О связи и современных технологиях. Защита от прослушивания разговоров — строим безопасную SIP телефонию своими руками

IP-телефония все чаще и чаще начинает применяться в компаниях. Она повышает эффективность ведения бизнеса и позволяет осуществлять многие до этого невозможные операции (например, интеграцию с CRM и другими бизнес-приложениями, снижение издержек на построение и эксплуатацию телекоммуникационной инфраструктуры, создание эффективных Call-центров, снижение совокупной стоимости владения системой и т.п.). Однако, активное развитие IP-телефонии сдерживается тем, что вокруг этой технологии циркулирует много слухов о ее низкой безопасности. Компания Cisco Systems доказала, что это не так и данная публикация призвана развенчать сложившиеся мифы о незащищенности IP-телефонии.

Сразу надо заметить, что Cisco - единственный производитель, обеспечивающий защиту инфраструктуры IP-телефонии на всех ее уровнях, начиная от транспортной среды и заканчивая голосовыми приложениями. Это достигается внедрением решений в рамках инициативы Cisco Self-Defending Network. Высокий уровень защищенности решений Cisco Systems подтверждается и независимыми тестовыми лабораториями. В частности, журнал NetworkWorld (http://www.nwfusion.com/reviews/2004/0524voipsecurity.html) протестировал несколько решений по IP-телефониии и только решению Cisco присвоил максимально возможный рейтинг "SECURE" («защищенный»).

1. IP-телефония не защищает от подслушивания разговора

Решения IP-телефонии компании Cisco используют несколько технологий и механизмов, обеспечивающих конфиденциальность проводимых . Во-первых, это выделение голосового трафика в выделенный сегмент сети и разграничение доступа к голосовому потоку путем использования правил контроля доступа на маршрутизаторах и межсетевых экранах. Во-вторых, весь голосовой трафик может быть защищен от несанкционированного прослушивания с помощью технологии построения виртуальных частных сетей (VPN). Протокол IPSec позволяет защитить телефонный разговор, осуществляемый даже через сети открытого доступа, например, Интернет. И, наконец, компания Cisco реализовала в своих IP-телефонах специально разработанный для обеспечения конфиденциальности голосового потока протокол SecureRTP (SRTP), не позволяющий посторонним проникнуть в тайну телефонных переговоров.

2. IP-телефония подвержена заражению червями, вирусами и троянцами

Для защиты инфраструктуры IP-телефонии от заражения различными вредоносными программами компания Cisco предлагает целый ряд защитных мер, позволяющих построить эшелонированную оборону, препятствующую не только внедрению, но и распространению червей, вирусов, троянских коней и других типов вредоносной активности. Первой линией обороны является применение межсетевых экранов и систем обнаружения и предотвращения атак, наряду с антивирусами компаний-партнеров компании Cisco, для разграничения доступа к инфраструктуре IP-телефонии.

Вторая линия обороны строится на использовании антивирусов и систем предотвращения атак на оконечных узлах, участвующих в инфраструктуре IP-телефонии - Cisco IP SoftPhone, Cisco CallManager, Cisco Unity, Cisco IP Contact Center (IPCC) Express, Cisco Personal Assistant, Cisco IP Interactive Voice Response и т.д.

Последняя по счету, но не последняя по важности линия обороны - инициатива Network Admission Control, предложенная компанией Cisco Systems. В рамках этой инициативы все несоответствующие политике безопасности (в т.ч. и с неустановленным антивирусным программным обеспечением) рабочие станции и сервера не смогут получить доступ к корпоративной сети и нанести ущерб ее ресурсам.

3. IP-телефония не защищает от подмены телефонов и серверов управления

Для защиты от устройств, пытающихся замаскироваться под авторизованные IP-телефоны или несанкционированно подключенных к сетевой инфраструктуре, компания Cisco предлагает использовать не только уже упомянутые выше правила контроля доступа на маршрутизаторах и межсетевых экранах, но и развитые средства строгой аутентификации всех абонентов инфраструктуры IP-телефонии (включая сервер управления Call Manager), для подтверждения подлинности которых используются различные стандартизированные протоколы, включая RADIUS, сертификаты PKI Х.509 и т.д.

4. Злоумышленник с административными правами может нарушить функционирование инфраструктуры 1Р-телефонии

В CallManager предусмотрены расширенные возможности по наделению различных системных администраторов только теми правами, которые им нужны для выполнения своих обязанностей. К таким правам могут быть отнесены - доступ к конкретным настройкам только на чтение, полное отсутствие доступа к ним, доступ на изменение и т.д.). Кроме того, все производимые администратором действия фиксируются в специальном журнале регистрации и могут быть проанализированы в любой момент в поисках следов несанкционированной активности.

Управление конфигурацией IP-телефонов и взаимодействие их с CallManager осуществляется по защищенному от несанкционированного доступа каналу, предотвращая любые попытки прочтения или модификации управляющих команд. Для защиты канала управления используются различные стандартизованные протоколы и алгоритмы - IPSec, TLS, SHA-1 и т.д.

5. CallManager незащищен, потому что установлен на платформе Windows

Несмотря на то, что сервер управления инфраструкторой IP-телефонии CallManager установлен на платформе Windows, он не имеет присущих этой платформе слабых мест. Это связано с тем, что CallManager работает под управлением защищенной и оптимизированной версии Windows в которой:

  • отключены все ненужные сервисы и учетные записи,
  • установлены все необходимые и регулярно обновляемые «заплатки»,
  • настроена политика безопасности.
Кроме того, CallManager дополнительно защищается специальными скриптами, входящими в дистибутив и автоматизирующими процесс повышения уровня защищенности сервера управления инфраструктурой IP-телефонии. Дополнительный уровень защиты CallManager от вирусов, червей, троянских коней и других вредоносных программ и атак достигается за счет применения антивируса (например, McAfee) и системы предотвращения атак Cisco Secure Agent, которые блокируют все попытки злоумышленников вывести из строя основной компонент сегмента IP-телефонии.

6. IP-телефонию легко вывести из строя

Несмотря на то, что различные компоненты IP-телефонии потенциально подвержены атакам «отказ в обслуживании», решения компании Cisco Systems предлагают целый ряд защитных мер, предотвращающих как сами DoS-атаки, так и их последствия. Для этого можно использовать как встроенные в сетевое оборудование механизмы обеспечения информационной безопасности, так и дополнительные решения, предлагаемые компанией Cisco Systems:

  • Разделение корпоративной сети на непересекающиеся сегменты передачи голоса и данных, что предотвращает появление в «голосовом» участке распространенных атак, в т.ч. и DoS.
  • Применение специальных правил контроля доступа на маршрутизаторах и межсетевых экранах, защищающих периметр корпоративной сети и отдельные ее сегменты.
  • Применение системы предотвращения атак на узлах Cisco Secure Agent.
  • Применение специализированной системы защиты от DoS и DDoS-атак Cisco Guard и Cisco Traffic Anomaly Detector.
  • Применение специальных настроек на сетевом оборудовании Cisco, предотвращающих подмену адреса, часто используемую при DoS-атаках, и ограничивающих полосу пропускания, не позволяющую вывести из строя атакуемые ресурсы большим потоком бесполезного трафика.
7. К IP-телефонам можно осуществить несанкционированный доступ

Сами IP-телефоны содержат целый ряд специальных настроек, препятствующих несанкционированному доступу к ним. К таким настройкам можно отнести, например, доступ к функциям телефона только после предъявления идентификатора и пароля или запрет локального изменения настроек и т.д.

С целью предотвращения загрузки на IP-телефон несанкционированно модифицированного программного обеспечения и конфигурационных файлов, их целостность контролируется электронной цифровой подписью и сертификатами Х.509.

8. CallMananger можно перегрузить большим числом звонков

Максимальное число звонков в час на один сервер CallManager составляет до 100000 (в зависимости от конфигурации) и это число может быть увеличено до 250000 при использовании кластера CallManager. При этом в CallManager существуют специальные настройки, ограничивающие число входящих звонков необходимым значением. Кроме того, в случае потери связи с одним из CallManager"ов возможна автоматическая перерегистрация IP-телефона на резервном CallManager, а также автоматическая смена маршрута звонка.

9. В IP-телефонии легко совершить мошенничество

Сервер управления инфраструктурой IP-телефонии CallManager содержит ряд возможностей, позволяющих снизить вероятность осуществления телефонного мошенничества в зависимости от его типа (кража услуг, фальсификация звонков, отказ от платежа и т.п.). В частности, для каждого абонента можно:

  • заблокировать звонки как на определенные группы номеров, так и с них,
  • заблокировать возможность переадресации звонков на различные типы номеров -городские, мобильные, междугородние, международные и т.д.,
  • отфильтровывать звонки по различным параметрам,
  • и т.д.
При этом все эти действия осуществляются независимо от того, с какого телефонного аппарата абонент осуществляет звонок. Это реализуется путем аутентификации каждого абонента, получающего доступ к IP-телефону. Если пользователь не проходит процесс подтверждения своей подлинности, то он может звонить только по заранее определенному списку телефонных номеров, например, в скорую помощь, милицию или внутренний отдел поддержки.

10.Традиционная телефония более защищена, чем IP-телефония

Это самый распространенный миф, который существует в области телефонии. Традиционная телефония, разработанная десятилетия назад гораздо менее защищена новой и более совершенной технологии IP-телефонии. В традиционной телефонии гораздо легче осуществить подключение к чужому разговору, подмену номера, «наводнение» звонками и множество других угроз, некоторым из которых нет аналогов в IP-телефонии (например, war dialing). Защита традиционной телефонии обеспечивается гораздо более дорогими средствами и механизмами, чем в IP-телефонии, в которой эти средства встроены в сами компоненты этой технологии. Например, для защиты от прослушивания традиционное использует специальные устройства - скремблеры, централизованное управление которыми невозможно; не говоря уже стоимости их приобретения и установки перед каждым телефонным аппаратом.

Статья написана специально для linkmeup.

=======================

Здравствуйте, коллеги и друзья, я, Семенов Вадим, совместно с командой проекта network-class.net представляем вниманию обзорную статью, которая затрагивает основные тенденции и угрозы в IP телефонии, и самое главное, те инструменты защиты, что на данный момент предлагает производитель в качестве защиты (если выражаться языком специалистов по безопасности, то рассмотрим какие инструменты предлагает производитель для уменьшения уязвимостей, которыми смогут воспользоваться нелегитимные лица). Итак, меньше слов– переходим к делу.
Для многих читающих термин IP телефония уже давно сформировался, а также и то, что данная телефония «лучше», дешевле по сравнению с телефонией общего пользования (ТФОП), богата различными дополнительными функциями и т.д. И это действительно так, однако… отчасти. По мере перехода от аналоговой (цифровой) телефонии со своими абонентскими линиями (от абонентского телефона до станции или станционного выноса) и соединительными линиями (меж станционная линия связи) ни много ни мало были только лишь в зоне доступа и управления провайдера телефонии. Иными словами, обычным обывателям туда доступа не было (ну или практически так, если не учитывать кабельную канализацию). Вспоминается один вопрос на старом добром форуме хакеров «Подскажите, как получить доступ к АТС? – ответ: «Ну как, берешь бульдозер – таранишь стену здания АТС и вуаля». И эта шутка имеет свою долю правды) Однако с переносом телефонии в дешевую IP среду мы получили в довесок и те угрозы, которые несет в себе открытая IP среда. Примером приобретенных угроз может служить следующее:

  • Сниффинг сигнальных портов с целью совершения платных вызовов за чужой счет
  • Подслушивание за счет перехвата голосовых IP пакетов
  • Перехват звонка, представление нелегитимным пользователем как легитимный пользователь, атака «человек по середине»
  • DDOS атаки на сигнальные сервера станции с целью вывода из строя всей телефонии
  • Спам-атаки, обрушение большого количества фантомных вызовов на станцию с целью занять все её свободные ресурсы
Несмотря на очевидность в необходимости устранять все возможные уязвимости дабы уменьшить вероятность реализации той или иной атаки - по факту внедрение тех или иных мер защиты необходимо начинать с составления графика, учитывающего стоимость внедрения защитных мер от конкретной угрозы и убытков предприятия от реализации злоумышленниками этой угрозы. Ведь глупо тратить денег на безопасность актива больше, чем стоит сам актив, который мы защищаем.
Определив бюджет на безопасность, начнем устранение именно тех угроз, которые наиболее вероятны для компании, например для малой организации больнее всего будет получить большой счет за несовершенные междугородние и международные звонки, в то время как для государственных компаний важнее всего сохранить конфиденциальность разговоров. Начнем же постепенное рассмотрение в текущей статье с базовых вещей – это обеспечение безопасного способа доставки служебных данных от станции к телефону. Далее рассмотрим аутентификацию телефонов перед подключением их к станции, аутентификацию станции со стороны телефонов ну и шифрование сигнального трафика (для скрытия информации кто и куда звонит) и шифрование разговорного трафика.
У многих производителей голосового оборудования (в том числе и у Cisco Systems) есть уже интегрированные инструменты безопасности от обычного ограничения диапазона ip адресов, с которых можно совершать вызовы, до аутентификации оконечных устройств по сертификату. Например, у производителя Cisco Systems с его голосовой линейкой продуктов CUCM (Cisco Unified CallManager) с версии продукта 8.0 (дата выхода в свет май 2010г.; на данный момент доступна версия 10.5 от мая 2014г.) стала интегрироваться функция «Безопасность по умолчанию». Что она в себя включает:
  • Аутентификация всех скачиваемых по/с TFTP файлов (конфигурационные файлы, файлы прошивки для телефонов т.д.)
  • Шифрование конфигурационных файлов
  • Проверка сертификата с инициализации телефоном HTTPS соединения
Давайте рассмотрим пример атаки «человека по середине», когда нелегитимное лицо перехватывает конфигурационный файлы для телефонов, из которого телефон узнает на какую станцию ему регистрироваться, на каком протоколе работать, какую прошивку скачивать и т.д. Перехватив файл, злоумышленник сможет вносить в него свои изменения либо полностью затереть файл конфигурации, тем самым не дав телефонам всего офиса (см. рисунок) зарегистрироваться на станции, а, следовательно, лишив офиса возможности совершать звонки.

Рис.1 Атака «человек посередине»

Для защиты от этого нам понадобятся знания по несимметричному шифрованию, инфраструктуре открытых ключей и представления о составляющих «Безопасности по умолчанию», с которыми мы сейчас познакомимся: Identity Trust List (ITL) и Trust Verification Service (TVS). TVS – сервис, предназначенный для обработки запросов с IP телефонов, у которых нет ITL или CTL файла во внутренней памяти. IP телефон обращается к TVS в случае необходимости удостовериться может ли он доверять тому или иному сервису перед тем, как начать обращаться к нему. Станция к тому же выступает в роли репозитория, хранящем сертификаты доверенных серверов. В свою очередь ITL представляет собой список из открытых ключей составляющих кластер станции элементов, но для нас важно, что там хранится открытый ключ TFTP сервера и открытый ключ TVS сервиса. При первоначальной загрузке телефона, когда телефон получил свой IP адрес и адрес TFTP сервера, он запрашивает наличие ITL файла (рис.2). Если он есть на TFTP сервере, то, слепо доверяя, загружает его в свою внутреннюю память и хранит до следующей перезагрузки. После скачивания ITL файла телефон запрашивает подписанный конфигурационный файл.

Теперь рассмотрим как мы сможем использовать инструменты криптографии – подписывание файла с помощью хеш-функций MD5 или SHA и шифрование с помощью закрытого ключа TFTP сервера (рис.3). Особенность хеш-функций заключается в том, что это однонаправленные функции. По полученному хешу с какого-либо файла, нельзя проделать обратную операцию и получить в точности оригинальный файл. При изменении файла - изменяется и сам хеш, полученный с этого файла. Стоит отметить, что хеш не записывается в сам файл, а просто добавляется к нему и передается совместно с ним.


Рис.3 Подписывание файла конфигурации телефона

При формировании подписи берется сам конфигурационный файл, извлекается с него хеш и шифруется закрытым ключом TFTP сервера (который обладает только TFTP-сервер).
При получении данного файла с настройками, телефон первоначально проверяет его на целостность. Мы помним, что хеш - это однонаправленная функция, поэтому телефону не остается ничего делать, кроме как отделить зашифрованный TFTP сервером хеш от конфигурационного файла, расшифровать его с помощью открытого ключа TFTP (а откуда его знает IP телефон? – а как раз из ITL файла), из чистого конфигурационного файла вычислить хеш и сравнить его с тем, что мы получили при расшифровании. Если хеш совпадает - значит при передаче в файл не вносились никакие изменения и его можно смело применять на телефоне (рис.4).


Рис.4 Проверка файла конфигурации IP телефоном

Подписанный конфигурационный файл для телефона представлен ниже:


Рис. 5 Подписанный файл IP телефона в Wireshark

Подписав конфигурационный файл, мы смогли обеспечить целостность передаваемого файла с настройками, однако мы не защитили его от просмотра. Из пойманного файла конфигурации можно получить достаточно много полезной информации, например ip адрес телефонной станции (в нашем примере это 192.168.1.66) и открытые порты на станции (2427) и т.д. Не правда ли достаточно важная информация, которую не хотелось бы просто так «светить» в сети? Для скрытия данной информации производители предусматривают использование симметричного шифрования (для шифрования и дешифрования используется один и тот же ключ). Ключ в одном случае может быть введен на телефон вручную, в другом случае шифрование файла конфигурации телефона на станции происходит с использованием открытого ключа телефона. Перед отправлением файла телефону – tftp сервер, на котором хранится этот файл, шифрует его с помощью открытого ключа телефона и подписывает с помощью своего закрытого ключа (тем самым мы обеспечиваем не только скрытость, но и целостность передаваемых файлов). Здесь главное не запутаться, кто какой ключ использует, но давайте разберем по порядку: tftp сервер, зашифровав файл открытым ключом IP телефона, обеспечил тем самым, что этот файл сможет открыть только владелец парного открытого ключа. Подписав файл своим закрытым ключом, tftp сервер подтверждает, что именно он создал его. Зашифрованный файл представлен на рисунке 6:


Рис.6 Зашифрованный файл IP телефона

Итак, на данный момент мы рассмотрели возможность защищать наши конфигурационные файлы для телефонов от просмотра и обеспечивать их целостность. На этом функции «Безопасности по умолчанию» заканчиваются. Для обеспечения шифрования голосового трафика, скрытия сигнальной информации (о том кто звонит и куда звонит), необходимы дополнительные инструменты, основанные на списке доверенных сертификатов – CTL, который мы рассмотрим далее.

Аутентификация телефонной станции

Когда телефону необходимо взаимодействие с телефонной станцией (например, согласовать TLS соединение для обмена сигнализации), IP телефону необходимо аутентифицировать станцию. Как можно догадаться, для решения данной задачи также широко используются сертификаты. На данный момент современные IP станции состоят из большого количества элементов: несколько сигнальных серверов для обработки вызовов, выделенный сервер администрирования (через него добавляются новые телефоны, пользователи, шлюзы, правила маршрутизации и т.д.), выделенный TFTP сервер для хранения файлов конфигурации и программного обеспечения для телефонов, сервер для вещания музыки на удержании и проч, кроме этого в голосовой инфраструктуре может быть голосовая почта, сервер определения текущего состояния абонента (online, offline, «на обеде») – список набирается внушительный и, что самое главное, каждый сервер имеет свой самоподписанный сертификат и каждый работает как корневой удостоверяющий центр (рис.7). По этой причине любой сервер в голосовой инфраструктуре не будет доверять сертификату другого сервера, например голосовой сервер не доверяет TFTP серверу, голосовая почта – сигнальному серверу и к тому же телефоны должны хранить у себя сертификаты всех участвующих в обмене сигнального трафика элементов. Сертификаты телефонной станции изображены на рисунке 7.


Рис.7 Самоподписанные сертификаты Cisco IP станции

Для задач установления доверительных отношений между вышеописанными элементами в голосовой инфраструктур, а также шифрования голосового и сигнального трафика в игру входит так называемый список доверенных сертификатов Certificate Trust List (CTL). CTL содержит все самоподписанные сертификаты всех серверов в кластере голосовой станции, а также участвующих в обмене сигнальными сообщениями телефонии (например, файервол) и этот файл подписывается закрытым ключом доверенного центра сертификации (рис.8). CTL файл эквивалентен проинсталлированным сертификатам, которые используются в работе веб браузеров при работе с https протоколом.


Рис.8 Список доверенных сертификатов

Для того чтобы создать CTL файл на оборудовании Cisco, потребуется ПК с USB разъемом, установленная на нем программа CTL client и сам токен Site Administrator Security Token (SAST) (рис.9), содержащий закрытый ключ и X.509v3 сертификат, подписанный центром аутентификации производителя (Cisco).


Рис.9 eToken Cisco

CTL client - программа, которая устанавливается на Windows ПК и с которой можно перевести ВСЮ телефонную станцию в так называемый mixed mode, то есть смешанный режим поддержки регистрации оконечных устройств в безопасном и небезопасном режимах. Запускаем клиент, указываем IP адрес телефонной станции, вводим логин/пароль администратора и CTL client устанавливает TCP соединение по порту 2444 со станцией (рис.10). После этого будет предложено всего лишь два действия:


Рис.10 Cisco CTL Client

После создания CTL файла, остается перезагрузить TFTP сервера для того, чтобы они подкачали к себе новый созданный CTL файл, и далее перезагрузить голосовые сервера, чтобы IP телефоны также перезагрузились и загрузили новый CTL файл (32 килобайта). Загруженный CTL файл можно просмотреть из настроек IP телефона (рис.11)


Рис.11 CTL файл на IP телефоне

Аутентификация оконечных устройств

Для обеспечения подключения и регистрации только доверенных оконечных устройств необходимо внедрение аутентификации устройств. На этот случай многие производители используют уже проверенный способ – аутентификация устройств по сертификатам (рис.12). Например, в голосовой архитектуре Cisco это реализовано следующим образом: имеются два вида сертификатов для аутентификации с соответствующими открытыми и закрытыми ключами, которые хранятся на телефоне:
Manufacturer Installed Certificate - (MIC) . Сертификат, установленный производителем, содержит 2048 битный ключ, который подписан центром сертификации компании производителя (Cisco). Данный сертификат установлен не на все модели телефонов, и если он установлен, то в наличии другого сертификата (LSC) нет необходимости.
Locally Significant Certificate – (LSC) Локально значащий сертификат, содержит открытый ключ IP телефона, который подписан закрытым ключом локального центра аутентификации, который работает на самой телефонной станции Сertificate Authority Proxy Function (CAPF).
Итак, если у нас есть телефоны с предустановленным MIC сертификатом, то каждый раз, когда телефон будет регистрироваться на станцию, станция будет запрашивать для аутентификации предустановленный производителем сертификат. Однако, в случае компрометации MIC-а для его замены необходимо обращение в центр сертификации производителя, что может потребовать большого количества времени. Дабы не зависеть от времени реакции центра сертификации производителя на перевыпуск скомпрометированного сертификата телефона, предпочтительней использование локального сертификата.


Рис.12 Сертификаты для аутентификации оконечных устройств

По умолчанию на IP телефон не установлен LSC сертификат и его установка возможна, используя MIB сертификат (при его наличии), или через TLS соединение (Transport Layer Security) по разделяемому общему ключу, сгенерированному администратором вручную на станции и введенном на телефоне.
Процесс установки на телефон локально значащего сертификата (LSC), содержащий открытый ключ телефона, подписанного локальным центром сертификации изображен на рисунке 13:


Рис.13 Процесс установки локально значащего сертификата LSC

1. После загрузки IP телефон запрашивает доверенный список сертификатов (CTL-файл) и файл с конфигурацией
2. Станция отправляет запрашиваемые файлы
3. Из полученной конфигурации телефон определяет – нужно ли ему загружать локально значащий сертификат (LSC) со станции
4. Если мы на станции выставили для телефона, чтобы он установил LSC сертификат (см.ниже), который станция будет использовать для аутентификации данного IP телефона, то мы должны позаботиться о том, чтобы на запрос об выдаче LSC сертификата – станция выдала его тому, кому он предназначается. Для этих целей мы можем использовать MIC-сертификат (если он есть), сгенерировать одноразовый пароль на каждый телефон и ввести его на телефоне вручную либо не использовать авторизацию вообще.
На примере продемонстрирован процесс установки LSC с использованием сгенерированного ключа.
На станции в режиме настроек IP телефона указываем, что мы хотим установить LSC сертификат на телефон и при этом установка будет произведена успешна, если на телефоне ввести аутентификационный ключ, который мы определили как 12345 (рис.14).


Рис.14 Режим настроек CAPF на телефоне

Заходим в режим настройки телефона и вводим наш ключ (рис.15):


Рис.15 Аутентификационный ключ для установки LSC

После этого установка LSC сертификата на телефон прошла успешна (рис.16):


Рис.16 Настройки безопасности на IP телефоне

Особенностью же использования LSC сертификата для аутентификации оконечных устройств является то, что при компрометации самого сертификата – он может быть переподписан новым закрытым ключом центром сертификации CAPF телефонной станции.

Итак, на данный момент мы добились безопасности не только скачиваемых файлов, но и аутентификацию сигнальных серверов со стороны оконечных устройств (IP телефонов), а также самих оконечных устройств со стороны станции. Рассмотрим теперь сохранение конфиденциальности разговоров за счет шифрования голосового трафика и скрытия сигнальной информации.

Шифрование разговоров - SRTP

Рассмотрим, что на данный момент предлагает производитель, для выполнения самой востребованной задачи – обеспечения конфиденциальности разговоров.
Стандартно все сигнальные и голосовые сообщения передаются в открытом виде, как на представленном рисунке 17:


Рис.17 Открытое сообщение SIP

Secure Real Time Protocol (SRTP) – это специально разработанный протокол RTP, призванный для передачи голоса и видео, однако дополненный механизмами обеспечения конфиденциальности, целостности передаваемой информации не только через RTP, но и RTCP. Голосовое приложение, поддерживающие SRTP, должно конвертировать RTP пакеты в SRTP перед отправкой их по сети. Обратная операция должна быть продела на приемной стороне. В архитектуре SRTP определены два типа ключей: мастер-ключ и сессионный ключ (для шифрования и аутентификации) (рис. 18). Однако SRTP не регламентирует порядок обмена мастер-ключами, для данных целей необходимо использовать TLS или IPSec. Для обмена ключами стандартизованным решением для SRTP является MIKEY (Multimedia Internet Keying), однако могут быть использованы и такие протоколы как SDES и ZRTP.


Рис.18 Совершение звонка с помощью SRTP

Процесс обмена сообщениями SRTP:

  • Телефон и сервер обмениваются сертификатами;
  • Телефон и сервер аутентифицируют друг друга;
  • Телефон создает TLS ключи для SHA аутентификации и для шифрования AES;
  • Телефон шифрует ключи с помощью открытого ключа станции и отправляет. Станция расшифровывает с помощью своего закрытого ключа;
  • Станция обменивается TLS ключами с каждым из телефонов и приступает к безопасному обмену телефонных сигнальных сообщений (телефон вызываемого абонента звонит);
  • Станция создает сессионные ключи для SRTP SHA аутентификации и SRTP AES шифрованию;
  • Станция распространяет сессионные ключи обоим телефонам через защищенное сигнальное соединение;
  • Телефоны приступают обмен голосового трафика через защищенное SRTP соединение (вызываемый поднял трубку).
Включением шифрования и аутентификации на оборудовании Cisco заведуют профайлы безопасности. Выглядит он следующим образом (рис.19):


Рис.19 Профайл безопасности на Cisco CallManager

В нем мы определяем в каком режиме будут регистрироваться и работать оконечные устройства (телефоны). При выборе опции Non Secure – не шифруются ни сигнальные данные, ни голос; Authenticated – шифруются сигнальные сообщения, но не шифруется голос; Encrypted – шифруется и сигнализация и голос. Есть возможность выбора шифрования конфигурационных данных. После создания профайла необходимо его назначить на телефон (рис.20).


Рис.20 Профайл безопасности телефона на Cisco CallManager

На данный момент мы рассмотрели основные моменты в безопасности IP телефонии, позволяющие бороться против основных угроз телефонии, однако это только шапка айсберга всей безопасности голосовой инфраструктуры) Отдельно необходимо рассмотрение физической безопасности инфраструктуры (например здесь: ГОСТ Р ИСО/МЭК 17799-2005 Практические правила управления информационной безопасностью), и отдельную тему можно посвятить сетевой безопасности. Надеюсь, что тот, кто дочитал статью до конца, остался ей доволен и информация была полезной.
На любые вопросы готов ответить по почте: [email protected]
При поддержке проекта network-class.net

Код курса БТ19, 2 дня

Статус

Аннотация

Курс посвящен комплексным вопросам анализа защищенности и обеспечения безопасности IP-телефонии (Voice over IP (VoIP) -- системы связи, обеспечивающей передачу речевого сигнала по сети Интернет или по любым другим IP-сетям).Подробно рассматриваются современные подходы к построению инфраструктуры IP-телефонии и ее защита, уязвимости и атаки на ее компоненты. Особое внимание уделяется системам мониторинга и методологии анализа защищенности VoIP-сети.

Более 50% учебного времени уделяется практическим работам по анализу защищенности и настройке компонентов VoIP в соответствии с требованиями безопасности как небольших организаций, так и предприятий с развитой филиальной сетью и территориально распределенными пользователями.

В курсе использованы материалы и рекомендации таких компетентных в области информационной безопасности международных организаций как European Telecommunications Standards Institute (ETSI), International Telecommunication Union (ITU), Voice over IP Security Alliance (VOIPSA) и ряда других.

Применяемая в процессе обучения технология виртуализации серверов и рабочих мест позволяет каждому специалисту индивидуально выполнять практические работы в индивидуальной VoIP-сети. Коллективная работа специалистов осуществляется с применением программных и программно-аппаратных телефонов.

Аудитория:

  • Системные и сетевые администраторы, ответственные за эксплуатацию VoIP-приложений
  • Администраторы информационной безопасности
  • Эксперты и аналитики по вопросам компьютерной безопасности, ответственные за анализ состояния информационной безопасности, определение требований к защищенности сетевых ресурсов и защите от утечки конфиденциальной информации по техническим каналам.

Предварительная подготовка

  • Базовые знания по IP-сетям, основным протоколам и службам стека TCP/IP
  • Навыки работы с ОС Windows 2003/2008 и Linux

Вы можете проверить свои знания протоколов стека TCP/IP, запросив в Учебном центре тест для самопроверки.

  • БТ05 « »
  • БТ03 « »

По окончанию обучения

Вы приобретете знания:

  • о современных механизмах и средствах защиты VoIP-сетей
  • об уязвимостях протоколов и служб VoIP: SIP, H.323, RTP
  • о применении защищенных протоколов TLS, SRTP

Вы сможете:

  • применять сетевые анализаторы для мониторинга трафика
  • проводить анализ защищиты VoIP-сетей
  • обеспечивать безопасное функционирование IP-телефонии и конференцсвязи

Пакет слушателя

  • Фирменное учебное пособие
  • Версии основных рассматриваемых в курсе средств защиты, дополнительная и справочная информация по тематике курса в электронном виде

Дополнительно

После успешной сдачи зачета выпускники получают свидетельства об обучении Учебного центра «Информзащита».

Выпускники Учебного центра могут получать бесплатные консультации специалистов центра в рамках пройденного курса.

Программа курса

  • Основные понятия и определения VoIP. Терминология. Архитектуры VoIP и их составляющие. Качество передачи речевой информации. Кодеки.
  • Основные протоколы VoIP . Архитектура. Анализ протоколов VoIP. Сетевой анализатор Wireshark.
  • Уязвимости и атаки на VoIP. Классификация уязвимостей IP-телефонии.
  • Инвентаризация VoIP сети. Инвентаризация VoIP приложений. Инвентаризация пользователей.
  • Перехват VoIP-трафика . Нарушение маршрутизации. Атака «человек посередине».
  • Манипулирование в системах VoIP. Удаление регистрации абонентов. Несанкционированная регистрация. Перехват регистрации.
  • Атаки на протокол передачи трафика реального времени RTP (Real-Time Protocol). Микширование речевых сигналов.
  • Спам в VoIP-сетях. Организация спама при помощи Asterisk.
  • Механизмы обеспечения безопасности IP-телефонии. Уровни информационной инфраструктуры корпоративной сети. Концепция глубокоэшелонированной защиты. Обзор механизмов и средств защиты сетей.
  • Планирование защищённой сетевой инфраструктуры IP-телефонии. Выбор местоположения VoIP сервера в сети. Обеспечение сетевой безопасности VoIP сервера. Конфигурирование межсетевого экрана. Использование систем обнаружения атак. Настройка сетевого оборудования.
  • Анализ защищенности VoIP. Методология. Системы анализа защищённости. Варианты классификации. Архитектура и принципы работы сканеров. Программа SiVuS (SIP Vulnerability Scanner).
  • Криптографическая защита в VoIP сетях. Криптографические методы защиты информации. Виртуальная частная сеть. Общие принципы построения VPN. Управление ключами. Модель инфраструктуры открытых ключей. Формат сертификатов открытых ключей X.509. Использование TLS (Transport Layer Security), SRTP (Secure Real-time Transport Protocol). Настройка Asterisk.
  • Аппаратно-программный комплекс шифрования «Континент». Создание VPN на основе АПКШ "Континент". Применение АПКШ «Континент» для защиты VoIP.
  • Office Communication Server. Архитектура. Варианты использования. Установка и настройка Office Communication Server.

Итоговый зачет

Несмотря на солидный возраст технологии VoIP и ее широкое распространение в корпоративном и государственном секторе, использование данной технологии вызывает ряд серьезных проблем, связанных с безопасностью: относительно несложно установить прослушивание VoIP-звонков, относительно несложно изменить содержание VoIP-звонков, система VoIP подвержена DoS-атакам.

Существующие решения проблемы

Использование патентованных (закрытых) аудио кодеков

Некоторые производители предлагают решать вопросы безопасности IP-телефонии путем использования закрытых аудио кодеков. Вся защита строится на том, что злоумышленнику неизвестен алгоритм кодирования звука, но как только алгоритм становится известным, система перестает быть безопасной. Современные тенденции таковы, что большинство производителей использует открытые аудио кодеки. Таким образом, данный способ защиты потерял свою эффективность.

Использование VLAN

При построении системы IP-телефонии принято выделять отдельную сеть VLAN, к которой подключаются все IP-телефоны. Данный способ обладает рядом недостатков:

  • Если злоумышленник получит доступ к VLAN системы IP-телефонии, то ему будет доступны для прослушивания все телефонные переговоры.
  • Данное решение никак не может обеспечить безопасность системы IP-телефонии, построенной между двумя и более территориально распределенными офисами.

Шифрование и криптографическая аутентификация VoIP

Данный способ обеспечения безопасности на сегодняшний день является наиболее надежным. Защита современных систем IP-телефонии может быть реализована с помощью различных протоколов таких как SRTP, ZRTP и IPSec. Однако, каждый из этих протоколов обладает рядом существенных недостатков:

  • SRTP, ZRTP используют «слабую» криптографию — ключи шифрования недостаточной длины или некриптостойкие алгоритмы шифрования.
  • IPSec — требует проведения предварительного обмена ключами, часто блокируется различными интернет-провайдерами, в ряде случаев в силу ограничения технологии не позволяет установить защищенное соединение.
  • Помимо частных недостатков, все упомянутые способы криптографической защиты IP-телефонии обладают общим недостатком — отсутствие сертификатов ФСБ РФ и ФСТЭК РФ. Из этого следует, что существующие способы защиты IP-телефонии нельзя использовать в государственных учреждениях.

Решение обеспечения безопасности VoIP от ОАО «ИнфоТеКС»

Основой защиты VoIP является VPN-решение ViPNet CUSTOM, которое обладает следующим функционалом:

  • Шифрование и фильтрация сигнального и голосового трафика всех участников сети IP-телефонии.
  • Обеспечивает беспрепятственное прохождение VoIP-трафика через устройства NAT.
  • Поддержка виртуальных адресов, в том числе в протоколах SIP, H.323 и Cisco SCCP (Skinny Client Control Protocol), является решением проблемы пересечения пространства IP-адресов удаленных офисов.

Преимущества

  • Позволяет организовать защиту гетерогенных систем IP-телефонии.
  • Позволяет организовать защищенное взаимодействие между двумя и более локальными сетями с пересекающейся IP-адресацией без изменения топологии этих сетей.
  • Обеспечивает защиту мобильных пользователей IP-телефонии.
  • Обеспечивает прохождении VPN-трафика в случае использования NAT или противодействия со стороны провайдера.
  • Наличие сертификатов ФСБ и ФСТЭК.

На сегодняшний день проблемы информационной безопасности в мире приобретают всё большую актуальность. В СМИ часто можно наткнуться на новость об очередной успешной хакерской атаке, крупной утечке критичных данных или очередном вирусе-вымогателе, который срывает работу целых компаний. Даже если Вы человек далёкий от информационной безопасности и мира информационных технологий, то Вы всё равно наверняка слышали о вирусе “WannaCry”, уязвимостях “Spectre” и “Meltdown” и может быть даже о недавней атаке на устройства компании Cisco, которая ударила по крупным провайдерам и парализовала много сервисов и сетевых сегментов.

Однако, широкой огласке обычно подвергаются новости об атаках и уязвимостях, носящие массовый характер, направленных на наиболее распространенные инфраструктурные системы. Мы же хотим рассказать о том, как обстоит ситуация с информационной безопасностью в отдельной в отдельно взятой сфере - IP телефонии и решений VoIP. Разберём наиболее важные проблемы и тренды развития данного направления.

Проблемы информационной безопасности в VoIP

Если раньше, выбирая на чём строить офисную телефонию, заказчиков больше всего волновали вопросы стоимости и надёжности, то в связи с нынешним положением, вопросы защиты и безопасности всё чаще начинают преобладать. Хотя IP телефония имеет массу преимуществ по сравнению с системами традиционной телефонии, её намного легче взломать. В случае с традиционной системой PSTN злоумышленник должен получить физический доступ к среде передачи или системам, которые задействованы в обмене голосовой информацией. IP телефония – это прежде всего сеть с коммутацией пакетов, которые передаются на ряду с другими корпоративными сервисами – Интернетом, почтой и другими. Если эта сеть недостаточно защищена, то злоумышленнику даже не обязательно находиться в одной стране с системой IP телефонии, чтобы получить доступ к критичным данным, украсть их или модифицировать.

Вот почему необходимо обеспечивать многоуровневую защиту систем корпоративной IP телефонии. Недостаточно просто поставить стойкий пароль к интерфейсу управления. Это должен быть чёткий набор определённых мер, применяемых в комплексе – межсетевое экранирование, антивирусная защита, регулярные обновления программного обеспечения, шифрование передаваемых данных и другое.

Отдельно следует уделить внимание повышению осведомлённости своих сотрудников об атаках из разряда социальной инженерии. Одним из наиболее распространённых векторов атаки данного типа на сегодняшний день является “фишинг”. Суть его заключается в том, что злоумышленник рассылает “письма счастья” с вредоносными вложениями, в надежде на то, что человек откроет это вложение и тем самым, загрузит на свой компьютер вредонос. Защититься от таких атак можно сразу на нескольких уровнях:

  1. Межсетевой экран, на котором адрес отправителя фишинговых писем должен быть заблокирован. Автоматизировать процесс получения актуального списка адресов активных отправителей для блокировки на МСЭ, можно с помощью решений Threat Intelligence. Существуют как платные решения от таких компаний как Anomali, ThreatConnect или EclecticIQ, так и OpenSource, например, YETI и MISP.
  2. Решение для защиты почтового сервера, которое проверяет все письма на предмет подозрительных вложений, адреса отправителя, блокирует спам. Примерами таких решений является Kaspersky Security для почтовых серверов, AVG Email Server Edition для ME, McAfee Security for Email Servers. Кстати, в этом случае также можно автоматизировать процесс блокировки с помощью решений TI.
  3. Антивирусное ПО для защиты оконечных устройств, которое заблокирует опасное вложение, если всё-таки вредонос сможет пролезть через МСЭ и почтовый сервер. Для этого подойдёт Kaspersky Endpoint Security, Norton, Trend Micro и другие.

Но если от фишинга можно защититься с помощью специализированных программ и аппаратных решений, то от следующих видов атак, основанной на социальной инженерии, защититься гораздо труднее. Возможно, Вы не знали, но помимо традиционного email “фишинга”, существует также и телефонный. Например, сотруднику Вашей компании на голосовую почту может прийти сообщение от “банка” о том, что кто-то пытался получить доступ к его счёту и что ему необходимо срочно перезвонить по оставленному номеру. Не трудно догадаться, что на другом конце провода, его будет ждать злоумышленник, который постарается сделать всё, чтобы втереться в доверие, украсть данные его счёта, чтобы в итоге похитить денежные средства.

Существует также телефонный “вишинг”. Этот тип атаки направлен на первую линию сотрудников, которые принимают все входящие звонки в Вашей компании. На общий номер поступает звонок от какой-нибудь известной организации или персоны, а дальше с помощью методов психологического давления, доверчивого сотрудника заставляют что-либо сделать. В самом лучшем случае, позвонивший будет агрессивно требовать соединить его с руководством компании, чтобы предложить какие-нибудь услуги, в самом худшем - выдать конфиденциальную или критически важную информацию. А что, если злоумышленник узнает каким банком обслуживается Ваша компания и позвонит бухгалтеру от лица “Вашего банка”? К такому тоже нужно быть готовым.

Защититься от подобного типа атак можно было бы с помощью некоего аналога Threat Intelligence для VoIP – списка телефонных номеров, с которых поступают “фишинговые” и “вишинговые” звонки, чтобы заблокировать их на АТС. Однако, такого решения пока нет, поэтому придётся просвещать сотрудников на тему безопасности.

Безопасность облачных систем

Сейчас уже сложно обозначить чёткие границы офисной сети. С распространением облачных решений, распределённых сетей VPN и всеобщей виртуализации, корпоративная сеть уже перестала иметь чёткую географическую привязку.

Аналогично обстоят дела и в сфере VoIP. Каждый крупный провайдер IP телефонии имеет в своем наборе услуг облачную АТС, которая настраивается в считанные минуты и способна обеспечить телефонией компанию любого размера и неважно где территориально она расположена. Облачная или виртуальная АТС – это очень удобное решение, которое привлекает заказчиков тем, что не надо держать лишние сервера в здании и обслуживать их. Вместо этого, можно просто арендовать необходимые серверные мощности или сервис телефонии. Однако, с точки зрения информационной безопасности, облачные АТС – это идеальная цель для хакерских атак. Потому что, как правило, аккаунты для доступа к настройкам АТС, находятся в открытом доступе. Если владелец аккаунта не озаботится созданием стойкого пароля, то он рискует оплатить немаленький счёт за телефонные разговоры злоумышленника или предоставить доступ к записям разговоров своих сотрудников. В этой связи при выборе провайдера следует также проверить обеспечивает ли он дополнительные мероприятия по защите целостности и конфиденциальности данных. Используется шифрование при подключении к аккаунту с настройками облачной АТС, шифруются ли данные при их транспортировке.

Тренды развития направления ИБ в VoIP

Наиболее распространённым методом защиты корпоративной инфраструктуры является организация защищённой сети VPN, когда подключение извне осуществляется по зашифрованному каналу, а данные внутри сети передаются в незашифрованном виде. Это относится и к голосовому трафику. Однако, тенденции развития информационных технологий указывают на то, что в недалёком будущем голосовая информация также будет подвергаться шифрованию. Большинство VoIP вендоров уже давно имплементируют в своих решениях поддержку таких протоколов как SIP/TLS, SRTP, ZRTP и д.р, стимулируя пользователей применять внедрять ещё один уровень защиты. Например, большинство IP-телефонов и решений видеоконференцсвязи от компании Cisco, а также системы CUCM, CUBE, Cisco SBC, UCCS и д.р поддерживают TLS 1.2 и SRTP. Самое распространённое Open Source решение IP-АТС Asterisk имеет поддержку защищённых протоколов передачи медиа трафика начиная с версии 1.8. В программной Windows-based АТС 3CX версии V15, поддержка SRTP включена по умолчанию.

VoIP решения зачастую очень тесно интегрируются с другими корпоративными системами, такими как CRM, ERP, CMS, не говоря уже о таких каналах бизнес коммуникаций как email, обмен мгновенными сообщениями (чат) и социальные сети, формируя в совокупности концепцию UC (Unified Communications). Потенциальные преимущества, которые несёт данная концепция очень привлекательны, но вместе с тем, создаётся множество точек уязвимых к возможному взлому. Недостаточный уровень защиты одной из них может быть угрозой всей корпоративной сети. Поэтому разработчики, несомненно, будут усиливать безопасность каналов интеграции данных систем.

Можно также ожидать интеграцию систем корпоративной телефонии в такие средства защиты как DLP (средства защиты от утечек), адаптации метрик VoIP в SIEM системах (система управления информацией и событиями безопасности), а также появление унифицированных репутационных баз (Threat Intelligence) со списками потенциально опасных номеров или других индикаторов компрометации, относящихся к VoIP, которые будут автоматически блокироваться имеющимися средствами защиты.

Полезна ли Вам эта статья?

Пожалуйста, расскажите почему?

Нам жаль, что статья не была полезна для вас:(Пожалуйста, если не затруднит, укажите по какой причине? Мы будем очень благодарны за подробный ответ. Спасибо, что помогаете нам стать лучше!



Понравилась статья? Поделиться с друзьями: