --frames all --ref 4 --max-merge 3 --rect --hash 2 --me 3 --b 6 --b-adapt 1 --rd 2 --rc-lookahead 60 --input-depth 16 --tu-inter-depth=3 --tu-intra-depth=3 --no-tskip --no-tskip-fast --wpp --subme 2 --s 32 --F 6 --o video.hevc



Понравилась статья? Поделиться с друзьями: